eAppendix for “Causal mediation analysis of survival outcome with multiple mediators” by YT Huang
and HI Yang

Al. Discussion of Assumptions

The six no unmeasured confounding assumptions would hold if Figure 1 is the true causal DAG.
Specifically, the first four assumptions ensure no confounding for causal relationships between S and
M, between (S, M;) and M,, between S and Y, and between (M, M,) and Y (after controlling for X);
the (5) assumes that there is no alternative path from the baseline HCV viral load S to the baseline HBV
viral load M; and liver incidence Y through an unknown common mediator, and no path from S to the
follow up HBV viral load M, and Y through a common mediator other than the baseline HBV viral load
M;; the (6) assumes that there is no alternative path from the baseline HCV viral load S to the baseline
HBV viral load M, and the follow up HBV viral load M, through an unknown common mediator.
Additionally, we assume standard assumptions of consistency®: counterfactual outcome A; under the
intervention value b equal to the observed outcome A when B = b; and positivity: densities of the
follow-up HBV DNA M, conditional on the baseline HBV DNA M;, the baseline HCV RNA S and covariates
X, [M,|S, My, X], M; conditional on S and X, [M;|S, X] and S conditional on X, [S|X] are greater than 0
with probability 1 for each value of their respective support. Despite the correlation between baseline
and follow up HBV DNA, it has been shown that the changes may follow a wide variety of patterns?, and
thus the positivity for the density of [M,|S, M;, X] is likely to be satisfied.

We discuss whether the above assumptions are likely to hold for the hepatitis study. We have
collected the adjusted for the same set of confounders as existing literatures®* to ensure the causal
interpretation for the HBV-liver cancer and HCV-liver cancer relationships (assumptions (1) and (2)).
Since the literature has shown that suppression of HBV by HCV occurs within a cell, an organism or an
individual®?9, it is plausible to assume that there is no unmeasured confounding on the HCV-HBV
relationship by phenotypic covariates (assumptions (3) and (4)) and that it is unlikely for downstream
phenotypic factors affected by HCV to exert undue confounding for the HBV-liver cancer relationship
(assumption (5)). It is also plausible to assume that HCV can affect the follow-up HBV viral load only
through its baseline viral load (assumption (6)). Taken together, we argue that the above assumptions
should be satisfied if confounders for the associations of HBV and HCV with liver cancer are fully
adjusted. Note that the effect Ag_, ), y consists of two paths: one from S to M, and M; and thento Y
(As_m,-m,-y) and one from S to M; and then directly to Y (Ag_,p, y). To decompose Ag_,y, y to
As M, >m,—y and Ag_,y, Ly requires stronger assumptions, which is usually not plausible in

application!¥12,

A2. Derivation for the Expression of Counterfactual Outcome



By the six identifying assumptions in main text, one can show that the cumulative distribution function
of the counterfactual survival time can be expressed as a double integral with respect to the
distributions of the two mediators M; and M,:
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Note Fr(t| -), Fy,m, (t| ) and Fy, (t] -) are cumulative distribution functions of normal variables. With
the above result, the average of the transformed counterfactual survival time can also be expressed as a
double integral with respect to M, and M;:
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A3. Formulas for Path-specific Effects Using Semiparametric Probit Model

We propose the following three models for the two mediators M; and M,, and the transformed survival
time H(T):

My; = 8%X; + 85S; + €p1, where €y1; ~ N(0,0%,) (A1)
My; = akX; + agS; + ayMy; + €2, Where €45; ~ N(0,055) (A2)
H(T) = —(B%X; + BsS; + BuiMy; + BuzMz) + €r;, where er; ~ N(0, 1). (A3)



With the six identifiability assumptions for path-specific effects in the main text, we are able to express
the counterfactual outcome as a double integral of the mean of the transformed survival time with
respect to the distributions of the two mediators, M; and M,, as shown in Section Al:
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= —[{BXX + Bu16%X + Bu2ax X + Br2ay 8% X} + BsSq + Puzssy + (Bur + Buzam)8ssc]-

(A4)

The last expression relies on the independence of S with the errors €1, €32 and e, which would hold
under the assumption of no unmeasured confounding.

One can also let the counterfactual outcome as the cumulative distribution function (cdf) of the survival

time F (t|X). Again, based on the six identifiability assumptions, we already show

T(sa,Ml(sc),MZ (sb,Ml(sC)))
in Section A2 that the counterfactual outcome can be expressed as a double integral with respect to M;
and M,:
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where 0*71 = 1+ BZ,0%, + (Bur + Buzm)?051 and A(t) is baseline cumulative hazard. Due to the
conjugacy property of normal distributions, the second equality shows that the double integral can be
further simplified to a function of standard normal cdf that involves the regression parameters for My,
M, and H(T) in (A1)-(A3).

The above expression for E [H (T; Sq, M (s.), M, (sb, M, (sc))) |X] and FT(Sa.M1(sc).Mz(Sb.M1(sc))) (t]1X) is
based on the models (A2) and (A3) where no S-by-M; or S-by-M,, interaction is assumed. One can easily
incorporate these interactions by replacing a,;, Sy1 and Sz With ay + aspSp, B + Bsy1Sq and

Buz + Bsm2Sa4, respectively in (A2) and (A3) and thus in (A4) and (A5) because the same development
would follow.

With the expressions in (A4) and (A5) and the definition of path-specific effects using counterfactual
notations in (1) of the main text, it can be shown that
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The point estimates and their variances can be obtained using non-parametric maximum likelihood
estimator and functional delta method®.

A4. Formulas for Path-specific Effects Using Aalen Additive Hazard Model

We propose the same models for the two mediators M; and M, as (A1) and (A2), and a survival model
that hazard is determined linearly by the predictors:

i = Ao (8) + A% X} + AsS; + Ayr My; + Ay My
= Asi + Wy,

(A6)

where Ag; = 2o(t) + ALX? + AgS; and Wy; = Ay My; + Ay Mo, My, and My are both functions of S and
they can take different values of §, .e.g., sp and s.. While M, and M, are determined by s;, and s,
respectively, it can be shown that W); is a function of s;, and s, following a normal distribution Gy, :

Wi(sp,sc) ~ N(tw i Uﬁ/,l)' where py i = Ay (8% X; + 8ssc) + Mo {ak X; + ass, + ay (65X, +
8sSc)} and oy, = A1 041 + Aip20i12 + A2 @01 + 2Am1 Am2 @M Ot -

With the six identifiability assumptions and the results derived in Section A2, the counterfactual
outcome defined as hazard can be expressed as follows:
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The second last equality utilizes the property of moment generating function of normal random variable
since W is normally distributed. Similar to the probit model, (A2) and (A6) can be extended to include S-
by-M; and S-by-M, cross-product interaction terms by replacing ay, A1 and Ay, with ay + agy Sy,
Am1 + Asmi1Sq and Ay + Agp2Sq, respectively, and so can (A7). By the definition of path-specific effects
based on counterfactual notations in (1) of the main text, it follows that

agaten = (T (51, My (50), My (50, M1 (50)) ) 1X) = (T (50, My (50), Mz (50, M1 (50)) ) IX)
= As(s1 — So)

ngater, = 2 (T (1, My (50), Mz (51, My (50)) ) 1X) = A (T (51, My (50), M (0, My (50)) ) 1X)
= Am2as(s1 — So)

ngater = A(T (51, My (51), My (51, My (51)) ) 1X) = 2 (T (51, My (50), My (51, M (50)) ) 1X)
= (Am1 + Am2an)8s(s1 — so).

The estimation of §s and (as, @),) can be carried out with ordinary least square estimator with
respective variance/covariance, a§ and X, and the estimation of (Ag, Ap1, Ay2) can also be carried out
in R library timereg with covariance estimate X,. The variability of the path-specific effects can be
approximated by a resampling based method**°. With the point estimates 8 =

&8 Ao ~ 5 % ~ T . .
(65, as, Ay, As, AMl,AMZ) for @ = (85, as, apy, A, Ayr1, Ay2)T and their covariance

6 0 0
So=(0 Z, 0]
0 0 I,

one can sample repeatedly from the multivariate normal distribution with mean 0 and covariance fg to
obtain a set of realization values {5(1), 0, ., 5(3)} where B is the number of resampling. Because
AAalen — (pdaten Aéﬁﬁ;’ﬁy, A‘S“ﬁl,\f,?y) is a function of @, the point estimate 8 can be used to calculate
the point estimate of AA®!en; Adalen = pdalen (@) and by plugging in, {8(,0?), ..., 0} can be used
to calculate the realization of the distribution for A4@en; {p4alen (5(1)), AAalen (5(2)), o, AAGTE (GBN)]
which can then be used for estimating confidence intervals, e.g., obtain 2.5 and 97.5 percentiles for 95%
confidence interval. Covariance of the distribution for A44€" | Cov(A4*¢™)can also be estimated from
{a4alen (1)), pdalen(§2)), | pdalenG(BN)} and thus hypothesis tests can be conducted as

ZAalenT C/o\v (’A‘Aalen) _1’A‘Aalen



A5. Formulas for Path-specific Effects Using Cox Proportional Hazard Model

We propose the same models for the two mediators M; and M, as (A1) and (A2), and a Cox proportional
hazard model for the survival outcome:

logA; = log Ao(t) + V% Xi + ¥sSi + YmiMai + Yz My
=log Ao (t) + YiX; +vsSi + Wy,

(A8)

where W,,; = yy1My; + YmaMa;- Similar to Wy, it can be shown that W,,; is a function of s;, and s,

following a normal distribution Gy, : W,i(sp,sc) ~ N (w1, a‘f,,y), where puy, ; = Vi (6%X; + 8gs.) +

YAk X; + assy + ay (85X + 8ssc)} and oy, = Yig10ipn + Vig2Oig2 + Vi @i 0ii1 + 2Ym1Ym2 @m0

With the six identifiability assumptions and the results derived in Section A2, the counterfactual
outcome defined as log hazard can be expressed as follows:

log (T (sa M1 (s0), Mz (s, M1 (50)) ) 5 t)

Ir T(sa,Ml(sc),Mz(sb,Ml(sc)))(t)

= log
1- f FT(Sa,Ml(SC),Mz(Sb,M1(5c))) (t)

ffT(tlsa)dGWy(Sb:Sc)
=1lo
51— fFT(tlsa)dGWy(sb:sc)
[ Altlsa)e 50 Gy, (sp,5.)
fe_l(tlsa)d(;wy(sb»sc)

< 10g [ A(elsa)dGur, (50,50

= log

The last equation is an approximation by assuming the outcome is rare and thus e~ Mtlsa) ~ 1.1t follows
that

10g A (T (5a, My (), Mz (55, My (s.)) ) 5 t) ~ log j A(t]5q)dGuy, (5p,5c)

1
= logdo(6) + VX" + ¥sSa + bw, + 50,

1
= {103 Ao(6) + VRX" + Vi1 83X + Va2 @k X + Y2ty 85X + EO-VIZ/Y} + VsSa + Ym2sSp
+ (Ym1 + Ymz2tm)8sse.

(A9)

Again, (A2), (A8) and (A9) can be extended to include S-by-M; and S-by-M, cross-product interaction
terms by replacing ay;, Yy1 and vy with ay + asySp, Y1 + Ysm1Sa and Yyz + Ysuz2Sa, respectively.



By the definition of path-specific effects based on counterfactual notations in (1) in the main text, we
show the path-specific effects:

Agg{/ = log1 (T (51;M1(50)' M, (So;Ml(So))) |X) —log4 (T (So; M;(s0), M, (50:M1(50))) |X)

~ ys(s1— So)

Aggﬁwz—w =log A (T (51;M1(50)' M, (51;M1(50))) |X) —log4 (T (51;M1(50);M2 (50: M1(50))) |X)
~ Ym2s(S1 — So)

Aggﬁwly =loga (T (51:M1(51)' M, (51;M1(51))) |X) —log4 (T (51;M1(50);M2 (51;M1(50))) |X)
~ (Ym1 + Ym2aum)8s(s1 — So)-

Again the approximation works well under rare outcome assumption. Estimation and statistical
inference (confidence interval calculation and hypothesis testing) are similar to those in Aalen additive
hazard model.

A6. Design of Hepatitis Study

The motivating hepatitis study is from a community-based prospective cohort study that was designed
to investigate risk factors of liver cancer. The original cohort study recruited 23,820 residents from seven
townships of Taiwan from 1991 to 1992, described in previous literature*!®'’, Here we focused on 2,888
subjects with available baseline and first follow-up HBV DNA viral load (REVEAL-HBV study). Incident
liver cancer (hepatocellular carcinoma) was ascertained by computerized data linkage of the national
cancer registry and national death certification profiles in Taiwan from study entry to Dec 31, 2008, and
was further verified by medical record. At cohort enrollment, demographic characteristics and other
covariates were collected using a structured questionnaire. The serum samples collected at cohort entry
were tested for alanine transaminase (ALT) by a serum chemistry autoanalyzer (model 736, Hitachi,
Tokyo, Japan), HBV DNA (copies/mL) by the Cobas Amplicor HBV monitor test kit (Roche Diagnostics,
Indianapolis, IN) and HCV RNA (IU/mL) by the Cobas TagMan HCV Test v2.0 (Roche Diagnostics). HBV
DNA level in serums collected during follow-up examinations was also measured using the Cobas
TagMan HBV Test v2.0 (Roche Diagnostics). 45.2% of the follow-up measurement was within year 1,
27.4% was during year 2-5, 11.4% was during year 6-10, and 16.0% was after 11 years'®. For the survival
analyses, we used the time of measuring the follow-up HBV DNA as the entry time and treated HCV RNA,
HBV DNA and covariates measured at study baseline as pre-entry variables. Viral load of HBV and HCV
was natural log transformed prior to analyses. Covariates including age with every 10-year increment
(30-39, 40-49, 50-59, >60 years), gender, ALT levels with three categories (<15, 15-44 and >45 1U/L),
alcohol consumption (yes/no) and cigarette smoking (yes/no) were adjusted in regression models.
Potential nonlinear effects were adjusted by adjusting categorized age and ALT with dummy variables,
which was consistent with the previous REVEAL studies>!® and made the results comparable.



A7. R Codes for Mediation Analyses Using Cox Proportional Hazard Model and Aalen Additive Hazard
Model

R code for the main analyses in Section 4: Data Applications (analysis_aalen_cox_hbvhcvhcc.R)

dat<-read.table(''dat_hcvhbvhcc_survmed2.txt", h=T)
library(timereg)

library(survival)

source(""'mediation_aalen_cox ci_pval.R™)
gg<-quantile(dat$logc[dat$logc>0])
dd<-qq["'50%""1-qq[''25%"]

dat$logc<-dat$logce/dd

method="Aalen"
## 1-mediator

ols_m<-gIm(logb2~agegp2+agegp3+agegp4+GENDER+altl+alt2+smokel+alcoholl+logc,

data=dat)

aalen_m2<-aalen(Surv(hcc.time/365.25,

hcc.case)~const(agegp2)+const(agegp3)+const(agegp4)+
const(GENDER)+const(altl)+const(alt2)+const(smokel)+const(alcoholl)+
const(logc)+const(logh2), data=dat, robust=T)

cox_m2<-coxph(Surv(hcc.time/365.25, hcc.case)~agegp2+agegp3+agegp4+GENDER+
altl+alt2+smokel+alcoholl+logc+logb2, data=dat)

if (method=="Aalen'){
lambdas<-aalen_m2$gamma
lambdas.var<-aalen_m2$robvar.gamma

} else if(method=="Cox""){
lambdas<-cox_m2$coef
lambdas.var<-cox_m2%var

}
mediation_cil(lambdas[9], lambdas[10], lambdas.var[9,9], lambdas.var[9,10],
lambdas.var[10,10],

ols_m$coef[10], summary(ols_m)$cov.scaled[10,10], G=10"6, method=method)

## 2-mediator

ols_ml<-gIm(logbhl~agegp2+agegp3+agegp4+GENDER+altl+alt2+smokel+alcoholl+logc,

data=dat)

ols_m2<-

gIm(logb2~agegp2+agegp3+agegp4+GENDER+altl+alt2+smokel+alcoholl+logc+logbl,

data=dat)

aalen_m3<-aalen(Surv(hcc.time/365.25,

hcc.case)~const(agegp2)+const(agegp3)+const(agegp4)+
const(GENDER)+const(altl)+const(alt2)+const(smokel)+const(alcoholl)+
const(logc)+const(logbl)+const(logbh?2), data=dat, robust=T)

cox_m3<-coxph(Surv(hcc.time/365.25, hcc.case)~agegp2+agegp3+agegp4+GENDER+
altl+alt2+smokel+alcoholl+logc+logbl+logbh2, data=dat)

if (method=="Aalen'){

lambdas<-aalen_m3$gamma

Sigma. lambda<-aalen_m3$robvar.gamma[9:11, 9:11]
} else if (method=="Cox"){



lambdas<-cox_m3$coef
Sigma. lambda<-cox_m3%var[9:11, 9:11]

alphas<-ols_m2$coef
Sigma.alpha<-summary(ols_m2)$cov.scaled[10:11, 10:11]
deltas<-ols_ml$coef
Sigma.delta<-summary(ols_ml)$cov.scaled[10, 10]

mediation_ci2(lambdas[9], lambdas[10], lambdas[11], Sigma.lambda,
alphas[10], alphas[11], Sigma.alpha, deltas[10], Sigma.delta, G=10"6,
method=method)

R code for resampling based method to estimate confidence interval and calculate p-value (see Section
A4 in eAppendix) (mediation_aalen_cox_ci_pval.R)

## method=="Aalen"™ -> output Hazard Difference
## method==""Cox"" -> output Hazard Ratio

mediation_cil <- function(lambda.s, lambda.g, covarll, covarl2,
covar22, alpha.s, var_alpha, G=10"4, method){
require(mvtnorm)
Omega <- matrix(c(covarll,covarl2,covarl2,covar22),nrow=2)
IE <- rep(0,G); DE <- rep(0,G); TE <- rep(0,G); Q <- rep(0,6)

set.seed(137)

lambda <- rmvnorm(G, mean = c(lambda.s, lambda.g), sigma = Omega)
alpha <- rnorm(G, mean=alpha.s, sd=sqgrt(var_alpha))

DE <- lambda[,1]

IE <- lambda[,2] * alpha

TE <- IE + DE

DE.obs <- lambda.s

IE.obs <- lambda.g * alpha.s

TE.obs <- DE.obs+IE.obs

pval .DE<-2*min(mean((DE-mean(DE))>DE.obs), mean((DE-mean(DE))<DE.obs))
pval . IE<-2*min(mean((1E-mean(1E))>IE.obs), mean((l1E-mean(lE))<IE.obs))
pval .TE<-2*min(mean((TE-mean(TE))>TE.obs), mean((TE-mean(TE))<TE.obs))

if (method=="Cox"") {DE=exp(DE); I1E=exp(IE); TE=exp(TE)}
print("'DE:"")

print(ifelse(method=="Aalen", DE.obs, exp(DE.obs)))
print(quantile(DE, c(0.025, 0.975)))
print(paste('pval_DE=", pval .DE))

print(""1E:")

print(ifelse(method=="Aalen", IE.obs, exp(l1E.obs)))
print(quantile(lE, c¢(0.025, 0.975)))
print(paste('pval_IE=", pval.IE))

print(""TE:"")

print(ifelse(method=="Aalen', TE.obs, exp(TE.obs)))
print(quantile(TE, c(0.025, 0.975)))
print(paste(pval_TE=", pval.TE))



mediation_ci2 <- function(lambda.s, lambda.m, lambda.g, Sigma.lambda,

alpha.s, alpha.m, Sigma.alpha, delta.s, Sigma.delta,

G=10", method){

require(mvtnorm)

SY <- rep(0,G); SGY <- rep(0,G); SMY <- rep(0,G); TE <- rep(0,0G)

set.seed(137)

lambda <- rmvnorm(G, mean = c(lambda.s, lambda.m, lambda.g),
sigma = Sigma.lambda)

alpha <- rmvnorm(G, mean = c(alpha.s, alpha.m),
sigma = Sigma.alpha)

delta <- rnorm(G, mean=delta.s, sd=sqgrt(Sigma.delta))

SY <- lambdal,1]

SGY <- lambda[,3] * alpha[,1]

SMY <- (lambda[,2] + lambda[,3]*alpha[,2])*delta

TE <- SY+SGY+SMY

SY.obs <- lambda.s

SGY.obs <- lambda.g * alpha.s

SMY.obs <- (lambda.m + lambda.g*alpha.m)*delta.s

TE.obs <- SY.obs+SGY.obs+SMY.obs

pval .SY<-2*min(mean((SY-mean(SY))>SY.obs), mean((SY-mean(SY))<SY.obs))

pval .SGY<-2*min(mean((SGY-mean(SGY))>SGY.obs), mean((SGY-
mean(SGY))<SGY.obs))

pval .SMY<-2*min(mean((SMY-mean(SMY))>SMY .obs), mean((SMY-
mean(SMY))<SMY .obs))

pval .TE<-2*min(mean((TE-mean(TE))>TE.obs), mean((TE-mean(TE))<TE.obs))

it (method=="Cox") {SY=exp(SY); SGY=exp(SGY); SMY=exp(SMY); TE=exp(TE)}
print(*'sy:")

print(ifelse(method==""Aalen', SY.obs, exp(SY.obs)))
print(quantile(SY, c(0.025, 0.975)))
print(paste('pval_SY=", pval.SY))

print(*'sGY:")

print(ifelse(method=="Aalen', SGY.obs, exp(SGY.obs)))
print(quantile(SGY, c(0.025, 0.975)))
print(paste(*'pval_SGY=", pval.SGY))

print(*'SMY:"")

print(ifelse(method=="Aalen', SMY.obs, exp(SMY.obs)))
print(quantile(SMY, c(0.025, 0.975)))
print(paste(*'pval_SMY=", pval.SMY))

print(*"TE:"")

print(ifelse(method=="Aalen", TE.obs, exp(TE.obs)))
print(quantile(TE, c(0.025, 0.975)))
print(paste(“pval_TE=", pval.TE))
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