Supplementary Digital Content for "Measurement error correction for predicted spatiotemporal air pollution exposures."
eTable 1. Parameter estimates for spatiotemporal model of ambient $\mathrm{PM}_{2.5}$.

	Estimate	Standard Error
Spatiotemporal Covariates		
Temperature $\left(10^{\circ} \mathrm{C}\right)$	0.037	0.037
Wind Speed (10 m/s)	-0.249	0.060
Relative Humidity (10\%)	-0.015	0.010
Long-term Mean		
Intercept	1.744	1.117
Percent Forest Cover (\%)	-0.003	0.001
Distance to Emissions Point Source (10 km)	-0.059	0.025
Log of Range Parameter (km)	4.179	0.506
Log of Sill Parameter	-4.507	0.314
Time Trend Coefficients	0.073	
Intercept	0.013	0.044
Elevation (100m)	0.001	<0.006
Percent Forest Cover (\%)	-0.030	0.015
Local Road Length (10 km)	-0.056	0.026
Highway Length (10 km)	5.253	0.635
Log of Range Parameter (km)	-5.371	0.534
Log of Sill Parameter		
Spatiotemporal Residual	-3.130	0.09
Log of Range Parameter (km)	-4.782	0.030
Log of Sill Parameter		
Log of Nugget Parameter		0.075

eFigure 1. $\mathrm{PM}_{2.5}$ time trend estimated from monitoring data. Trend is shown on the standardized scale.

eFigure 2. Observations and cross-validated predictions of two-week average $\mathrm{PM}_{2.5}$ concentrations $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$ from 2002 through 2006. The 1-1 line is drawn for reference.
eTable 2. Estimated difference in birth weight (in grams) associated with $1 \mu \mathrm{~g} / \mathrm{m}^{3}$ higher ambient average $\mathrm{PM}_{2.5}$ during the specified trimester, among births to mothers in all counties. Bootstrap corrections are based upon 1,000 bootstrap samples.

Cohort	Correction	Trimester	Estimate	Std. Err
Statewide	Non-	1	0.43	0.55
	Parametric	2	-0.65	0.56
		3	-0.51	0.58
	Parameter	1	0.28	0.68
		2	-0.63	0.67
		3	-0.65	0.61

eTable 3. Estimated difference in birth weight (in grams) associated with $1 \mu \mathrm{~g} / \mathrm{m}^{3}$ higher ambient average $\mathrm{PM}_{2.5}$ during the third trimester in the restricted cohort. The degrees of freedom (df) per year in the health model reflects different amount of temporal smoothing.

df per year	Estimate	Std. Err	95\% CI
1	-0.70	0.39	$(-1.46,0.05)$
2	-0.75	0.69	$(-2.10,0.59)$
3	-1.98	0.77	$(-3.50,-0.46)$
4	-2.36	0.78	$(-3.89,-0.83)$
5	-2.31	0.79	$(-3.85,-0.77)$
6	-2.44	0.80	$(-4.00,-0.88)$
7	-2.38	0.80	$(-3.95,-0.80)$
8	-2.33	0.80	$(-3.90,-0.75)$

```
# Example code for running the non-parametric bootstrap and the
# parameter bootstrap.
# First are three auxiliary functions,
# followed by a description of the R
# objects in the accompanying data file,
# followed then by code for running the
# bootstrap procedures.
# For each bootstrap (non-parametric and
# parameter), the code is in two parts.
# The first part deals with the exposure
# data, the second part with the health
# analysis.
```

```
#############################
```

\#

create_timemx()

create_timemx()

Function for creating a list of time-space linkages

Function for creating a list of time-space linkages

INPUT:

INPUT:

gridIDs -- vector of grid IDs

gridIDs -- vector of grid IDs

dates -- optional data frame for supplying the conception, trimester,

dates -- optional data frame for supplying the conception, trimester,

and birth dates

and birth dates

obsdates -- dates for which exposures are available. gestational

obsdates -- dates for which exposures are available. gestational

dates will be matched to the closest date in this vector

dates will be matched to the closest date in this vector

concep.date -- conception dates

concep.date -- conception dates

T2 -- dates of start of second trimester

T2 -- dates of start of second trimester

T3 -- dates of start of third trimester

T3 -- dates of start of third trimester

dob -- dates of birth

dob -- dates of birth

OUTPUT: A list of length equal to the number of

OUTPUT: A list of length equal to the number of

unique grid IDs. Each element in the list is

unique grid IDs. Each element in the list is

a set of three sparse matrices (one for each

a set of three sparse matrices (one for each

trimester).The number of rows is equal to

trimester).The number of rows is equal to

the number of obsdates. The number of columns

the number of obsdates. The number of columns

depends upon how many births occurred in that

depends upon how many births occurred in that

grid cell. Columns of the matrix sum to 1,

grid cell. Columns of the matrix sum to 1,

with non-zero entries corresponding to the

with non-zero entries corresponding to the

interval of the corresponding trimester.

interval of the corresponding trimester.

This is designed to allow for easily computing

This is designed to allow for easily computing

averages in the bootstrap procedure by simple

averages in the bootstrap procedure by simple

matrix multiplication.

matrix multiplication.

create_timemx <- functionCgridIDs, dates=NULL, obsdates,
create_timemx <- functionCgridIDs, dates=NULL, obsdates,
concep.date=dates$concep.date, T2=dates$T2, T3=dates$T3, dob=dates$dob){

```
concep.date=dates$concep.date, T2=dates$T2, T3=dates$T3, dob=dates$dob){
```

```
T1.int <- findInterval(concep.date, obsdates)
T2.int <- findInterval(T2, obsdates)
T3.int <- findInterval(T3, obsdates)
dob.int <- findInterval(dob, obsdates)
newdates <- data.frame(T1.int=T1.int, T2.int=T2.int, T3.int=T3.int,
dob.int=dob.int)
ndates <- length(obsdates)
grid.list = sort(unique(gridIDs))
time.mx <- vector("list", length=length(grid.list))
names(time.mx) <- grid.list
for (i in 1:length(grid.list)) {
        grid.i = grid.list[i]
## Extract birth records in grid cell i
use = which(gridIDs == grid.i)
dat.i <- newdates[use,]
## Calculate exposure indicators
time.mx[[i]]$T1 <- Matrix(mapply(createExpInd,a = dat.i$T1.int, b =
dat.i$T2.int, n= ndates), sparse=TRUE, dimnames=list(NULL, rownames(dat.i)))
time.mx[[i]]$T2 <- Matrix(mapply (createExpInd,a = dat.i$T2.int, b =
dat.i$T3.int, n= ndates), sparse=TRUE, dimnames=list(NULL, rownames(dat.i)))
time.mx[[i]]$T3 <- Matrix(mapply (createExpInd,a = dat.i$T3.int, b =
dat.i$dob.int, n= ndates), sparse=TRUE, dimnames=list(NULL, rownames(dat.i)))
}
return(time.mx)
}
# Helper function for getting the indices
# corresponding to exposure. Creates
# an n-vector, with zeros everywhere
# except from indices a to b, in which
# there are equal values that sum to 1.
# This makes exposure assignment easily
# done through matrix multiplication.
createExpInd <- function(a, b, n) {
x <- numeric(n)
x[a:b] <- 1/(b-a + 1)
return(x)
}
```

```
# make_exposure_assignment()
#
# Function for making exposure assignment
#
# INPUT:
# obs -- matrix of exposure observations
# time.list -- list output from create_timemx()
#
# OUTPUT:
# expos -- matrix of average exposures
# for each subject (row) and trimester (column)
#
make_exposure_assignment <- function(obs, time.list){
# Get location name list
locnamelist <- sapply(time.list, function(w) colnames(w$T1))
# Vector of location names, for assigning to rows of output matrix
locnames <- unlist(locnamelist, use.names=FALSE)
# Vector of location counts per grid, to allow for
# efficient index creation, all to avoid (slow!) name
# matching within the loop
indvec <- cumsum(c(1, sapply(locnamelist, length)))
expos <- matrix(data=0, nrow=length(locnames), ncol=3)
rownames(expos) <- locnames
colnames(expos) <- c("T1", "T2", "T3")
for (i in 1:length(time.list) ){
    grid.i = names(time.list)[i]
    ## Extract 2-week time-series for grid cell i
    exp.i = obs[, colnames(obs) == grid.i]
    # ## Fill in exposure estimates
    T1 <- as.vector(exp.i %*% time.list[[i]]$T1)
    T2 <- as.vector(exp.i %*% time.list[[i]]$T2)
    T3 <- as.vector(exp.i %*% time.list[[i]]$T3)
    inds <- indvec[i]:(indvec[i+1]-1)
    expos[inds, ] <- cbind(T1, T2, T3)
}
return(expos)
}
```

```
library(SpatioTemporal)
library(MASS)
#####################
# Load the Data #
#####################
load("GA_PM25_Birthweight.RData")
# Objects included:
# pm.stmodel -- the STmodel object containing the monitoring data
# and model specifications
# pm.stdata -- the STdata object containing the monitoring data
# grid.stdata -- an STdata object containing covariate information
# at grid locations. Used for making predictions.
# est.pm.stmodel -- an estimateSTmodel object containing parameter
# estimates for the exposure prediction model
# pm.aqsgrid.stmodel -- an STmodel object for simulating data
# at AQS and grid locations simultaneously.
# bwdata -- Synthetic birth weight data. These were generated using
# random dates, random locations, and random birth weights
# and thus differ from the observed data used in the
# manuscript analysis.
# Note: See the SpatioTemporal package help files for more
# information about structure of the STmodel and STdata objects.
```

```
#########################
```

\#

Fit original models

\#

```
```

fitT1 = lm (bwt~T1.exp, data = bwdata)

```
fitT1 = lm (bwt~T1.exp, data = bwdata)
lmT1coef <- coef(fitT1)
lmT1coef <- coef(fitT1)
lmT1sigma <- summary(fitT1)$sigma
lmT1sigma <- summary(fitT1)$sigma
fitT2 = lm (bwt~T2.exp, data = bwdata)
fitT2 = lm (bwt~T2.exp, data = bwdata)
lmT2coef <- coef(fitT2)
lmT2coef <- coef(fitT2)
lmT2sigma <- summary(fitT2)$sigma
lmT2sigma <- summary(fitT2)$sigma
fitT3 = lm (bwt~T3.exp, data = bwdata)
fitT3 = lm (bwt~T3.exp, data = bwdata)
lmT3coef <- coef(fitT3)
lmT3coef <- coef(fitT3)
lmT3sigma <- summary(fitT3)$sigma
```

lmT3sigma <- summary(fitT3)\$sigma

```
```

\#

Non-Parametric Bootstrap

\#

Extract spatial covariates

mon.covars <- pm.stdata\$covars

Spatiotemporal covariates

mon.st.covars <- pm.stdata\$SpatioTemporal

Monitor observations matrix

mon.obs <- createDataMatrix(pm.stdata)

Monitor IDs

mon.list <- colnames(mon.obs)
\#

NP Bootstrap, Part 1

Monitor Sampling

\#

Code shown here as a loop over B=2 iterations.

These can also be run in parallel.

B <-2
for (i in 1:B){
seed <- i
set.seed(seed)
mons.i <- sample(mon.list, replace=T)
mon.obs.i <- mon.obs[, mons.i]
colnames(mon.obs.i) <- 1:ncol(mon.obs.i) \# Give arbitrary monitor IDs
mon.covars.i <- mon.covars[match(mons.i, mon.covars\$ID),]
mon.covars.i $x[duplicated(mons.i)] <-
jitter(mon.covars.i$x[duplicated(mons.i)], amount=0.3) \# Jitter by 300m in
each direction
mon.covars.i \$y[duplicated(mons.i)] <- jitter(mon.covars.i
\$y[duplicated(mons.i)], amount=0.3)
mon.covars.i $ID <- 1:length(mons.i) # Give arbitrary monitor IDs
mon.st.covars.i <- mon.st.covars[, mons.i,]
dimnames(mon.st.covars.i)[[2]] <- 1:length(mons.i) # Give arbitrary IDs
pm.stdata.i <- createSTdata(obs= mon.obs.i, covars= mon.covars.i,
SpatioTemporal = mon.st.covars.i)
pm.stdata.i$trend <- pm.stmodel$trend # Add the original trend
pm.stdata.i$trend.fnc <- pm.stmodel\$trend.fnc \# Add the original trend

Model Setup

LUR <- list (~ forest_2001 + dist_emiss_2002, ~elevation+forest_2001 +

```
```

local_length + highway_length)
cov.beta <- list(covf = "exp", nugget = F)
cov.nu <- list (covf = "exp", nugget = T)
locations <- list (coords =c("x", "y"), long.lat = c("long", "lat"))
pm.stmodel.i <-createSTmodel(pm.stdata.i, LUR=LUR, ST=c("tmp", "wspd", "rh"),
cov.beta=cov.beta, cov.nu=cov.nu, locations=locations)

Estimate model parameters

This may take a long time!

x.init<-cbind (c(3, -4, 3, -5, 3, -3, -5), rep (0, 7))
est.pm.stmodel.i <- estimate (pm.stmodel.i, x.init, type="p")

Make predictions

This may take a long time!

grid.pred.temp.i <- predict(object= pm.stmodel.i , x= est.pm.stmodel.i,
STdata= grid.stdata, pred.var=FALSE, Nmax=2000)
EX.i <- grid.pred.temp.i\$EX

Save the results, if desired

stdatafilename <- paste0("nonparametric_bootstrap_stdata_seed", seed,
".RData")
save(mons.i, EX.i, est.pm.stmodel.i, file=stdatafilename)
}
\#

NP Bootstrap, Part 2

Health Analysis

\#
obsdates <- seq(as.Date('2001/1/1'), as.Date('2006/12/11'), by="14 days")

Create list of time-space linkage information, to facilitate

simpler computation of trimester exposures

tm <- create_timemx(gridIDs= bwdata\$grid, dates= bwdata, obsdates= obsdates)

Matrix for estimates

coefMX <- matrix(NA, nrow=3, ncol=B, dimnames=list(c("T1", "T2", "T3"), 1:B))

Loop over simulated exposures

for (i in 1:B){

Load the ST data for this bootstrap run

stdata.boot.filename <- paste0("nonparametric_bootstrap_stdata_seed", i,
".RData")
load(stdata.boot.filename, verbose=TRUE)
obsPred.i <- exp(EX.i)
expPred <- make_exposure_assignment(obs= obsPred.i, time.list=tm)
bwdata.i <- bwdata

```
```

bwdata.i$T1.exp <- expPred[match(rownames(bwdata), rownames(expPred)), "T1"]
bwdata.i$T2.exp <- expPred[match(rownames(bwdata), rownames(expPred)), "T2"]
bwdata.i\$T3.exp <- expPred[match(rownames(bwdata), rownames(expPred)), "T3"]
subj.i <- sample(nrow(bwdata.i), replace=TRUE)
bwdata.i <- bwdata.i[subj.i,]

```
```


Fit Models

```
# Fit Models
fitT1.i = lm ( bwt~T1.exp, data = bwdata.i )
fitT1.i = lm ( bwt~T1.exp, data = bwdata.i )
coefs <- c(coef(fitT1.i)[2])
coefs <- c(coef(fitT1.i)[2])
fitT2.i = lm ( bwt~T2.exp, data = bwdata.i )
fitT2.i = lm ( bwt~T2.exp, data = bwdata.i )
coefs <- c(coefs, coef(fitT2.i)[2])
coefs <- c(coefs, coef(fitT2.i)[2])
fitT3.i = lm ( bwt~T3.exp, data = bwdata.i )
fitT3.i = lm ( bwt~T3.exp, data = bwdata.i )
coefs <- c(coefs, coef(fitT3.i)[2])
coefs <- c(coefs, coef(fitT3.i)[2])
coefMX[, i] <- coefs
coefMX[, i] <- coefs
}
}
# Bootstrap corrected estimate for Trimester 1 is:
# Bootstrap corrected estimate for Trimester 1 is:
2* lmT1coef["T1.exp"] - mean(coefMX["T1",])
2* lmT1coef["T1.exp"] - mean(coefMX["T1",])
###############################
# #
# Parameter Bootstrap #
# #
###############################
############################
# Parameter Boot., Part 1 #
# Exposure Simulation #
############################
# Code shown here as a loop over B=2 iterations.
# These can also be run in parallel.
B <-2
for (i in 1:B){
seed <- i
set.seed(seed)
# Simulate the data
pm.sim <- simulate(pm.aqsgrid.stmodel, nsim=1, x=coef(est.pm.stmodel)$par,
nugget.unobs=exp(coef(est.pm.stmodel)$par[length(coef(est.pm.stmodel)$par)]))
# Put into space-time matrix form
obs <- exp(createDataMatrix(obs=pm.sim$obs[[1]]$obs,
date=pm.sim$obs[[1]]$date, ID=pm.sim$obs[[1]]$ID))
```

```
# Create new STmodel object, with new 'monitor' data
new.pm.stmodel <- pm.stmodel
new.pm.stmodel$obs <- pm.sim$obs[[1]][pm.sim$obs[[1]]$ID %in%
pm.stmodel$locations$ID,]
# Sample new exposure parameters
#
Sigma <- solve(-est.pm.stmodel$res.best$hessian.all)
parest <- mvrnorm(n=1, mu=est.pm.stmodel$res.best$par.all$par, Sigma=Sigma)
# Make predictions
# Note this may take a long time!
grid.pred.temp <- predict(object= new.pm.stmodel , x= parest, STdata=
grid.stdata, pred.var=FALSE, Nmax=2000)
EX <- grid.pred.temp$EX
rm(grid.pred.temp)
# Save the results, if desired
stdatafilename <- paste0("parameter_bootstrap_stdata_seed", seed, ".RData")
save(obs, EX, parest, file=stdatafilename)
}
############################
# Parameter Boot., Part 2 #
# Health Analysis #
############################
# Create list of time-space linkage information, to facilitate
# simpler computation of trimester exposures
obsdates <- seq(as.Date('2001/1/1'), as.Date('2006/12/11'), by="14 days")
tm <- create_timemx(gridIDs= bwdata$grid, dates= bwdata, obsdates= obsdates)
# Matrix for estimates
coefMX <- matrix(NA, nrow=3, ncol=B, dimnames=list(c("T1", "T2", "T3"), 1:B))
# Loop over simulated exposures
for (i in 1:B){
set.seed(1e5 + i)
# Load the simulated exposure observations and predictions
stfilename <- paste0("parameter_bootstrap_stdata_seed", i, ".RData")
load(stfilename, verbose=TRUE)
###########################################
# Simulate new Health Data, using bootstrapped
# exposure data at subject locations
# Make Exposure Assignments
```

```
exp <- make_exposure_assignment(obs=obs, time.list=tm)
lmMMT1.i <- cbind(1, T1.exp=exp[match(rownames(bwdata),rownames(exp)), "T1"])
lmMMT2.i <- cbind(1, T2.exp=exp[match(rownames(bwdata),rownames(exp)), "T2"])
lmMMT3.i <- cbind(1, T3.exp=exp[match(rownames(bwdata),rownames(exp)), "T3"])
# Simulate the health data
T1bwt_mean <- lmMMT1.i %*% lmT1coef
T2bwt_mean <- lmMMT2.i %*% lmT2coef
T3bwt_mean <- lmMMT3.i %*% lmT3coef
eps <- matrix(rnorm(n=3*nrow(bwdata)), nrow=nrow(bwdata), ncol=3)
T1bwt <- T1bwt_mean + lmT1sigma*eps[, 1]
T2bwt <- T2bwt_mean + lmT2sigma*eps[, 2]
T3bwt <- T3bwt_mean + lmT3sigma*eps[, 3]
###########################################
# Compute predicted exposures, using
# predictions developed from simulated
# monitor data.
# Make Exposure Assignments
obsPred <- exp(EX)
expPred <- make_exposure_assignment(obs=obsPred, time.list=tm)
# Replace model matrices with predictions
lmMMT1.i <- cbind(1, T1.exp= expPred[match(rownames(bwdata),
rownames(expPred)), "T1"])
lmMMT2.i <- cbind(1, T2.exp= expPred[match(rownames(bwdata),
rownames(expPred)), "T2"])
lmMMT3.i <- cbind(1, T3.exp= expPred[match(rownames(bwdata),
rownames(expPred)), "T3"])
fitT1.i <- solve(crossprod(lmMMT1.i), crossprod(lmMMT1.i, T1bwt))
coefs <- c(T1=fitT1.i[2])
rm(fitT1.i, lmMMT1.i); gc()
fitT2.i <- solve(crossprod(lmMMT2.i), crossprod(lmMMT2.i, T2bwt))
coefs <- c(coefs, T2=fitT2.i[2])
rm(fitT2.i, lmMMT2.i); gc()
fitT3.i <- solve(crossprod(lmMMT3.i), crossprod(lmMMT3.i, T3bwt))
coefs <- c(coefs, T3=fitT3.i[2])
rm(fitT3.i, lmMMT3.i); gc()
coefMX[, i] <- coefs
}
# Bootstrap corrected estimate for Trimester 1 is:
2* lmT1coef["T1.exp"] - mean(coefMX["T1",])
```

