
eAppendix for
“Sensitivity Analysis Without Assumptions”

The eAppendix contains the following ten sections.

eAppendix 1: Three useful lemmas which are used repeatedly in the proofs in later sections;

eAppendix 2: The new bounding factor introduced in the main text and its implied Cornfield

conditions with proofs;

eAppendix 3: Another bounding factor with the exposure-confounder relationship on the

odds ratio scale and its implied Cornfield conditions with proofs;

eAppendix 4: Relations between the new bounding factor and some existing results including

Schlesselman’s formula1 and Flanders and Khoury’s results2;

eAppendix 5: Results for the risk difference using sensitivity parameters on the relative risk

scale with proofs;

eAppendix 6: Results for the risk difference using sensitivity parameters on the risk differ-

ence scale with proofs;

eAppendix 7: A bounding factor for rare time-to-event outcome on the hazard ratio scale and

its implied Cornfield conditions;

eAppendix 8: A bounding factor for general nonnegative outcomes;
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eAppendix 9: SAS code for the risk ratio using sensitivity parameters on the relative risk

scale;

eAppendix 10: SAS code for the risk difference using sensitivity parameters on the relative

risk scale.

eAppendix 1 Useful Lemmas

Lemma A.1. Define h(x) = (c1x+1)/(c2x+1). When c1 > c2, h′(x)> 0 and h(x) is increas-

ing; when c1 ≤ c2, h′(x)≤ 0 and h(x) is non-increasing.

Proof of Lemma A.1. The first derivative of h(x) is

h′(x) =
c1(c2x+1)− (c1x+1)c2

(c2x+1)2 =
c1 − c2

(c2x+1)2 .

When c1 > c2, h′(x)> 0 and h(x) is increasing in x. When c1 ≤ c2, we have opposite results.

Lemma A.2. When x,y > 1, h(x,y) = (xy)/(x+ y−1) is increasing in both x and y.

Proof of Lemma A.2. The first partial derivative of h(x,y) with respect to x is

∂h(x,y)
∂x

=
y(x+ y−1)− xy
(x+ y−1)2 =

y(y−1)
(x+ y−1)2 .

When x,y > 1, ∂h(x,y)/∂x > 0 and h(x,y) is increasing in x. By symmetry, the conclusion

holds also for y.

Lemma A.3. When x,y > 1, h(x,y) = (
√

xy+1)/(
√

x+
√

y) is increasing in both x and y.

Proof of Lemma A.3. The first partial derivative of h(x,y) with respect to x is

∂h(x,y)
∂x

=
1
2

√
y/x(

√
x+

√
y)− 1

2(
√

xy+1)/
√

x
(
√

x+
√

y)2 =
y−1

2
√

x(
√

x+
√

y)2 .
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When x,y > 1, ∂h(x,y)/∂x > 0 and h(x,y) is increasing in x. By symmetry, the conclusion

holds also for y.

eAppendix 2 The New Bounding Factor and Implied Corn-
field Conditions

eAppendix 2.1 Technical Measure-Theoretical Details

This subsection presents the technical framework for the proofs. A less technical reader

can skip this subsection and move directly to the next subsection eAppendix 2.2 on the new

bounding factor. Throughout the eAppendix, we allow the unmeasured confounder U to

take arbitrary values, which is a measurable mapping from probability space (Ω,F ,P) to a

measurable space (ϒ,U ). For V∈U , we define F1(V)= P(U ∈V |E = 1) as the distribution

of U with exposure, F0(V) = P(U ∈ V | E = 0) as the distribution of U without exposure, and

F(V) = P(U ∈ V) as the marginal distribution of U . The distributions F1(·),F0(·) and F(·)

are measurable mappings from ϒ to [0,1], which correspondingly induce three probability

measures on the measurable space (ϒ,U ). When the confounder U is a scalar on the real

line, these definitions reduce to F1(u)= P(U ≤ u |E = 1), the cumulative distribution function

(CDF) of U with exposure, F0(u) = P(U ≤ u | E = 0), the CDF of U without exposure,

and F(u) = P(U ≤ u), its marginal CDF. Correspondingly, the CDFs, F1,F0, and F , also

induce three measures on the real line. In the following, we assume that the measure F1 is

absolutely continuous with respect to the measure F0, with the Radon–Nikodym derivative

defined as RREU(u) =F1(du)/F0(du), which is the generalized relative risk of E on U at U =

u. The absolute continuous assumption about F1 and F0 holds automatically for categorical

and absolutely continuous unmeasured confounder U . For general confounder U , this is only
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a mild regularity condition.

eAppendix 2.2 The New Bounding Factor

We assume for the next several sections that analysis is done conditional on, or within strata

of the measured confounders C. We define the maximal relative risk of E on U as RREU =

maxu RREU(u). Define r(u) = P(D = 1 | E = 0,U = u) and r∗(u) = P(D = 1 | E = 1,U = u)

as the probabilities of the outcome within stratum U = u without and with exposure. Define

the maximal relative risk of U on D as RRUD|E=0 = maxu r(u)/minu r(u) and RRUD|E=1 =

maxu r∗(u)/minu r∗(u) without and with exposure, and RRUD =max(RRUD|E=0,RRUD|E=1)

as the maximum of these two relative risks. The maxima and minima are taken over the space

ϒ, and hereinafter. When U is a categorical confounder with levels 0,1, . . . ,K−1, the defini-

tions above reduce to the definitions in the main text. To allow for causal interpretations, we

invoke the counterfactural or potential outcomes framework, with Di(1) and Di(0) being the

potential outcomes for individual i with and without the exposure, respectively; we also need

to make the ignorability assumption3 E {D(1),D(0)} |U .

The observed relative risk of the exposure E on the outcome D is

RRobs
ED =

∫
P(D = 1 | E = 1,U = u)F1(du)∫
P(D = 1 | E = 0,U = u)F0(du)

=

∫
r∗(u)F1(du)∫
r(u)F0(du)

,

where the integrals are over ϒ and hereinafter. The relative risks standardized by the exposed,

the unexposed, and the whole population are as follows:

RRtrue
ED+ =

∫
r∗(u)F1(du)∫
r(u)F1(du)

, RRtrue
ED− =

∫
r∗(u)F0(du)∫
r(u)F0(du)

, RRtrue
ED =

∫
r∗(u)F(du)∫
r(u)F(du)

.

When unmeasure confounder U is categorical, RRtrue
ED reduces to the form in the main text,

and all other relative risk measures can be simplifies by replacing integrations by summations.
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The corresponding confounding relative risks standardized by the exposed, the unexposed,

and the whole population are

CRRED+ =
RRobs

ED
RRtrue

ED+

=

∫
r(u)F1(du)∫
r(u)F0(du)

, CRRED− =
RRobs

ED
RRtrue

ED−
=

∫
r∗(u)F1(du)∫
r∗(u)F0(du)

,

and CRRED = RRobs
ED/RRtrue

ED . Similar to Lee4, we have that RRtrue
ED is a weighted average of

RRtrue
ED+ and RRtrue

ED−, and CRRED is a harmonic average of CRRED+ and CRRED−.

Proposition A.1. We have

RRtrue
ED = wRRtrue

ED++(1−w)RRtrue
ED−, 1/CRRED = w/CRRED++(1−w)/CRRED−,

where f = P(E = 1) and w is a weight between zero and one:

w =
f
∫

r(u)F1(du)
f
∫

r(u)F1(du)+(1− f )
∫

r(u)F0(du)
∈ [0,1].

Proof of Proposition A.1. The conclusions follow from the following decomposition:

RRtrue
ED =

∫
r∗(u)F(du)∫
r(u)F(du)

=
f
∫

r∗(u)F1(du)+(1− f )
∫

r∗(u)F0(du)
f
∫

r(u)F1(du)+(1− f )
∫

r(u)F0(du)

=
f
∫

r(u)F1(du)
f
∫

r(u)F1(du)+(1− f )
∫

r(u)F0(du)
×
∫

r∗(u)F1(du)∫
r(u)F0(du)

+
(1− f )

∫
r(u)F0(du)

f
∫

r(u)F1(du)+(1− f )
∫

r(u)F0(du)
×
∫

r∗(u)F0(du)∫
r(u)F0(du)

.

The confounding relative risks can be bounded from above by the bounding factor

BFU =
RREU ×RRUD

RREU +RRUD −1
,

as shown in the following proposition.

Proposition A.2. The confounding relative risks can be bounded from above by

CRRED+ =
RRobs

ED
RRtrue

ED+

≤ BFU , CRRED− =
RRobs

ED
RRtrue

ED−
≤ BFU , CRRED =

RRobs
ED

RRtrue
ED

≤ BFU .
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Proof of Proposition A.2. In the following proof, we first discuss CRRED+. The key obser-

vation is to write CRRED+ in terms of a binary confounder with two levels corresponding to

maxu r(u) and minu r(u). To be more specific, we have that

CRRED+ =
w1 maxu r(u)+(1−w1)minu r(u)
w0 maxu r(u)+(1−w0)minu r(u)

,

where

w1 =

∫
{r(u)−minu r(u)}F1(du)
maxu r(u)−minu r(u)

, 1−w1 =

∫
{maxu r(u)− r(u)}F1(du)

maxu r(u)−minu r(u)
,

w0 =

∫
{r(u)−minu r(u)}F0(du)
maxu r(u)−minu r(u)

, 1−w0 =

∫
{maxu r(u)− r(u)}F0(du)

maxu r(u)−minu r(u)
.

Define Γ = w1/w0, and we have

Γ =
w1

w0
=

∫
{r(u)−minu r(u)}F1(du)∫
{r(u)−minu r(u)}F0(du)

=

∫
{r(u)−minu r(u)}RREU(u)F0(du)∫

{r(u)−minu r(u)}F0(du)

≤ maxu RREU(u)×
∫
{r(u)−minu r(u)}F0(du)∫

{r(u)−minu r(u)}F0(du)
= RREU .

We can write w0 = w1/Γ, and therefore we have

CRR+
ED =

{maxu r(u)−minu r(u)}×w1 +minu r(u)
{maxu r(u)−minu r(u)}/Γ×w1 +minu r(u)

.

In the following, we divide our discussion into two cases. If Γ > 1, then CRR+
ED is increasing

in w1 according to Lemma A.1, and it attains the maximum at w1 = 1. Thus we have

CRR+
ED ≤

Γ×RRUD|E=0

Γ+RRUD|E=0 −1
≤

RREU ×RRUD|E=0

RREU +RRUD|E=0 −1
,

where the second inequality follows from Lemma A.2. If Γ ≤ 1, then CRR+
ED is non-

increasing in w1, and it attains the maximum at w1 = 0. Thus we have

CRR+
ED ≤ 1 ≤

RREU ×RRUD|E=0

RREU +RRUD|E=0 −1
,
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where the the second inequality again follows from Lemma A.2.

The same discussion applies to CRR−
ED, and we can obtain that

CRR−
ED ≤

RREU ×RRUD|E=1

RREU +RRUD|E=1 −1
.

Using the fact 1/CRRED = w/CRR+
ED +(1−w)/CRR−

ED, we know that

1
CRRED

≥
(

RREU ×RRUD

RREU +RRUD −1

)−1

,

and the conclusion follows.

eAppendix 2.3 The Implied Cornfield Conditions

Proposition A.2 says that the bounding factor is larger than or equal to all the confounding

relative risks. It can be viewed as the Cornfield condition for the joint value of (RREU ,RRUD)

in order to reduce the observed relative risk of RRobs
ED to the causal relative risk of RRtrue

ED . If

we specify one of the unmeasured confounding measure, for example RREU , then we can

solve A.2 and obtain the lower bound of the other confounding measure:

RRUD ≥ RREU ×RRobs
ED −RRobs

ED

RREU ×RRtrue
ED −RRobs

ED
.

When RRtrue
ED = 1, the above lower bound reduces to

RRUD ≥ RREU ×RRobs
ED −RRobs

ED

RREU −RRobs
ED

.

Further, Proposition A.2 implies the following Cornfield-type conditions for RREU and RRUD.

Proposition A.3. We have the following Cornfield conditions:

min(RREU ,RRUD)≥ CRRED, max(RREU ,RRUD)≥ CRRED+
√

CRRED(CRRED −1).
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Proof of Proposition A.3. According to Lemma A.2, the right-hand side of the last inequality

in Proposition A.2 is increasing in both RRUD and RREU . Therefore, the right-hand side of

the above inequality in Proposition A.2 will increase if we let RRUD or RREU go to large

extremes. Let RRUD → ∞, and we have CRRED ≤ RREU . Let RREU → ∞, and we have

CRRED ≤ RRUD. Therefore, we have the following low threshold: min(RRUD,RREU) ≥

CRRED. We can obtain the following inequality by replacing RRUD and RREU in the bound-

ing factor by their maximum value due to Lemma A.2:

CRRED ≤ max2(RRUD,RREU)

2max(RRUD,RREU)−1
,

solving max(RRUD,RREU) from which we can obtain the following high threshold.

eAppendix 2.4 Preventive Exposures

The bounding factor in Proposition A.2 is particularly useful for an apparently causative

exposure with RRobs
ED > 1, and the true causal relative risk is an attenuation of RRobs

ED by the

bounding factor. However, for apparently preventive exposure with RRobs
ED < 1, we can derive

equally useful bias formula. For apparently preventive exposure, we modify the definition

of the relative risk between E and U as RREU = maxu RR−1
EU(u) = 1/minu RREU(u), and

obtain the following analogous result.

Proposition A.4. For apparently preventive exposure, we have RRtrue
ED /RRobs

ED ≤ BFU . Or,

equivalently, the true causal relative risk is an inflation of RRobs
ED by the bounding factor.

Proof of Proposition A.4. Define Ē = 1−E, and the exposure Ē is apparently preventive for

the outcome. Therefore, Proposition A.2 implies that

RRĒD

RRtrue
ĒD

≤ RRĒU ×RRUD

RRĒU +RRUD −1
.
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Since RRĒD = 1/RRobs
ED,RRtrue

ĒD = 1/RRtrue
ED , and RRĒU = maxu RR−1

EU(u) = RREU , the con-

clusion follows.

eAppendix 2.5 Averaged Over Observed Covariates

All the results above are within strata of observed covariates C. The probabilities are con-

ditional probabilities (e.g., P(D = 1 | E = 1,C = c),P{D(1) = 1 | E = 0,C = c},etc.), the

causal relative risks are conditional causal measures (e.g., RDtrue
ED+ = P{D(1) = 1 | E = 1,C =

c}/P{D(0) = 1 | E = 0,C = c},etc.), and the bounding factor is also conditional denoted as

BFU |c = RREU |c ×RRUD|c/(RREU |c +RRUD|c −1).

We have the following decomposition:

RRtrue
ED =

∫
P(D = 1 | E = 1,C = c,U = u)FCU(dcdu)∫
P(D = 1 | E = 0,C = c,U = u)FCU(dcdu)

=

∫ ∫
P(D = 1 | E = 1,C = c,U = u)FU |C(du)FC(dc)∫ ∫
P(D = 1 | E = 0,C = c,U = u)FU |C(du)FC(dc)

=

∫
P{D(1) = 1 |C = c}FC(dc)∫
P{D(0) = 1 |C = c}FC(dc)

=

∫
RRtrue

ED|cP{D(0) = 1 |C = c}FC(dc)∫
P{D(0) = 1 |C = c}FC(dc)

.

Applying the result about conditional causal relative risk, we have

RRtrue
ED ≥

∫ RRobs
ED|c

BFU |c
P{D(0) = 1 |C = c}FC(dc)∫

P{D(0) = 1 |C = c}FC(dc)
≥ min

c

RRobs
ED|c

BFU |c
.

If we assume a common causal relative risk RRtrue
ED|c = RRtrue

ED , then we can sharpen the result

as:

RRtrue
ED ≥ max

c

RRobs
ED|c

BFU |c
.
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eAppendix 3 Another Bounding Factor and Implied Corn-
field Conditions Using the Odds Ratio

eAppendix 3.1 Another Bounding Factor Using the Odds Ratio

Define p(u) = P(E = 1 | U = u) as the probability of the exposure, and q(u) = p(u)/{1−

p(u)} as the odds of the exposure within level u of the confounder U . Let OREU =maxu q(u)/minu q(u)

be the ratio of the maximum and minimum of these odds. We use OREU to measure the as-

sociation between the confounder U and the exposure E, which is defined as the maximal

odds ratio between the exposure E and the confounder U . When the confounder U is binary,

it reduces to the ordinary odds ratio. Using the odds ratio between the exposure E and U and

the relative risk of the confounder U on the outcome D as the association measure as Bross

and Lee4–6, we have the following bounding factor that ties CRRED with OREU and RRUD:

Proposition A.5. We have( √
OREU RRUD +1√
OREU +

√
RRUD

)2

≥ RRobs
ED

RRtrue
ED

= CRRED. (A.1)

Proof of Proposition A.5. Lee4 obtained the following results:

CRR+
ED ≤

(√
OREU RRUD|E=0 +1

√
OREU +

√
RRUD|E=0

)2

, CRR−
ED ≤

(√
OREU RRUD|E=1 +1

√
OREU +

√
RRUD|E=1

)2

,(A.2)

Since RRUD = max(RRUD|E=0,RRUD|E=1), Lemma A.3 implies that

CRR+
ED ≤

( √
OREU RRUD +1√
OREU +

√
RRUD

)2

, CRR−
ED ≤

( √
OREU RRUD +1√
OREU +

√
RRUD

)2

,

which leads to

1
CRRED

=
w

CRR+
ED

+
1−w

CRR−
ED

≥
(√

OREU +
√

RRUD√
OREU RRUD +1

)2

,

and the conclusion follows.
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eAppendix 3.2 Implied Cornfield Conditions

The bounding factor in the last subsection implies the following Cornfield conditions:

Proposition A.6. We have

min(OREU ,RRUD)≥ CRRED, max(OREU ,RRUD)≥
(√

CRRED +
√

CRRED −1
)2

.

Proof of Proposition A.6. According to Lemma A.3, we can let RRED goes to infinity, and

obtain OREU ≥ CRRED. Similarly, we can let OREU goes to infinity, and obtain RRUD ≥

CRRED. Combining them together, we have the following low threshold: min(OREU ,RRUD)≥

CRRED. According to Lemma A.3 again, we can replace OREU and RRUD by max(OREU ,RRUD)

in the bounding factor in Section eAppendix 3.1 , and preserve the inequality as follows:(
max(OREU ,RRUD)+1
2
√

max(OREU ,RRUD)

)2

≥ CRRED.

Solving the above inequality, we obtain
√

max(OREU ,RRUD)≥
√

CRRED+
√

CRRED −1,

and the high threshold follows.

Propositions A.5 and A.6 generalize the results of Bross5,6 and Lee4 from only being

applicable under the null hypothesis of no effect (i.e., only being useful for assessing how

much unmeasured confounding would suffice to completely explain away an effect estimate)

to alternative hypotheses and sensitivity analysis.

eAppendix 3.3 Preventive Exposure

For apparently preventive exposure with RRobs
ED < 1, we can derive bias formula similar to

Proposition A.5, and we don’t even need to modify the definition of OREU .
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Proposition A.7. For apparently preventive exposure, we have

RRtrue
ED

RRobs
ED

≤
( √

OREU RRUD +1√
OREU +

√
RRUD

)2

.

Proof of Proposition A.7. Define Ē = 1−E. Applying Proposition A.5, we have

RRĒD

RRtrue
ĒD

≤

(√
ORĒU RRUD +1√
ORĒU +

√
RRUD

)2

.

Since RRĒD = 1/RRobs
ED,RRtrue

ĒD = 1/RRtrue
ED , and

ORĒU =
maxu 1/q(u)
minu 1/q(u)

=
1/minu q(u)
1/maxu q(u)

=
maxu q(u)
minu q(u)

= OREU ,

the conclusion follows.

eAppendix 4 Relations with Existing Results

eAppendix 4.1 Schlesselman’s Formula

For a binary confounder U , Schlesselman1 first obtained that

RRobs
ED

RRtrue
ED−

=
1+(RRUD|E=1 −1)P(U = 1 | E = 1)
1+(RRUD|E=0 −1)P(U = 1 | E = 0)

.

He further assumed a common relative risk of the exposure E on the outcome D within both

U = 0 and U = 1, and also a common relative risk of the confounder U on the outcome D

within both E = 0 and E = 1, denoted by γ . Under the above no-interaction assumption,

Schlesselman simplified the above identity to the following formula:

RRobs
ED

RRtrue
ED

=
1+(γ −1)P(U = 1 | E = 1)
1+(γ −1)P(U = 1 | E = 0)

.

We can write P(U = 1 | E = 0) = P(U = 1 | E = 1)/RREU and then maximize the right-hand

side of the above formula over P(U = 1 | E = 1), which gives us the following inequality:

RRobs
ED

RRtrue
ED

≤ RREU × γ
RREU + γ −1

.
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The inequality above is the same as our main result in the main text, but is derived under

unnecessary assumptions. Our result is much more general than the previous result obtained

by Schlesselman1, and his assumptions are not necessary for deriving our new bounding

factor.

eAppendix 4.2 Flanders and Khoury’s results

Flanders and Khoury2 used slightly different notation for categorical confounder U :

pk = P(U = k | E = 0),

ORk =
P(U = k | E = 1)/P(U = 0 | E = 1)
P(U = k | E = 0)/P(U = 0 | E = 0)

,

RRk =
P(D = 1 |U = k,E = 0)
P(D = 1 |U = 0,E = 0)

.

They expressed the confounding relative risk for the exposed population as

CRRED+ =
∑k RRkORk pk

(∑k ORk pk)(∑k RRk pk)
.

The above sensitivity analysis formula depends on a large number of sensitivity parame-

ters, and requires specifying the prevalence of the unmeasured confounder among unexposed

population. Flanders and Khoury simplified it for binary confounder. However, for general

categorical confounder, they derived the following bounds on the confounding relative risk:

CRRED+ ≤ min
{

maxk ORk

∑k ORk pk
,
maxk RRk

∑k RRk pk
,max

k
ORk,max

k
RRk,

1
pk∗

,
1

pk∗∗

}
,

where k∗ and k∗∗ are the strata corresponding to the largest ORk and RRk, respectively. The

upper bound depends on the prevalence of U . If we do not have any knowledge about the

number of categories or the prevalence of U , the above bound reduces to

CRRED+ ≤ min
{

max
k

ORk,max
k

RRk

}
,

which is essentially the low threshold Cornfield condition.
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eAppendix 5 Results for the Risk Difference Using Sensi-
tivity Parameters on the Relative Risk Scale

eAppendix 5.1 Lower Bounds for the Causal Risk Differences

Define p1 = P(D = 1 | E = 1) and p0 = P(D = 1 | E = 0) as the probabilities of the outcome

with and without exposure, and f = P(E = 1) as the prevalence of the exposure. The causal

risk differences for the exposed, unexposed and the whole population are defined as

RDtrue
ED+ = P{D(1) = 1 | E = 1}−P{D(0) = 1 | E = 1}= p1 −P{D(0) = 1 | E = 1},

RDtrue
ED− = P{D(1) = 1 | E = 0}−P{D(0) = 1 | E = 0}= P{D(1) = 1 | E = 0}− p0,

RDtrue
ED = P{D(1) = 1}−P{D(0) = 1}.

If U suffices to control the confounding between the exposure and the outcome, then the

following standardized risk differences are the causal risk differences for the exposed, unex-

posed and the whole population:

RDtrue
ED+ = p1 −

∫
r(u)F1(du), RDtrue

ED− =
∫

r∗(u)F0(du)− p0, RDtrue
ED =

∫
{r∗(u)− r(u)}F(du).

Proposition A.8. The lower bounds for the causal risk differences are

RDtrue
ED+ ≥ p1 − p0 ×BFU ,

RDtrue
ED− ≥ p1/BFU − p0,

RDtrue
ED ≥ (p1 − p0 ×BFU)×{ f +(1− f )/BFU}= (p1/BFU − p0)×{ f ×BFU +(1− f )} .

Proof of Proposition A.8. From the data, we can identify:

p1 =
∫

P(D = 1 | E = 1,U = u)F1(du) =
∫

r∗(u)F1(du),

p0 =
∫

P(D = 1 | E = 0,U = u)F0(du) =
∫

r(u)F0(du).
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However, the following two counterfactual probabilities are not identifiable:

P{D(1) = 1 | E = 0} =
∫

P(D = 1 | E = 1,U = u)F0(du) =
∫

r∗(u)F0(du),

P{D(0) = 1 | E = 1} =
∫

P(D = 1 | E = 0,U = u)F1(du) =
∫

r(u)F1(du).

First, we have

p1

P{D(1) = 1 | E = 0}
=

∫
r∗(u)F1(du)∫
r∗(u)F0(du)

= CRRED− ≤ BFU

according to Proposition A.2, and thus P{D(1) = 1 | E = 0} ≥ p1/BFU . Second, we have

P{D(0) = 1 | E = 1}
p0

=

∫
r(u)F1(du)∫
r(u)F0(du)

= CRRED+ ≤ BFU

according to Proposition A.2, and thus P{D(0)= 1 |E = 1}≤ p0×BFU . Therefore, the lower

bound for RDtrue
ED+ is RDtrue

ED+ ≥ p1 − p0 ×BFU , and for RDtrue
ED− is RDtrue

ED− ≥ p1/BFU − p0.

We can obtain the lower bound for RDtrue
ED using RDtrue

ED = f RDtrue
ED++(1− f )RDtrue

ED−.

If the probability of E = 1, f , is unknown, the above result about RDtrue
ED is not directly

useful. In the following, we obtain a lower bound for RDtrue
ED based on RDtrue

ED = f RDtrue
ED++

(1− f )RDtrue
ED−, which does not depend on f .

Proposition A.9. We have RDtrue
ED ≥ min(p1 − p0 ×BFU , p1/BFU − p0). When p1 > p0 and

1 ≤ BFU ≤ RRobs
ED, the above lower bound reduces to RDtrue

ED ≥ p1 − p0 ×BFU .

The above results are particularly useful for an apparently causative exposure with RDobs
ED >

0, which give (possibly positive) lower bounds for the causal risk differences. However, for

an apparently preventive exposure with RDobs
ED < 0, we need to modify the definition of RREU

as RREU = maxu RR−1
EU(u). And we have the following analogous results.
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Proposition A.10. For apparently preventive exposure with RDobs
ED < 0, we have

RDtrue
ED+ ≤ p1 ×BFU − p0,

RDtrue
ED− ≤ p1 − p0/BFU ,

RDtrue
ED ≤ (p1 ×BFU − p0)×{ f +(1− f )/BFU}= (p1 − p0/BFU)×{ f ×BFU +(1− f )} .

When f is unknown and 1 ≤ BFU ≤ 1/RRobs
ED, we have RRtrue

ED ≤ p1 − p0/BFU .

Proof of Proposition A.10. Define Ē = 1−E. Applying Proposition A.8, we have

RDtrue
ĒD+ ≥ P(D = 1 | Ē = 1)−P(D = 1 | Ē = 0)×BFU ,

RDtrue
ĒD− ≥ P(D = 1 | Ē = 1)/BFU −P(D = 1 | Ē = 0),

RDtrue
ĒD ≥ {P(D = 1 | Ē = 1)−P(D = 1 | Ē = 0)×BFU}×{ f +(1− f )/BFU}

= {P(D = 1 | Ē = 1)/BFU −P(D = 1 | Ē = 0)}×{ f ×BFU +(1− f )} .

Since RDtrue
ĒD+

= −RDtrue
ED+,RDtrue

ĒD− = −RDtrue
ED− and RDtrue

ĒD = −RDtrue
ED , the first three

conclusions follow. When f is unknown and 1 ≤ BFU ≤ 1/RRobs
ED, we have RDtrue

ED ≤

max(RDtrue
ED+,RDtrue

ED−) = p1 − p0/BFU .

The above discussion is within strata of observed covariates C. All probabilities are

essentially conditional probabilities, e.g., P(D = 1 | E = 1,C = c),P(E = 1 | C = c),etc.

Consequently, the bounding factor and causal risk differences are also conditional, denoted

as BFU |c,RDtrue
ED|c+,RDtrue

ED|c− and RDtrue
ED|c. Due to the linearity of the risk difference, i.e.,

RDtrue
ED+=∑c RDtrue

ED|c+P(C = c |E = 1),RDtrue
ED−=∑c RDtrue

ED|c−P(C = c |E = 0) and RDtrue
ED =
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∑c RDtrue
ED|cP(C = c), we have the following results about the marginal risk differences:

RDtrue
ED+ ≥ ∑

c

{
P(D = 1 | E = 1,C = c)−P(D = 1 | E = 0,C = c)×BFU |c

}
P(C = c | E = 1),

RDtrue
ED− ≥ ∑

c

{
P(D = 1 | E = 1,C = c)/BFU |c −P(D = 1 | E = 0,C = c)

}
P(C = c | E = 0),

RDtrue
ED ≥ f ∑

c

{
P(D = 1 | E = 1,C = c)−P(D = 1 | E = 0,C = c)×BFU |c

}
P(C = c | E = 1)

+(1− f )∑
c

{
P(D = 1 | E = 1,C = c)/BFU |c −P(D = 1 | E = 0,C = c)

}
P(C = c | E = 0).

eAppendix 5.2 Statistical Inference for the Causal Risk Differences

In previous subsections we discussed the population quantities assuming that we knew the

distribution of (E,D,C). In this subsection, we will discuss the finite sample inference for the

causal risk differences. We can straightforwardly estimate f , p1 and p0 by sample frequencies

f̂ , p̂1 and p̂0 with standard errors s,s1 and s0, respectively. Then we can estimate the lower

bound for RDtrue
ED+ by p̂1 − p̂0 × BFU with standard error (s2

1 + s2
0 × BF2

U)
1/2, estimate the

lower bound for RDtrue
ED− by p̂1/BFU − p̂0 with standard error (s2

1/BF2
U +s2

0)
1/2, and estimate

the lower bound for RDtrue
ED by (p̂1 − p̂0 ×BFU)×{ f̂ +(1− f̂ )/BFU} or (p̂1/BFU − p̂0)×

{ f̂ ×BFU +(1− f̂ )} with standard error√√√√(s2
1 + s2

0 ×BF2
U)

(
f̂ +

1− f̂
BFU

)2

+(p̂1 − p̂0 ×BFU)2(1−BF−1
U )2s2,

using a standard argument of the delta-method. After obtaining the point estimates and their

standard errors, we can construct confidence intervals for these causal risk differences.

Note that even without estimating the prevalence, f , of the exposure, if the exposure is

apparently causative, we can use the lower bound of min(RDtrue
ED+,RDtrue

ED−) as a lower bound

for RDtrue
ED . The point estimate of the causal risk difference averaged over the observed co-

variates can be obtained by the weighted average of the point estimates of the causal risk
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differences within strata of C with the proportions of the strata as the weights, and the corre-

sponding sampling variance is the weighted average of the sampling variances within strata

with the squared proportions of the strata as the weights.

eAppendix 5.3 Implied Cornfield Conditions

The results in Proposition A.8 imply the following Cornfield conditions.

Proposition A.11. For an unmeasured confounder to reduce the observed risk difference to

be RDtrue
ED+,RDtrue

ED− and RDtrue
ED respectively, the joint Cornfield conditions are

BFU ≥ (p1 −RDtrue
ED+)/p0,

BFU ≥ p1/(p0 +RDtrue
ED−),

BFU ≥
√
{RDtrue

ED + p0(1− f )− p1 f}2 +4p1 p0 f (1− f )−{RDtrue
ED + p0(1− f )− p1 f}

2p0 f
.

Proof of Proposition A.11. It is straightforward to see that the first two conclusions of Propo-

sition A.8 imply the first two inequalities. From the third conclusion of Proposition A.8, we

have the following quadratic inequality about BFU :

(p0 f )BF2
U +{p0(1− f )+RDtrue

ED − p1 f}BFU − p1(1− f )≥ 0.

The corresponding equation has one negative root and the following positive root:

BF∗
U =

√
{RDtrue

ED + p0(1− f )− p1 f}2 +4p1 p0 f (1− f )−{RDtrue
ED + p0(1− f )− p1 f}

2p0 f
.

Since BFU > 0, the inequality has the solution BFU ≥ BF∗
U .

Similar to the discussion in the last two sections, we can also derive the low and high

threshold Cornfield conditions from the above joint Cornfield conditions for (RREU ,RRUD).
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If RDtrue
ED+,RDtrue

ED− and RDtrue
ED are zero, all the conditions in Proposition A.11 reduce to

BFU ≥ RRobs
ED, the one derived from the result about the relative risk of the exposure on the

outcome. Therefore, the formula from the risk difference is the same as that derived from the

relative risk under the null hypothesis, but they are different under the alternative hypotheses.

With finite sample, we can also find the smallest bounding factor that can reduce the lower

confidence limit of the lower bound of the causal risk differences to a certain magnitude.

We will discuss (1−α)% confidence intervals based on asymptotic normality, and let zα =

Φ−1(1−α/2) denote the upper α/2 quantile of the standard normal distribution (e.g., when

α = 0.05, z0.05 = 1.96). In order to reduce the confidence interval of the risk difference on

the exposed to cover a true causal risk difference RDtrue
ED+, the bounding factor must satisfy

p̂1 − p̂0 ×BFU − zα

√
s2

1 + s2
0 ×BF2

U ≤ RDtrue
ED+,

which has the following solution:

BFU ≥ p̂0(p̂1−RDtrue
ED+)−

√
p̂2

0(p̂1−RDtrue
ED+)

2−(p̂2
0−z2

α s2
0){( p̂1+RDtrue

ED+)
2−z2

α s2
1}

p̂2
0−z2

α s2
0

. (A.3)

In order to reduce the confidence interval of the risk difference on the unexposed to cover a

true causal risk difference RDtrue
ED−, the bounding factor must satisfy

p̂1/BFU − p̂0 − zα

√
s2

1/BF2
U + s2

0 ≤ RDtrue
ED−,

which has the following solution:

BFU ≥ p̂1(p̂0+RDtrue
ED−)−

√
p̂2

1(p̂0+RDtrue
ED−)

2−{(p̂0+RDtrue
ED−)

2−z2
α s2

0}(p̂2
1−z2

α s2
1)

(p̂0+RDtrue
ED−)

2−z2
α s2

0
. (A.4)

Note that if we assume RDtrue
ED+ = RDtrue

ED− = 0, the above solutions in (A.3) and (A.4) reduce

to the same form:

BFU ≥
p̂1 p̂0 −

√
p̂2

1 p̂2
0 − (p̂2

0 − z2
αs2

0)(p̂2
1 − z2

αs2
1)

p̂2
0 − z2

αs2
0

.
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In order to reduce the confidence interval of the risk difference to cover a true causal risk

difference RDtrue
ED , the bounding factor must satisfy

(p̂1 − p̂0 ×BFU)

(
f̂ +

1− f̂
BFU

)

−zα

√√√√(s2
1 + s2

0 ×BF2
U)

(
f̂ +

1− f̂
BFU

)2

+(p̂1 − p̂0 ×BFU)2(1−BF−1
U )2s2 ≤ RDtrue

ED ,

(A.5)

which can be solved numerically. For example, we can apply a grid search for the solution of

(A.5) over the following bounded range:

BFU ∈

1,

√
{RDtrue

ED + p̂0(1− f̂ )− p̂1 f̂}2 +4p̂1 p̂0 f (1− f̂ )−{RDtrue
ED + p̂0(1− f̂ )− p̂1 f̂}

2p̂0 f̂

 ,

since the point estimate has already been reduced to RDtrue
ED when BFU attains the above

upper bound of range.

eAppendix 6 Results for the Risk Difference Using Sensitiv-
ity Parameters on the Risk Difference Scale

eAppendix 6.1 A Useful Proposition

We first recall some definitions in the main text, and assume a categorical unmeasured con-

founder U . Let RDobs
ED = P(D = 1 | E = 1)− P(D = 1 | E = 0) denote the observed risk

difference,

RDtrue
ED =

K−1

∑
k=0

{P(D = 1 | E = 1,U = k)−P(D = 1 | E = 0,U = k)}P(U = k)

denote the true causal risk difference, and CRDED = RDobs
ED−RDtrue

ED denote the confounding

risk difference of the exposure E on the outcome D. Define αk = P(U = k | E = 1)−P(U =

k | E = 0) and RDEU = maxk≥1 |αk|. Define β ∗
k = P(D = 1 | E = 1,U = k)−P(D = 1 | E =
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1,U = 0) and βk = P(D = 1 | E = 0,U = k)−P(D = 1 | E = 0,U = 0). Define RDUD|E=1 =

maxk≥1 |β ∗
k |,RDUD|E=0 = maxk≥1 |βk| and RDUD = max(RDUD|E=1,RDUD|E=0). The con-

founding risk difference can be decomposed as follows.

Proposition A.12. The confounding risk difference of E on D, CRDED, can be expressed as

CRDED = RDobs
ED −RDtrue

ED =
K−1

∑
k=1

αk{β ∗
k P(E = 0)+βkP(E = 1)}.

Proof of Proposition A.12. The true and observed risk differences of E on D can be expressed

as

RDtrue
ED =

K−1

∑
k=0

P(D = 1 | E = 1,U = k)P(U = k)−
K−1

∑
k=0

P(D = 1 | E = 0,U = k)P(U = k),

RDobs
ED =

K−1

∑
k=0

P(D = 1 | E = 1,U = k)P(U = k | E = 1)−
K−1

∑
k=0

P(D = 1 | E = 0,U = k)P(U = k | E = 0).

Therefore, the confounding risk difference of E on D, CRDED, can be expressed as

CRDED =
K−1

∑
k=0

P(D = 1 | E = 1,U = k){P(U = k | E = 1)−P(U = k)}

−
K−1

∑
k=0

P(D = 1 | E = 0,U = k){P(U = k | E = 0)−P(U = k)}.

Applying the law of total probability, we have the following results:

P(U = k | E = 1)−P(U = k) = αkP(E = 0), P(U = k | E = 0)−P(U = k) =−αkP(E = 1).

Therefore, the confounding risk difference can be rewritten as

CRDED =
K−1

∑
k=0

αkP(D = 1 | E = 1,U = k)P(E = 0)+
K−1

∑
k=0

αkP(D = 1 | E = 0,U = k)P(E = 1)

=
K−1

∑
k=0

αk{P(D = 1 | E = 1,U = k)P(E = 0)+P(D = 1 | E = 0,U = k)P(E = 1)}.
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Using the fact that α0 =−∑K−1
k=1 αk, we can obtain that

CRDED =
K−1

∑
k=1

αk{P(D = 1 | E = 1,U = k)P(E = 0)+P(D = 1 | E = 0,U = k)P(E = 1)}

−
K−1

∑
k=1

αk{P(D = 1 | E = 1,U = 0)P(E = 0)+P(D = 1 | E = 0,U = 0)P(E = 1)}

=
K−1

∑
k=1

αk{β ∗
k P(E = 0)+βkP(E = 1)}.�

eAppendix 6.2 Binary Confounder

For a binary confounder U with K = 2, we have the following proposition.

Proposition A.13. When U is binary, we have RDEU ×RDUD ≥ RDobs
ED −RDtrue

ED , implying

min(RDEU ,RDUD)≥ RDobs
ED −RDtrue

ED , max(RDEU ,RDUD)≥
√

RDobs
ED −RDtrue

ED .

Proof of Proposition A.13. We have

CRDED = α1{β11P(E = 0)+β01P(E = 1)}= RDEU{RDUD|E=1P(E = 0)+RDUD|E=0P(E = 1)}.

Since CRDED ≥ 0 and RDEU ≥ 0, we have RDUD|E=1P(E = 0)+RDUD|E=0P(E = 1)≥ 0.

Therefore, RDUD|E=1 and RDUD|E=0 cannot both be negative, and thus we have

RDUD|E=1P(E = 0)+RDUD|E=0P(E = 1)< max(RDUD|E=1,RDUD|E=0) = RDUD.

Therefore, CRDED ≤ RDEU ×RDUD, which implies that min(RDEU ,RDUD)≥ CRDED =

RDobs
ED −RDtrue

ED , and max(RDEU ,RDUD)≥
√

CRDED =
√

RDobs
ED −RDtrue

ED .

eAppendix 6.3 General Categorical Confounder

For categorical confounder U , no simple form of the bounding factor is available, but we can

still show that RDEU and RDUD must satisfy the following conditions:
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Proposition A.14. For a categorical confounder U, we have

RDEU ≥ (RDobs
ED −RDtrue

ED )/(K −1),

RDUD ≥ (RDobs
ED −RDtrue

ED )/2,

max(RDEU ,RDUD)≥ max
{√

(RDobs
ED −RDtrue

ED )/(K −1),(RDobs
ED −RDtrue

ED )/2
}
.

When K = 3 such as a three-level genetic confounder, these conditions reduce to

min(RDEU ,RDUD)≥ (RDobs
ED −RDtrue

ED )/2, max(RDEU ,RDUD)≥
√
(RDobs

ED −RDtrue
ED )/2.

Proof of Proposition A.14. Since

CRDED =
∣∣∣K−1

∑
k=1

αk{β ∗
k P(E = 0)+βkP(E = 1)}

∣∣∣≤ RDEU

K−1

∑
k=1

|β ∗
k P(E = 0)+βkP(E = 1)|

≤ RDEU

K−1

∑
k=1

max(|β ∗
k |, |βk|)≤ RDEU(K −1),

we have RDEU ≥ CRDED/(K − 1). The equality is attainable if and only if (c1) αk =

CRDED/(K−1), and β ∗
k = βk = 1 for k = 1, . . . ,(K−1); or (c2) αk =−1, and β ∗

k = βk =−1

for k = 1, . . . ,K. The condition (c1) requires that the risk difference of the exposure E on each

category of U to be the same as CRDED/(K−1), and the confounder U is a perfect predictor

of the disease D. Similar interpretation applies to condition (c2).

Since

CRDED =
∣∣∣K−1

∑
k=1

αk{β ∗
k P(E = 0)+βkP(E = 1)}

∣∣∣≤ K−1

∑
k=1

|αk|max(|β ∗
k |, |βk|)≤ RDUD

K−1

∑
k=1

|αk|

≤ RDUD

K−1

∑
k=1

P(U = k | E = 1)+RDUD

K−1

∑
k=1

P(U = k | E = 0)≤ 2RDUD,

the lower bound for RDUD is RDUD ≥ CRDED/2. The equality is attainable if and only

if P(U = 0 | E = 0) = P(U = 0 | E = 1) = 0,P(U = k | E = 1)P(U = k | E = 0) = 0 for

k = 1, ...,(K −1), and β ∗
k = βk =±CRDED/2 with the sign the same as the sign of αk.
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Since CRDED ≤ (K−1)RDEU RDUD ≤ (K−1)max2(RDEU ,RDUD), we have max(RDEU ,RDUD)≥√
CRDED/(K −1), with the equality attainable if and only if αk = β ∗

k = βk =±
√

CRDED/(K −1)

for k = 1, . . . ,K −1. Due to the constraint ∑K−1
k=1 |αk| ≤ 2 discussed above, the equality is at-

tainable if and only if (K − 1)
√

CRDED/(K −1) ≤ 2 or (K − 1)CRDED ≤ 4. When (K −

1)CRDED > 4, RDUD can attain its lower bound CRDED with ∑K−1
k=1 |αk| = 2. Therefore,

RDEU can attain its lower bound 2/(K−1), which, in this case, is smaller than CRDED/2. In

summary, the lower bound for max(RDEU ,RDUD) is max(RDEU ,RDUD)≥
√

CRDED/(K −1),

if (K−1)CRDED ≤ 4, and max(RDEU ,RDUD)≥ CRDED/2, if (K−1)CRDED > 4. Equiv-

alently, we have max(RDEU ,RDUD)≥ max
{√

CRDED/(K −1),CRDED/2
}
.

For the Cornfield conditions for the risk difference, sharper conditions can be obtain by

imposing the monotonicity assumption that αk ≥ 0 for k = 1, · · · ,(K − 1). It requires that

each non-zero category of U is more prevalent under exposure, which is naturally satisfied for

binary confounder. Under the monotonicity assumption, the conditions for the risk difference

can be strengthened.

Proposition A.15. For a categorical confounder under monotonicity, we have that

RDEU ≥ (RDobs
ED −RDtrue

ED )/(K −1),

RDUD ≥ RDobs
ED −RDtrue

ED ,

max(RDEU ,RDUD)≥ max
{√

(RDobs
ED −RDtrue

ED )/(K −1),RDobs
ED −RDtrue

ED

}
.

Proof. Proof of Proposition A.15. The bound for RDEU remains the same. Since

CRDED =
∣∣∣K−1

∑
k=1

αk{β ∗
k P(E = 0)+βk(E = 1)}

∣∣∣≤ RDUD

K−1

∑
k=1

|αk| ≤ RDUD(−α0)≤ RDUD,
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the lower bound for RDUD is RDUD ≥ CRDED The equality is attainable if and only if

α0 =−1 and β ∗
k = βk = CRDED for k = 1, . . . ,K−1. The condition requires that the presence

or absence of the confounder U is perfectly predictive to the exposure E, and each category

of U is equally predictive to the disease D.

Since CRDED ≤ (K−1)RDEU RDUD ≤ (K−1)max2(RDEU ,RDUD), we have max(RDEU ,RDUD)≥√
CRDED/(K −1), with the equality attainable if and only if αk = β ∗

k = βk =±
√

CRDED/(K −1)

for k = 1, . . . ,K −1. Due to the constraint ∑K−1
k=1 αk =−α0 ≤ 1 discussed above, the equality

is attainable if and only if (K − 1)
√

CRDED/(K −1) ≤ 1 or (K − 1)CRDED ≤ 1. When

(K−1)CRDED > 1, RDUD can attain its lower bound CRDED with ∑K−1
k=1 αk = 1. Therefore,

RDEU can attain its lower bound 1/(K −1), which, in this case, is smaller than CRDED. In

summary, the lower bound for max(RDEU ,RDUD) is max(RDEU ,RDUD)≥
√

CRDED/(K −1),

if (K −1)CRDED ≤ 1, and max(RDEU ,RDUD)≥ CRDED, if (K −1)CRDED > 1. Equiva-

lently, we have max(RDEU ,RDUD)≥ max
{√

CRDED/(K −1),CRDED

}
.

The results in Propositions A.12 to A.15 generalize previous results7 from the null hy-

pothesis of no effect (RDtrue
ED = 0) to alternative hypotheses (RDtrue

ED arbitrary).

eAppendix 7 A Bounding Factor for Rare Time-to-Event
Outcome on the Hazard Ratio Scale

Let f ,S,λ be the probability density, survival function and hazard function of a positive

continuous outcome T . The outcome is rare in the sense that P(T ≤ T ) is not much greater

than 0, where T is the time point of the end our research of interest. In the following, we

will always make the rare outcome assumption. Although f ,S,λ are defined on the whole

positive real line, our interest only within interval [0,T ]. Let U be another random variable,
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and f (t | u),S(t | u),λ (t | u) are the conditional probability density, survival function, and

hazard function of T given U . The following lemma is useful throughout our discussion.

Lemma A.4. If T is a rare time-to-event outcome, we have the following approximation:

λ (t)≈
∫

λ (t | u)F(du).

Proof of Lemma A.4. Similar to the case with discrete U 8, we have S(t | u)≈ 1 for rare out-

come, and therefore

λ (t) =
f (t)
S(t)

=

∫
λ (t | u)S(t | u)F(du)∫

S(t | u)F(du)
≈
∫

λ (t | u)F(du)∫
F(du)

=
∫

λ (t | u)F(du).

Lemma A.4 essentially allows “Law of Total Probability” type of calculation for the haz-

ard function with rare outcome.

In order to introduce the new bounding factor for hazard ratio, we need more formal nota-

tion. Define the potential outcomes for T as T (1) and T (0) with hazard functions λ (1)(t) and

λ (0)(t) and conditional hazard functions can be defined intuitively as λ (1)(t | ·) and λ (0)(t | ·).

We define λ ∗
t (u) = λ (t |E = 1,U = u) and λt(u) = λ (t |E = 0,U = u) as the conditional haz-

ard functions of T for the exposed and unexposed units within strata U = u, respectively. We

define HRUT |E=1(t) = maxu λ ∗
t (u)/minu λ ∗

t (u) as the maximal hazard ratio function of the

confounder U on the outcome T for exposed units, HRUT |E=0(t) = maxu λt(u)/minu λt(u)

for unexposed, and their maximum, denoted by HRUT (t)=max{HRUT |E=1(t),HRUT |E=0(t)},

as the maximal hazard ratio function of the confounder U on the outcome T . Note that the

hazard ratios are time-dependent.
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If the exposure and the outcome are unconfounded given U and the observed covariates

C (which is omitted in conditional probablities for simplicity), Lemma A.4 allows us to write

the true causal hazard ratios for the exposed, unexposed, and the whole population as

HRtrue
ET+(t) =

λ (1)(t | E = 1)
λ (0)(t | E = 1)

≈
∫

λ ∗
t (u)F1(du)∫

λt(u)F1(du)
,

HRtrue
ET−(t) =

λ (1)(t | E = 0)
λ (0)(t | E = 0)

≈
∫

λ ∗
t (u)F0(du)∫

λt(u)F0(du)
,

HRtrue
ET (t) =

λ (1)(t)
λ (0)(t)

≈
∫

λ ∗
t (u)F(du)∫

λt(u)F(du)
,

and the observed harzard ratio as

HRET (t) =
λ (t | E = 1)
λ (t | E = 0)

≈
∫

λ ∗
t (u)F1(du)∫

λt(u)F0(du)
.

With categorical U taking values 0,1, . . . ,K−1, the true causal hazard ratios can be approxi-

mated by the following standardized hazard ratios:

HRtrue
ET+(t) ≈ ∑K−1

k=0 λ ∗
t (k)P(U = k | E = 1)

∑K−1
k=0 λt(k)P(U = k | E = 1)

,

HRtrue
ET−(t) ≈ ∑K−1

k=0 λ ∗
t (k)P(U = k | E = 0)

∑K−1
k=0 λt(k)P(U = k | E = 0)

,

HRtrue
ET (t) ≈ ∑K−1

k=0 λ ∗
t (k)P(U = k)

∑K−1
k=0 λt(k)P(U = k)

The confounding hazard ratios are defined as

CHRET+(t) =
HRET (t)

HRtrue
ET+(t)

, CHRET−(t) =
HRET (t)

HRtrue
ET−(t)

, CHRET (t) =
HRET (t)
HRtrue

ET (t)
.

Analogous to the results for the relative risk, we have the following propositions for the

hazard ratio. The proofs are straightforward if we replace {r(·),r∗(·)} in the proofs for the

relative risk by {λt(·),λ ∗
t (u)}.
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Proposition A.16. For rare time-to-event outcome, we approximately have

HRtrue
ET (t) = wt HRtrue

ET+(t)+(1−wt)HRtrue
ET−,

1/CHRET (t) = wt/CHRET+(t)+(1−wt)/CHRET−(t),

where wt is a weight between zero and one:

wt =
f
∫

λt(u)F1(du)
f
∫

λt(u)F1(du)+(1− f )
∫

λt(u)F0(du)
∈ [0,1].

Define the time-varying bounding factor as

BFU(t) =
RREU ×HRUT (t)

RREU +HRUT (t)−1
,

which is also time-dependent. The confounding hazard ratios can be bounded by the bound-

ing factor, as shown in the following proposition.

Proposition A.17. For rare time-to-event outcome, we approximately have

CHRET+(t)≤ BFU(t), CHRET−(t)≤ BFU(t), CHRET (t)≤ BFU(t).

Proposition A.18. The implied Cornfield conditions for the hazard ratio from Proposition

A.17 are

RREU ≥ max
t

CHRET (t),

HRUT (t) ≥ CHRET (t),

max{RREU ,HRUT (t)} ≥ CHRET (t)+
√

CHRET (t){CHRET (t)−1}.

If a proportional hazards model9 for the outcome is used as is often the case in practice,

all the above exposure-outcome hazard ratio reduce to a constant HRET (t) = HRET . The

above discussion works well for an exposure that is apparently causative at time t on the
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harzard ratio scale. If at some time point t, the exposure is apparently preventive, then the

above discussion needs to be modified. To be more specific, we need to modify the definition

of RREU as in Section eAppendix 3.3, and the confounding hazard ratios above are replaced

by their reciprocals. Likewise similar results on the hazard difference scale hold as those on

the risk difference scale in eAppendix A.eAppendix 5 provided that the outcome is relatively

rare.

eAppendix 8 A Bounding Factor for General Nonnegative
Outcomes

The discussion above assumes a binary outcome D, and in fact all the proofs only use

the property that r(u) and r∗(u) are nonnegative. Therefore, the bounding factor also ap-

plies to any nonnegative outcomes (counts, continuous positive outcome, etc), if we mod-

ify the definitions of r(u),r∗(u), and RRUD in the following way. For general nonnega-

tive outcomes, we define r∗(u) = E(D | E = 1,U = u) and r(u) = E(D | E = 0,U = u) as

the expectations of the outcome within stratum U = u with and without exposure. Define

MRUD|E=1 = maxu r∗(u)/minu r∗(u) and MRUD|E=0 = maxu r(u)/minu r(u) as the mean ra-

tios of U on D with and without exposure, and MRUD = max(MRUD|E=1,MRUD=0) as the

maximum of these two mean ratios. Note that when D is binary, r(u) and r∗(u) reduce to

probabilities, and the mean ratios reduce to the relative risks.

The observed mean ratio of the exposure on the outcome is

MRED =

∫
E(D | E = 1,U = u)F1(du)∫
E(D | E = 0,U = u)F0(du)

=

∫
r∗(u)F1(du)∫
r(u)F0(du)

.
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The true causal mean ratio of the exposure on the outcome for exposed is

MRtrue
ED+ =

∫
E(D | E = 1,U = u)F1(du)∫
E(D | E = 0,U = u)F1(du)

=

∫
r∗(u)F1(du)∫
r(u)F1(du)

,

the true causal mean ratio of the exposure on the outcome for unexposed is

MRtrue
ED+ =

∫
E(D | E = 1,U = u)F0(du)∫
E(D | E = 0,U = u)F0(du)

=

∫
r∗(u)F0(du)∫
r(u)F0(du)

,

and the true causal mean ratio of the exposure on the outcome for the whole population is

MRtrue
ED+ =

∫
E(D | E = 1,U = u)F(du)∫
E(D | E = 0,U = u)F(du)

=

∫
r∗(u)F(du)∫
r(u)F(du)

.

Define the bounding factor as

BFU =
RREU ×MRUD

RREU +MRUD −1
.

Since the discussion in Section eAppendix 2 still holds, the proofs for the following proposi-

tions are the same as those in Appendices A.2 and A.4. First, we have the following bounding

factor for nonnegative outcomes:

Proposition A.19.

CMRED+=
MRED

MRtrue
ED+

≤ BFU , CMRED−=
MRED

MRtrue
ED−

≤ BFU , CMRED =
MRED

MRtrue
ED

≤ BFU .

In practice, we might also be interested in the average causal effect of the exposure on

the outcome on the difference scale. The observed mean difference of the exposure on the

outcome is

E(D | E = 1)−E(D | E = 0)≡ m1 −m0.

The average causal effect of the exposure on the outcome for exposed is

ACEtrue
ED+=

∫
E(D |E = 1,U = u)F1(du)−

∫
E(D |E = 0,U = u)F1(du)=m1−

∫
r(u)F1(du),

30



the average causal effect of the exposure on the outcome for unexposed is

ACEtrue
ED+=

∫
E(D |E = 1,U = u)F0(du)−

∫
E(D |E = 0,U = u)F0(du)=

∫
r∗(u)F0(du)−m0,

and the average causal effect of the exposure on the outcome for the whole population is

ACEtrue
ED =

∫
E(D | E = 1,U = u)F(du)−

∫
E(D | E = 0,U = u)F(du)

= f ACEtrue
ED++(1− f )ACEtrue

ED−.

Similar to the discussion in Section eAppendix 5 for the risk difference with sensitivity

parameters expressed on the risk ratio scale, we have the following proposition about the

average causal effect.

Proposition A.20. For nonnegative outcomes, the lower bounds for the average causal effects

are

ACEtrue
ED+ ≥ m1 −m0 ×BFU ,

ACEtrue
ED− ≥ m1/BFU −m0,

ACEtrue
ED ≥ (m1 −m0 ×BFU)×{ f +(1− f )/BFU}= (m1/BFU −m0)×{ f ×BFU +(1− f )} .

We can also obtain similar forms of the conclusion for apparently preventive exposure,

for average causal effects averaged over observed covariates, and for corresponding Cornfield

conditions. The only difference is that (p1, p0) is replaced by (m1,m0).

eAppendix 9 SAS Code for the Risk Ratio

The SAS code for the cigarette smoking and lung cancer example in Table ?? is given below.

A researcher could modify the code for use in other examples by just changing the first
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few lines of code with the estimated observed relative controlling for only the measured

covarates (RR=), and the lower and upper confidence interval for this estimate(RR Lower=,

RR Upper=). The minimum and maximum strength of the unmeasured confounder can also

be modified by adjusting the lines with “RR EU=” and “RR UD=” but we recommend always

including at least some relatively large values, e.g., with RREU and RRUD at least as high as

5 so as to get a sense as to how an estimate would change under fairly severe confounding.

proc iml;
/*the point estimator and confidence interval of RR*/
RR = 10.73;
RR_Lower = 8.02;
RR_Upper = 14.36;
/*strenghth of confounding resulting from U*/
RR_EU = {1.2 1.3 1.5 1.8 2 2.5 3 4 5 6 8 10};
RR_UD = {1.2 1.3 1.5 1.8 2 2.5 3 4 5 6 8 10};
highthreshold = ROUND(RR + SQRT(RR*(RR-1)), 0.01);
rownames_EU = CHAR(RR_EU, NCOL(RR_EU), 1);
colnames_UD = CHAR(RR_UD, NCOL(RR_UD), 1);
BiasFactor = J(NCOL(RR_EU), NCOL(RR_UD), 1);
SPACE = J(NCOL(RR_EU), NCOL(RR_UD), " ");
LeftP = J(NCOL(RR_EU), NCOL(RR_UD), "(");
Mid = J(NCOL(RR_EU), NCOL(RR_UD), ",");
RightP = J(NCOL(RR_EU), NCOL(RR_UD), ")");
RR_true = BiasFactor;
RR_true_Lower = BiasFactor;
RR_true_Upper = BiasFactor;
RR_true_CI = BiasFactor;
DO i=1 TO NCOL(RR_EU);

Do j=1 to NCOL(RR_UD);
BiasFactor[i, j] = RR_EU[i]*RR_UD[j]/(RR_EU[i] + RR_UD[j] - 1);

RR_true[i, j] = ROUND(RR/BiasFactor[i, j], 0.01);
RR_true_Lower[i, j] = ROUND(RR_Lower/BiasFactor[i, j], 0.01);
RR_true_Upper[i, j] = ROUND(RR_Upper/BiasFactor[i, j], 0.01);

END;
END;
RR_true_CI = CATX(" ", CHAR(RR_true), LeftP, CHAR(RR_true_Lower), Mid, CHAR(RR_true_Upper), RightP);
print RR_true_CI[colname = colnames_UD

rowname = rownames_EU
label = "Bounds on corrected estimates and confidence intervals for unmeasured confounding
(columns correspond to increasing strength of the risk ratio of U on the outcome;
rows correspond to increasing strength of risk ratio relating the exposure and U)"];

run;

eAppendix 10 SAS Code for the Risk Difference Using Sen-
sitivity Parameters on the Relative Risk Scale

In this section, we provide SAS code for sensitivity analysis on the risk difference scale. The

SAS code here illustrates analysis using logistic regression for a binary outcome as this is an
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approach that is commonly employed.

Suppose we have a dataset named “leadlogit” with variables lead, smoking, age, male.

Suppose we are interested in the risk difference of smoking on the high blood lead level at

the covariate level, age = 50 and male = 1.

To implement sensitivity analysis for risk difference we need to obtain point estimate and

standard error for f = P(E = 1), which can be done via the following SAS code.

proc means data=lib.leadlogit ; /*f and se(f)*/
var smoking;

output out=sumstat mean=mean var=var N=N;
run;

data sumstat (KEEP=MEAN SE);
set sumstat;
se=(var/N)**0.5;
run;

The following code obtains the predicted probabilities p1|c = P{Y (1) = 1 | C = c} and

p0|c = P{Y (0) = 1 |C = c} with standard errors.

proc logistic data = lib.leadlogit;/*predict probs*/
model lead = smoking age male;
score data = lib.leadlogit_new out=logit_pred clm;
run;

proc contents data =logit_pred ;
run;

data logit_pred (keep=P_TRUE se_p);/*p1 p0 se(p1) se(p0)*/
set logit_pred;

logit_LCL_TRUE =log(LCL_TRUE/(1-LCL_TRUE));
logit_P_TRUE =log(P_TRUE/(1-P_TRUE));
logit_UCL_TRUE =log(UCL_TRUE /(1-UCL_TRUE ));

se_eta =(logit_UCL_TRUE-logit_LCL_TRUE)/2/1.96;
se_p =P_TRUE**2/EXP(logit_P_TRUE)*se_eta;
run;

In the following SAS code, we need to input from line 2 to line 7 the point estimates

and standard errors of the prevalence f , and the two predicted outcome probabilities p1|c and

p0|c. The output contains lower bounds for the point estimates and confidence intervals of

the causal risk differences for the exposed, unexposed and the whole population. Figure A.1
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is the SAS output for the causal risk difference estimates for the whole population. For other

problems, we need to change the numbers from line 2 to line 7 accordingly. We can also

change the measures of the strength of confounding in lines 8 and 9. The output from SAS

will be similar to the one shown in Figure A.1.

proc iml;/*Sensitivity analysis without assumptions for RD*/
f = 0.2032934132;/*point and interval estimate of prevalence and response rates*/
p1 = 0.101645862;
p0 = 0.0398930775;
s2_f = 0.0069647038;
s2_p1 = 0.0147497019;
s2_p0 = 0.0058931321;
RR_EU = {1.2 1.3 1.5 1.8 2 2.5 3 5};/*strenghth of confounding*/
RR_UD = {1.2 1.3 1.5 1.8 2 2.5 3 5};
rownames_EU = CHAR(RR_EU, NCOL(RR_EU), 1);
colnames_UD = CHAR(RR_UD, NCOL(RR_UD), 1);
BiasFactor = J(NCOL(RR_EU), NCOL(RR_UD), 1);
SPACE = J(NCOL(RR_EU), NCOL(RR_UD), " ");
LeftP = J(NCOL(RR_EU), NCOL(RR_UD), "(");
Mid = J(NCOL(RR_EU), NCOL(RR_UD), ",");
RightP = J(NCOL(RR_EU), NCOL(RR_UD), ")");
/*initial values*/
RD_exposed = BiasFactor;
RD_exposed_L = BiasFactor;
RD_exposed_U = BiasFactor;
RD_unexposed = BiasFactor;
RD_unexposed_L = BiasFactor;
RD_unexposed_U = BiasFactor;
RD_whole = BiasFactor;
RD_whole_L = BiasFactor;
RD_whole_U = BiasFactor;
W_whole = BiasFactor;
Var_exposed = BiasFactor;
Var_unexposed = BiasFactor;
Var_whole = BiasFactor;
/*Sensitivity analysis*/
DO i=1 TO NCOL(RR_EU);

Do j=1 to NCOL(RR_UD);
BiasFactor[i, j] = RR_EU[i]*RR_UD[j]/(RR_EU[i] + RR_UD[j] - 1);

/*exposed*/
RD_exposed[i, j] = p1 - p0*BiasFactor[i, j];
Var_exposed[i, j] = s2_p1 + s2_p0*(BiasFactor[i, j])**2;
RD_exposed_L[i, j] = RD_exposed[i, j] - 1.96*sqrt(Var_exposed[i, j]);

RD_exposed_U[i, j] = RD_exposed[i, j] + 1.96*sqrt(Var_exposed[i, j]);
/*exposed*/
RD_unexposed[i, j] = p1/BiasFactor[i, j] - p0;

Var_unexposed[i, j] = s2_p1/(BiasFactor[i, j])**2 + s2_p0;
RD_unexposed_L[i, j] = RD_unexposed[i, j] - 1.96*sqrt(Var_unexposed[i, j]);

RD_unexposed_U[i, j] = RD_unexposed[i, j] + 1.96*sqrt(Var_unexposed[i, j]);
/*whole*/

W_whole[i, j] = f + (1-f)/BiasFactor[i, j];
RD_whole[i, j] = RD_exposed[i, j]*W_whole[i, j];
Var_whole[i, j] = Var_exposed[i, j]*(W_whole[i, j])**2

+ (RD_exposed[i, j])**2*(1-1/BiasFactor[i, j])**2*s2_f;
RD_whole_L[i, j] = RD_whole[i, j] - 1.96*sqrt(Var_whole[i, j]);
RD_whole_U[i, j] = RD_whole[i, j] + 1.96*sqrt(Var_whole[i, j]);

END;
END;
/*print;*/
RD_exposed = CATX(" ", CHAR(round(RD_exposed, 0.0001)), LeftP, CHAR(round(RD_exposed_L, 0.0001)), Mid,

CHAR(round(RD_exposed_U, 0.0001)), RightP);
print RD_exposed[colname = colnames_UD
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rowname = rownames_EU
label = "Bounds on corrected estimates and confidence intervals for risk difference
among exposed (columns correspond to increasing strength of the risk ratio of U
on the outcome; rows correspond to increasing strength of risk ratio
relating the exposure and U)"];

RD_unexposed = CATX(" ", CHAR(round(RD_unexposed, 0.0001)), LeftP, CHAR(round(RD_unexposed_L, 0.0001)), Mid,
CHAR(round(RD_unexposed_U, 0.0001)), RightP);

print RD_unexposed[colname = colnames_UD
rowname = rownames_EU
label = "Bounds on corrected estimates and confidence intervals for risk difference
among unexposed (columns correspond to increasing strength of the risk ratio of U
on the outcome; rows correspond to increasing strength of risk ratio
relating the exposure and U)"];

RD_whole = CATX(" ", CHAR(round(RD_whole, 0.0001)), LeftP, CHAR(round(RD_whole_L, 0.0001)), Mid,
CHAR(round(RD_whole_U, 0.0001)), RightP);

print RD_whole[colname = colnames_UD
rowname = rownames_EU
label = "Bounds on corrected estimates and confidence intervals for risk difference
among the whole population (columns correspond to increasing strength of the risk ratio of U
on the outcome; rows correspond to increasing strength of risk ratio
relating the exposure and U)"];

run;
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Bounds on corrected estimates and confidence intervals for risk difference among the whole population
(columns correspond to increasing strength of the risk ratio of U on the outcome;
rows correspond to increasing strength of risk ratio relating the exposure and U)

1.2 1.3 1.5 1.8

1.2 0.0593 ( -0.2184 , 0.3369 ) 0.0583 ( -0.2178 , 0.3345 ) 0.0568 ( -0.217 , 0.3305 ) 0.0551 ( -0.2161 , 0.3263 )

1.3 0.0583 ( -0.2178 , 0.3345 ) 0.057 ( -0.2171 , 0.3311 ) 0.0548 ( -0.216 , 0.3257 ) 0.0525 ( -0.2148 , 0.3199 )

1.5 0.0568 ( -0.217 , 0.3305 ) 0.0548 ( -0.216 , 0.3257 ) 0.0517 ( -0.2145 , 0.318 ) 0.0483 ( -0.2131 , 0.3098 )

1.8 0.0551 ( -0.2161 , 0.3263 ) 0.0525 ( -0.2148 , 0.3199 ) 0.0483 ( -0.2131 , 0.3098 ) 0.0438 ( -0.2116 , 0.2991 )

2.0 0.0543 ( -0.2157 , 0.3242 ) 0.0514 ( -0.2143 , 0.317 ) 0.0466 ( -0.2125 , 0.3057 ) 0.0414 ( -0.211 , 0.2939 )

2.5 0.0528 ( -0.215 , 0.3205 ) 0.0492 ( -0.2134 , 0.3119 ) 0.0435 ( -0.2115 , 0.2986 ) 0.0372 ( -0.2103 , 0.2847 )

3.0 0.0517 ( -0.2145 , 0.318 ) 0.0478 ( -0.2129 , 0.3085 ) 0.0414 ( -0.211 , 0.2939 ) 0.0343 ( -0.2101 , 0.2788 )

5.0 0.0497 ( -0.2136 , 0.313 ) 0.045 ( -0.2119 , 0.3019 ) 0.0372 ( -0.2103 , 0.2847 ) 0.0285 ( -0.2105 , 0.2675 )

Bounds on corrected estimates and confidence intervals for risk difference among the whole population
(columns correspond to increasing strength of the risk ratio of U on the outcome;
rows correspond to increasing strength of risk ratio relating the exposure and U)

2.0 2.5 3.0 5.0

1.2 0.0543 ( -0.2157 , 0.3242 ) 0.0528 ( -0.215 , 0.3205 ) 0.0517 ( -0.2145 , 0.318 ) 0.0497 ( -0.2136 , 0.313 )

1.3 0.0514 ( -0.2143 , 0.317 ) 0.0492 ( -0.2134 , 0.3119 ) 0.0478 ( -0.2129 , 0.3085 ) 0.045 ( -0.2119 , 0.3019 )

1.5 0.0466 ( -0.2125 , 0.3057 ) 0.0435 ( -0.2115 , 0.2986 ) 0.0414 ( -0.211 , 0.2939 ) 0.0372 ( -0.2103 , 0.2847 )

1.8 0.0414 ( -0.211 , 0.2939 ) 0.0372 ( -0.2103 , 0.2847 ) 0.0343 ( -0.2101 , 0.2788 ) 0.0285 ( -0.2105 , 0.2675 )

2.0 0.0388 ( -0.2105 , 0.2881 ) 0.034 ( -0.2101 , 0.2781 ) 0.0307 ( -0.2102 , 0.2716 ) 0.024 ( -0.2116 , 0.2595 )

2.5 0.034 ( -0.2101 , 0.2781 ) 0.028 ( -0.2106 , 0.2667 ) 0.024 ( -0.2116 , 0.2595 ) 0.0154 ( -0.216 , 0.2468 )

3.0 0.0307 ( -0.2102 , 0.2716 ) 0.024 ( -0.2116 , 0.2595 ) 0.0193 ( -0.2136 , 0.2522 ) 0.0093 ( -0.2212 , 0.2398 )

5.0 0.024 ( -0.2116 , 0.2595 ) 0.0154 ( -0.216 , 0.2468 ) 0.0093 ( -0.2212 , 0.2398 ) -0.0045 ( -0.2402 , 0.2312 )

Figure A.1: SAS Output of Sensitivity Analysis on the Risk Difference Scale for the Whole
Population
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