Supplementary Digital Content for "Measurement error correction for predicted spatiotemporal air pollution exposures."

	Estimate	Standard Error
Spatiotemporal Covariates		
Temperature (10° C)	0.037	0.037
Wind Speed (10 m/s)	-0.249	0.060
Relative Humidity (10%)	-0.015	0.010
Long-term Mean		
Intercept	1.744	1.117
Percent Forest Cover (%)	-0.003	0.001
Distance to Emissions Point Source (10 km)	-0.059	0.025
Log of Range Parameter (km)	4.179	0.506
Log of Sill Parameter	-4.507	0.314
Time Trend Coefficients		
Intercept	0.073	0.044
Elevation (100m)	0.013	0.006
Percent Forest Cover (%)	0.001	< 0.001
Local Road Length (10 km)	-0.030	0.015
Highway Length (10 km)	-0.056	0.026
Log of Range Parameter (km)	5.253	0.635
Log of Sill Parameter	-5.371	0.534
Spatiotemporal Residual		
Log of Range Parameter (km)	6.491	0.094
Log of Sill Parameter	-3.130	0.075
Log of Nugget Parameter	-4.782	0.030

eTable 1. Parameter estimates for spatiotemporal model of ambient PM_{2.5}.

eFigure 1. PM_{2.5} time trend estimated from monitoring data. Trend is shown on the standardized scale.

Two-Week PM2.5, LOO CV Results

eFigure 2. Observations and cross-validated predictions of two-week average $PM_{2.5}$ concentrations (μ g/m³) from 2002 through 2006. The 1-1 line is drawn for reference.

eTable 2. Estimated difference in birth weight (in grams) associated with $1 \mu g/m^3$ higher ambient average PM_{2.5} during the specified trimester, among births to mothers in all counties. Bootstrap corrections are based upon 1,000 bootstrap samples.

Cohort	Correction	Trimester	Estimate	Std. Err
Statewide	Non-	1	0.43	0.55
	Parametric	2	-0.65	0.56
		3	-0.51	0.58
	Parameter	1	0.28	0.68
		2	-0.63	0.67
		3	-0.65	0.61

eTable 3. Estimated difference in birth weight (in grams) associated with $1 \mu g/m^3$ higher ambient average PM_{2.5} during the third trimester in the restricted cohort. The degrees of freedom (df) per year in the health model reflects different amount of temporal smoothing.

df per year	Estimate	Std. Err	95% CI
1	-0.70	0.39	(-1.46, 0.05)
2	-0.75	0.69	(-2.10, 0.59)
3	-1.98	0.77	(-3.50, -0.46)
4	-2.36	0.78	(-3.89, -0.83)
5	-2.31	0.79	(-3.85, -0.77)
6	-2.44	0.80	(-4.00, -0.88)
7	-2.38	0.80	(-3.95, -0.80)
8	-2.33	0.80	(-3.90, -0.75)

eAppendix 1. Example R code for running non-parametric and parameter bootstrap.

Example code for running the non-parametric bootstrap and the # parameter bootstrap. # First are three auxiliary functions, # followed by a description of the R # objects in the accompanying data file, # followed then by code for running the # bootstrap procedures. # For each bootstrap (non-parametric and # parameter), the code is in two parts. # The first part deals with the exposure # data, the second part with the health # analysis. # create_timemx() # # Function for creating a list of time-space linkages # # INPUT: aridIDs -- vector of arid IDs # dates -- optional data frame for supplying the conception, trimester, # # and birth dates obsdates -- dates for which exposures are available. gestational # dates will be matched to the closest date in this vector # concep.date -- conception dates # # T2 -- dates of start of second trimester T3 -- dates of start of third trimester # # dob -- dates of birth # # OUTPUT: A list of length equal to the number of unique grid IDs. Each element in the list is # # a set of three sparse matrices (one for each trimester). The number of rows is equal to # # the number of obsdates. The number of columns depends upon how many births occurred in that # # grid cell. Columns of the matrix sum to 1, with non-zero entries corresponding to the # interval of the corresponding trimester. # # This is designed to allow for easily computing # averages in the bootstrap procedure by simple matrix multiplication. # # create_timemx <- function(gridIDs, dates=NULL, obsdates,</pre> concep.date=dates\$concep.date, T2=dates\$T2, T3=dates\$T3, dob=dates\$dob){

```
T1.int <- findInterval(concep.date, obsdates)</pre>
T2.int <- findInterval(T2, obsdates)</pre>
T3.int <- findInterval(T3, obsdates)
dob.int <- findInterval(dob, obsdates)</pre>
newdates <- data.frame(T1.int=T1.int, T2.int=T2.int, T3.int=T3.int,</pre>
dob.int=dob.int)
ndates <- length(obsdates)</pre>
grid.list = sort(unique(gridIDs))
time.mx <- vector("list", length=length(grid.list))</pre>
names(time.mx) <- grid.list</pre>
for (i in 1:length(grid.list)) {
      grid.i = grid.list[i]
## Extract birth records in grid cell i
use = which(aridIDs == arid.i)
dat.i <- newdates[use,]</pre>
## Calculate exposure indicators
time.mx[[i]]$T1 <- Matrix(mapply(createExpInd, a = dat.i$T1.int, b =</pre>
dat.i$T2.int, n= ndates), sparse=TRUE, dimnames=list(NULL, rownames(dat.i)))
time.mx[[i]]$T2 <- Matrix(mapply (createExpInd, a = dat.i$T2.int, b =</pre>
dat.i$T3.int, n= ndates), sparse=TRUE, dimnames=list(NULL, rownames(dat.i)))
time.mx[[i]]$T3 <- Matrix(mapply (createExpInd, a = dat.i$T3.int, b =</pre>
dat.i$dob.int, n= ndates), sparse=TRUE, dimnames=list(NULL, rownames(dat.i)))
}
return(time.mx)
}
# Helper function for aetting the indices
# corresponding to exposure. Creates
# an n-vector, with zeros everywhere
# except from indices a to b, in which
# there are equal values that sum to 1.
# This makes exposure assignment easily
# done through matrix multiplication.
createExpInd <- function(a, b, n) {</pre>
x <- numeric(n)</pre>
x[a:b] <- 1/(b-a + 1)
return(x)
}
```

```
# make_exposure_assignment()
#
# Function for making exposure assignment
#
# INPUT:
#
      obs -- matrix of exposure observations
      time.list -- list output from create_timemx()
#
#
# OUTPUT:
      expos -- matrix of average exposures
#
            for each subject (row) and trimester (column)
#
#
make_exposure_assignment <- function(obs, time.list){</pre>
# Get location name list
locnamelist <- sapply(time.list, function(w) colnames(w$T1))</pre>
# Vector of location names, for assigning to rows of output matrix
locnames <- unlist(locnamelist, use.names=FALSE)</pre>
# Vector of location counts per grid, to allow for
# efficient index creation, all to avoid (slow!) name
# matching within the loop
indvec <- cumsum(c(1, sapply(locnamelist, length)))</pre>
expos <- matrix(data=0, nrow=length(locnames), ncol=3)</pre>
rownames(expos) <- locnames</pre>
colnames(expos) <- c("T1", "T2", "T3")</pre>
for (i in 1:length(time.list) ){
      grid.i = names(time.list)[i]
     ## Extract 2-week time-series for grid cell i
      exp.i = obs[, colnames(obs) == grid.i]
     # ## Fill in exposure estimates
     T1 <- as.vector(exp.i %*% time.list[[i]]$T1)</pre>
     T2 <- as.vector(exp.i %*% time.list[[i]]$T2)</pre>
     T3 <- as.vector(exp.i %*% time.list[[i]]$T3)
      inds <- indvec[i]:(indvec[i+1]-1)</pre>
      expos[inds, ] <- cbind(T1, T2, T3)</pre>
}
return(expos)
}
```

library(SpatioTemporal)
library(MASS)

load("GA_PM25_Birthweight.RData")

Objects included:

pm.stmodel -- the STmodel object containing the monitoring data and model specifications # # pm.stdata -- the STdata object containing the monitoring data # grid.stdata -- an STdata object containing covariate information at grid locations. Used for making predictions. # # est.pm.stmodel -- an estimateSTmodel object containing parameter estimates for the exposure prediction model # # pm.aqsgrid.stmodel -- an STmodel object for simulating data at AQS and grid locations simultaneously. # # bwdata -- Synthetic birth weight data. These were generated using random dates, random locations, and random birth weights # and thus differ from the observed data used in the # # manuscript analysis.

Note: See the SpatioTemporal package help files for more
information about structure of the STmodel and STdata objects.


```
fitT1 = lm (bwt~T1.exp, data = bwdata)
lmT1coef <- coef(fitT1)
lmT1sigma <- summary(fitT1)$sigma
fitT2 = lm (bwt~T2.exp, data = bwdata)
lmT2coef <- coef(fitT2)
lmT2sigma <- summary(fitT2)$sigma
fitT3 = lm (bwt~T3.exp, data = bwdata)
lmT3coef <- coef(fitT3)
lmT3sigma <- summary(fitT3)$sigma</pre>
```

```
#
                             #
#
 Non-Parametric Bootstrap
                            #
#
                             #
# Extract spatial covariates
mon.covars <- pm.stdata$covars</pre>
# Spatiotemporal covariates
mon.st.covars <- pm.stdata$SpatioTemporal</pre>
# Monitor observations matrix
mon.obs <- createDataMatrix(pm.stdata)</pre>
# Monitor IDs
mon.list <- colnames(mon.obs)</pre>
# NP Bootstrap, Part 1 #
# Monitor Sampling
                      #
# Code shown here as a loop over B=2 iterations.
# These can also be run in parallel.
B <-2
for (i in 1:B)
seed <- i
set.seed(seed)
mons.i <- sample(mon.list, replace=T)</pre>
mon.obs.i <- mon.obs[, mons.i]</pre>
colnames(mon.obs.i) <- 1:ncol(mon.obs.i) # Give arbitrary monitor IDs</pre>
mon.covars.i <- mon.covars[match(mons.i, mon.covars$ID), ]</pre>
mon.covars.i $x[duplicated(mons.i)] <-</pre>
jitter(mon.covars.i$x[duplicated(mons.i)], amount=0.3) # Jitter by 300m in
each direction
mon.covars.i $y[duplicated(mons.i)] <- jitter(mon.covars.i</pre>
$y[duplicated(mons.i)], amount=0.3)
mon.covars.i $ID <- 1:length(mons.i) # Give arbitrary monitor IDs</pre>
mon.st.covars.i <- mon.st.covars[, mons.i, ]</pre>
dimnames(mon.st.covars.i)[[2]] <- 1:length(mons.i) # Give arbitrary IDs
pm.stdata.i <- createSTdata(obs= mon.obs.i, covars= mon.covars.i,</pre>
SpatioTemporal = mon.st.covars.i)
pm.stdata.i$trend <- pm.stmodel$trend # Add the original trend</pre>
pm.stdata.i$trend.fnc <- pm.stmodel$trend.fnc # Add the original trend</pre>
# Model Setup
LUR <- list (~ forest_2001 + dist_emiss_2002, ~elevation+forest_2001 +</pre>
```

```
local_length + highway_length)
cov.beta <- list(covf = "exp", nugget = F)</pre>
cov.nu <- list (covf = "exp", nugget = T)</pre>
locations <- list (coords =c("x", "y"), long.lat = c("long", "lat"))</pre>
pm.stmodel.i <-createSTmodel(pm.stdata.i, LUR=LUR, ST=c("tmp", "wspd", "rh"),</pre>
cov.beta=cov.beta, cov.nu=cov.nu, locations=locations)
# Estimate model parameters
## This may take a long time! ##
x.init<-cbind (c(3, -4, 3, -5, 3, -3, -5), rep (0, 7))
est.pm.stmodel.i <- estimate (pm.stmodel.i, x.init, type="p")</pre>
# Make predictions
## This may take a long time! ##
arid.pred.temp.i <- predict(object= pm.stmodel.i , x= est.pm.stmodel.i,</pre>
STdata= grid.stdata, pred.var=FALSE, Nmax=2000)
EX.i <- grid.pred.temp.i$EX</pre>
# Save the results, if desired
stdatafilename <- paste0("nonparametric_bootstrap_stdata_seed", seed,</pre>
".RData")
save(mons.i, EX.i, est.pm.stmodel.i, file=stdatafilename)
}
# NP Bootstrap, Part 2 #
#
   Health Analysis
                        #
obsdates <- seq(as.Date('2001/1/1'), as.Date('2006/12/11'), by="14 days")
# Create list of time-space linkage information, to facilitate
# simpler computation of trimester exposures
tm <- create_timemx(gridIDs= bwdata$grid, dates= bwdata, obsdates= obsdates)</pre>
# Matrix for estimates
coefMX <- matrix(NA, nrow=3, ncol=B, dimnames=list(c("T1", "T2", "T3"), 1:B))</pre>
# Loop over simulated exposures
for (i in 1:B)
# Load the ST data for this bootstrap run
stdata.boot.filename <- paste0("nonparametric_bootstrap_stdata_seed", i,</pre>
".RData")
load(stdata.boot.filename, verbose=TRUE)
obsPred.i <- exp(EX.i)</pre>
expPred <- make_exposure_assignment(obs= obsPred.i, time.list=tm)</pre>
bwdata.i <- bwdata</pre>
```

```
bwdata.i$T1.exp <- expPred[match(rownames(bwdata), rownames(expPred)), "T1"]</pre>
bwdata.i$T2.exp <- expPred[match(rownames(bwdata), rownames(expPred)), "T2"]</pre>
bwdata.i$T3.exp <- expPred[match(rownames(bwdata), rownames(expPred)), "T3"]</pre>
subj.i <- sample(nrow(bwdata.i), replace=TRUE)</pre>
bwdata.i <- bwdata.i[subj.i, ]</pre>
# Fit Models
fitT1.i = lm ( bwt~T1.exp, data = bwdata.i )
coefs <- c(coef(fitT1.i)[2])</pre>
fitT2.i = lm ( bwt~T2.exp, data = bwdata.i )
coefs <- c(coefs, coef(fitT2.i)[2])</pre>
fitT3.i = lm ( bwt~T3.exp, data = bwdata.i )
coefs <- c(coefs, coef(fitT3.i)[2])</pre>
coefMX[, i] <- coefs</pre>
}
# Bootstrap corrected estimate for Trimester 1 is:
2* lmT1coef["T1.exp"] - mean(coefMX["T1",])
#
                            #
#
    Parameter Bootstrap
                            #
#
                            #
# Parameter Boot., Part 1 #
# Exposure Simulation
# Code shown here as a loop over B=2 iterations.
# These can also be run in parallel.
B <-2
for (i in 1:B){
seed <- i
set.seed(seed)
# Simulate the data
pm.sim <- simulate(pm.aqsqrid.stmodel, nsim=1, x=coef(est.pm.stmodel)$par,</pre>
nugget.unobs=exp(coef(est.pm.stmodel)$par[length(coef(est.pm.stmodel)$par)]))
# Put into space-time matrix form
obs <- exp(createDataMatrix(obs=pm.sim$obs[[1]]$obs,</pre>
date=pm.sim$obs[[1]]$date, ID=pm.sim$obs[[1]]$ID))
```

```
# Create new STmodel object, with new 'monitor' data
new.pm.stmodel <- pm.stmodel</pre>
new.pm.stmodel$obs <- pm.sim$obs[[1]][pm.sim$obs[[1]]$ID %in%</pre>
pm.stmodel$locations$ID,]
# Sample new exposure parameters
#
Sigma <- solve(-est.pm.stmodel$res.best$hessian.all)</pre>
parest <- mvrnorm(n=1, mu=est.pm.stmodel$res.best$par.all$par, Sigma=Sigma)</pre>
# Make predictions
# Note this may take a long time!
grid.pred.temp <- predict(object= new.pm.stmodel , x= parest, STdata=</pre>
grid.stdata, pred.var=FALSE, Nmax=2000)
EX <- grid.pred.temp$EX</pre>
rm(grid.pred.temp)
# Save the results, if desired
stdatafilename <- paste0("parameter_bootstrap_stdata_seed", seed, ".RData")</pre>
save(obs, EX, parest, file=stdatafilename)
}
# Parameter Boot., Part 2 #
# Health Analysis
# Create list of time-space linkage information, to facilitate
# simpler computation of trimester exposures
obsdates <- seq(as.Date('2001/1/1'), as.Date('2006/12/11'), by="14 days")
tm <- create_timemx(gridIDs= bwdata$grid, dates= bwdata, obsdates= obsdates)</pre>
# Matrix for estimates
coefMX <- matrix(NA, nrow=3, ncol=B, dimnames=list(c("T1", "T2", "T3"), 1:B))</pre>
# Loop over simulated exposures
for (i in 1:B){
set.seed(1e5 + i)
# Load the simulated exposure observations and predictions
stfilename <- paste0("parameter_bootstrap_stdata_seed", i, ".RData")</pre>
load(stfilename, verbose=TRUE)
# Simulate new Health Data, using bootstrapped
# exposure data at subject locations
# Make Exposure Assignments
```

```
exp <- make_exposure_assignment(obs=obs, time.list=tm)</pre>
lmMMT1.i <- cbind(1, T1.exp=exp[match(rownames(bwdata),rownames(exp)), "T1"])</pre>
lmMMT2.i <- cbind(1, T2.exp=exp[match(rownames(bwdata),rownames(exp)), "T2"])</pre>
lmMMT3.i <- cbind(1, T3.exp=exp[match(rownames(bwdata),rownames(exp)), "T3"])</pre>
# Simulate the health data
T1bwt_mean <- lmMMT1.i %*% lmT1coef</pre>
T2bwt_mean <- lmMMT2.i %*% lmT2coef
T3bwt_mean <- lmMMT3.i %*% lmT3coef
eps <- matrix(rnorm(n=3*nrow(bwdata)), nrow=nrow(bwdata), ncol=3)</pre>
T1bwt <- T1bwt_mean + lmT1sigma*eps[, 1]</pre>
T2bwt <- T2bwt_mean + lmT2sigma*eps[, 2]</pre>
T3bwt <- T3bwt_mean + lmT3sigma*eps[, 3]
# Compute predicted exposures, using
# predictions developed from simulated
# monitor data.
# Make Exposure Assignments
obsPred <- exp(EX)
expPred <- make_exposure_assignment(obs=obsPred, time.list=tm)</pre>
# Replace model matrices with predictions
lmMMT1.i <- cbind(1, T1.exp= expPred[match(rownames(bwdata),</pre>
rownames(expPred)), "T1"])
lmMMT2.i <- cbind(1, T2.exp= expPred[match(rownames(bwdata),</pre>
rownames(expPred)), "T2"])
lmMMT3.i <- cbind(1, T3.exp= expPred[match(rownames(bwdata),</pre>
rownames(expPred)), "T3"])
fitT1.i <- solve(crossprod(lmMMT1.i), crossprod(lmMMT1.i, T1bwt))</pre>
coefs <- c(T1=fitT1.i[2])</pre>
rm(fitT1.i, lmMMT1.i); ac()
fitT2.i <- solve(crossprod(lmMMT2.i), crossprod(lmMMT2.i, T2bwt))</pre>
coefs <- c(coefs, T2=fitT2.i[2])</pre>
rm(fitT2.i, lmMMT2.i); gc()
fitT3.i <- solve(crossprod(lmMMT3.i), crossprod(lmMMT3.i, T3bwt))</pre>
coefs <- c(coefs, T3=fitT3.i[2])</pre>
rm(fitT3.i, lmMMT3.i); gc()
coefMX[, i] <- coefs</pre>
}
# Bootstrap corrected estimate for Trimester 1 is:
2* lmT1coef["T1.exp"] - mean(coefMX["T1",])
```