
eAppendix "Re. Collider bias is only a partial

explanation for the obesity paradox"

1 The causal model considered by Sperrin et al.

We refer to2,3,4 for a thorough introduction of causal models and counterfactuals. Here,

the fundamental concepts are illustrated in the particular case of the model consid-

ered in1. Figure 1 presents the Directed Acyclic Graph (DAG) attached to this causal

model. In this DAG, only the endogenous variables U,A,M, Y are represented, while

the corresponding exogenous variables, or disturbances, εU , εA, εM and εY are not.

The relationships between the endogenous variables can be fully described by the set of

structural equations corresponding to this DAG. There is one such equation for each en-

dogenous variable involved in the DAG. It involves a fixed (but unknown) autonomous

function, whose inputs are the parents of the variable in the DAG, along with its asso-

ciated exogenous variable. In our example, the set of structural equations is



A = fA(εA)

U = fU (εU )

M = fM (A,U, εM )

Y = fY (A,M,U, εY ),
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Figure 1: The DAG considered in1

A YM

U

where, fA, fU , fM and fY are the unspecified autonomous functions. The exogenous

variables are usually assumed to be mutually independent, in which case the causal

model is said to be Markov; keep in mind that the associated graph is a DAG here2.

The structural equations are further helpful to precisely define the counterfactual

variables, or potential outcomes, which correspond to the variables we would have

been able to observe had we intervened to fix the value(s) of some variable(s). Consider

for instance the counterfactual world ΩA=a that would have followed the intervention

do(A = a)2,5,6. We may mention that such an intervention is not well-defined when

A represents obesity. As nicely put forward in7, this makes causal inference about

obesity a particularly difficult task, because assumptions such as consistency, positivity

and exchangeability are unlikely to hold7. Here we ignore this problem just as Sperrin

et al. did. In other words, we assume the existence of such an intervention and proceed

as usual under structural causal models.

After the intervention do(A = a), we would have been able to observe the variables


U = fU (εU )

MA=a = fM (a, U, εM )

Y A=a = fY (a,MA=a, U, εY ).

From these equations, it is clear that consistency holds: if A = a, then M =

fM (a, U, εM ) = MA=a and Y = fY (a,M,U, εY ) = fY (a,MA=a, U, εY ) = Y A=a.
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For future use, we may recall that counterfactual variables are random variables in

the usual sense, even if they are not fully observed. Indeed, the counterfactual variables

and observed variables are all defined on a common probability space as deterministic

functions of the exogenous variables εA, εM , εU and εY ; see Sections 4 and 5 in5 for

instance. As a result, standard probability calculus applies on counterfactual variables.

For instance, the tower rule, which states that E(Z) = E[E(Z|X)] for "any" couple of

random variables X and Z, can be applied with, say, X = Y A=a and Z = M , leading

to P [Y A=a = 1] =
∑

m P [Y A=a = 1|M = m]P [M = m].

In other respect, the variables that we would have been able to observe in the

counterfactual world Ωa,m that would have followed the double intervention do(A =

a,M = m) can be defined similarly:


U = fU (εU )

Y A=a,M=m = fY (a,m,U, εY ).

From these definitions, we have Y A=a = Y A=a,M=MA=a

. Here Y A=a,M=MA=a

can be thought of as the outcome we would have been able to observe in the coun-

terfactual world that would have followed the intervention A = a and M = MA=a,

that is the counterfactual world where A would have been set to a and M would have

been set to whatever values it can get under the distribution of MA=a; of course this

counterfactual world is exactly ΩA=a.

2 Controlled direct effects

The quantity ∆CE = P [Y A=1 = 1|M = 1] − P [Y A=0 = 1|M = 1] has to be

interpreted with caution. Because Y A=a = Y A=a,M=MA=a

, it comes

P [Y A=a = 1|M = 1] = P [Y A=a,M=MA=a

= 1|M = 1].
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In particular, P [Y A=0 = 1|M = 1] = P [Y A=0,M=MA=0

= 1|M = 1] is the risk

of early death in ΩA=0, for the individuals with diabetes in the actual world. But

M = 1 ;MA=0 = 1: some diabetic patients in the actual world would not have been

diabetic in ΩA=0. As a result, a positive ∆CE , for instance, can be solely due to the

fact that a portion of the individuals with diabetes in the actual world would not have

suffered from diabetes in ΩA=0 and would have lived longer in ΩA=0 than they would

have in ΩA=1. In other words, even if it is conditioned on M = 1, ∆CE is not related

to the direct effect of A on Y . It is the total effect of A among one particular subgroup

of the population defined according to a variable observed in the actual world, just as

the average causal effect on the treated E[Y A=1 − Y A=0|A = 1] is a measure of the

total effect of A in another subgroup of the population.

In the presence of a mediator like M here, alternative causal effects have been

advocated8,9 as measures of the direct effect. In particular, the controlled direct effect

captures the effect of A, while fixing the value of the mediator (e.g., to 1), and is

therefore appealing in the context of the obesity paradox; see Section 5 below for more

details. For simplicity, we set Y a,m = Y A=a,M=m. The three following quantities can

be considered:

∆CDE = P [Y 1,1 = 1]− P [Y 0,1 = 1]

∆CDE|M=1 = P [Y 1,1 = 1|M = 1]− P [Y 0,1 = 1|M = 1]

∆CDE|A=1,M=1 = P [Y 1,1 = 1|A = 1,M = 1]− P [Y 0,1 = 1|A = 1,M = 1].

The first one, ∆CDE , is the controlled direct effect of A on Y , at M = 18,9. It com-

pares the risk of death in counterfactual worlds Ω1,1 and Ω0,1, that would have followed

the double interventions do(A = 1,M = 1) and do(A = 0,M = 1), respectively. All

individuals suffer from diabetes in these two counterfactual worlds, but they are all

obese in Ω1,1, while none of them is obese in Ω0,1. Therefore, ∆CDE captures the di-

rect causal effect of obesity, while controlling for the diabetic status; M = 1 here. The
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other two quantities are conditional versions of ∆CDE . More precisely, ∆CDE|M=1

corresponds to ∆CDE when focusing on individuals who suffer from diabetes in the

actual world, while ∆CDE|M=1,A=1 focuses on individuals who are obese and suffer

from diabetes in the actual world.

Under the structural causal model corresponding to Figure 1, both ∆CDE and

∆CDE|A=1,M=1 can be identified from the distribution of (A,M,U, Y ). Moreover, the

corresponding formulas exhibit similarities with both ∆AS and ∆Sp. Because there is

no unobserved confounder except U between A and Y , we have Y a,m ⊥⊥A|U .9 Simi-

larly, because there is no unobserved confounder except U between M and Y , we have

and Y a,m ⊥⊥M |(A,U).9 Therefore,

P [Y a,m = 1] =
∑
u

P [Y a,m = 1|U = u]P [U = u] by the tower rule

=
∑
u

P [Y a,m = 1|A = a, U = u]P [U = u] because Y a,m ⊥⊥A|U

=
∑
u

P [Y a,m = 1|A = a,M = m,U = u]P [U = u] because Y a,m ⊥⊥M |(A,U)

=
∑
u

P [Y = 1|A = a,M = m,U = u]P [U = u] by consistency.

Therefore, ∆CDE can be written

∆CDE =
∑
u

{P [Y = 1|A = 1,M = 1, U = u]

− P [Y = 1|A = 0,M = 1, U = u]}P (U = u). (1)

Now, turning our attention to ∆CDE|A=1,M=1, we have, for any (a1, a2,m1,m2) ∈

5



{0, 1}4,

P [Y a1,m1 = 1|A = a2,M = m2]

=
∑
u

P [Y a1,m1 = 1|A = a2,M = m2, U = u]P (U = u|A = a2,M = m2) by the tower rule

=
∑
u

P [Y a1,m1 = 1|A = a2, U = u]P (U = u|A = a2,M = m2) because Y a,m ⊥⊥M |(A,U)

=
∑
u

P [Y a1,m1 = 1|A = a1, U = u]P (U = u|A = a2,M = m2) because Y a,m ⊥⊥A|U

=
∑
u

P [Y a1,m1 = 1|A = a1,M = m1, U = u]P (U = u|A = a2,M = m2) because Y a,m ⊥⊥M |(A,U)

=
∑
u

P [Y = 1|A = a1,M = m1, U = u]P (U = u|A = a2,M = m2) by consistency.

Therefore,

∆CDE|A=1,M=1 =
∑
u

{P [Y = 1|A = 1,M = 1, U = u]

− P [Y = 1|A = 0,M = 1, U = u]}P (U = u|A = 1,M = 1). (2)

Turning our attention back on ∆AS , observe that it writes

∑
u

{P [Y = 1|A = 1,M = 1, U = u]P (U = u|A = 1,M = 1)

−P [Y = 1|A = 0,M = 1, U = u]P (U = u|A = 0,M = 1)}.

Sperrin et al. claim that the difference between ∆AS and ∆CE is possible because

P (U = u|A = a,M = m) generally differs from P (U = u|M = m). As we

showed in our Letter, their claim is only valid for the difference between ∆AS and

∆Sp, and the difference between ∆AS and ∆CE is mostly due to the discrepancy

between P (Y = 1|A = a,M = 1) and P [Y A=a|M = 1], which is precisely caused

by collider bias. From the above formula, Sperrin et al.’s discussion is actually valid
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for the difference between ∆AS , ∆Sp, ∆CDE and ∆CDE|A=1,M=1. Indeed, the only

differences between these four quantities lie in the version of the U -distribution used

to marginalize the quantities P [Y = 1|A = a,M = 1, U = u] over u, for a ∈ {0, 1}.

It is P (U = u|A = a,M = 1) for ∆AS , P (U = u|M = 1) for ∆Sp, P (U = u) for

∆CDE and P (U = u|A = 1,M = 1) for ∆CDE|A=1,M=1.

Despite these similarities, these four quantities are generally different sinceM typ-

ically depends on both A and U under the model of Figure 1. In particular, the bias

between ∆AS and ∆CDE , or between ∆AS and ∆CDE|A=1,M=1, is due to confound-

ing. Even if the numerical results presented in our Letter show that this bias is typically

much lower than that between ∆AS and ∆CE , we may mention that it is still possible

to have ∆AS < 0 while ∆CDE > 0 and ∆CDE|A=1,M=1 > 0; see Section 3.3 below.

Way may further mention that quantities ∆CDE|M=1 and ∆Sp are generally dif-

ferent. These two quantities would be equal if Y a,m ⊥⊥A|(M,U), but this conditional

independence does usually not hold under the model of Figure 1. More generally, we

were not able to relate ∆Sp to any meaningful causal effect under this model.

A final remark is that ∆CDE|M=1 can not be identified from the distribution of

(A,M,U, Y ) under the model of Figure 1 without further assumptions. It may be

identifiable after specifying the generating functions and the disturbances distributions

following the same arguments as those used in the case of ∆CE ; see Section 3.2 below.

3 Numerical illustration

3.1 Data generation mechanism

Here we describe the generative model that we used to illustrate the differences be-

tween the various quantities considered in our Letter and in the present Web Appendix.

We consider a generative model that can be seen as a special case of, and is then con-

sistent with, the one described by1. More precisely, our data generation mechanism
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is obtained by specifying the structural functions fY , fM , fA and fU as well as the

distributions of the disturbances εY , εM , εA and εU , which together lead to the same

relationships between Y , A, M and U as those considered in Sperrin et al. Keep in

mind that the causal model has to be specified in order to derive an analytic formula

for ∆CE (see Section 3.2 below).

Denote the indicator function by 1I[·]. Define four independent random vari-

ables εA, εU , εM and εY distributed according to a uniform distribution over the

interval [0, 1]. For any given (pA, pU ) ∈ (0, 1)2, define A = 1I[εA ≤ pA]

and U = 1I[εU ≤ pU ] so that A ∼ B(pA) and U ∼ B(pU ) are two inde-

pendent Bernoulli variables. As in Sperrin et al.’s work, we consider the special

case where pA = pU = 0.5. Now, introduce the sigmoid function expit(x) =

(1 + exp(−x))−1, and set, for any (a, u,m) ∈ {0, 1}3 and for some real parameters

α0, αA, αU , αAU , β0, βA, βU , βM , βAM , βAU , βUM and βAUM ,

pM (a, u) = expit(α0 + αAa+ αUu+ αAUau)

pY (a,m, u) = expit(β0 + βAa+ βUu+ βMm+ βAUau+

βAMam+ βUMum+ βAUMaum).

Finally, variables M and Y are defined as

M = fM (A,U, εM ) = 1I[εM ≤ pM (A,U)],

Y = fY (A,M,U, εY ) = 1I[εY ≤ pY (A,M,U)].

Sperrin et al. only considered situations where interaction terms in the Y -model

were absent: βAM = βAU = βUM = βAUM = 0. We will show below that con-

clusions can be quite different when considering non-zero values for these parameters,

especially when comparing ∆AS and ∆CDE . Moreover, following Sperrin et al., we
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set

α0 = −1

2

(
αA + αU +

1

2
αAU

)
β0 = −1

2

(
βA + βM + βU +

1

2
(βAM + βAU + βUM ) +

1

4
βAUM

)
.

3.2 Analytic formula of ∆CE under our generative model

Recall that pA = pU = 1/2. First,

P (Y A=a = 1|M = 1)

=
∑

iA∈{0,1}
iU∈{0,1}

P (Y A=a = 1|M = 1, A = iA, U = iU )P (A = iA, U = iU |M = 1)

=
∑

iA∈{0,1}
iU∈{0,1}

P (Y A=a = 1,M = 1|A = iA, U = iU )
P (A = iA, U = iU |M = 1)

P (M = 1|A = iA, U = iU )

=
∑

iA∈{0,1}
iU∈{0,1}

P (Y A=a = 1,M = 1|A = iA, U = iU )
P (A = iA, U = iU )

P (M = 1)

=
∑

iA∈{0,1}
iU∈{0,1}

P (Y A=a = 1,M = 1|A = iA, U = iU )
1

4P (M = 1)

(∗)
=

∑
iA∈{0,1}
iU∈{0,1}

∫ pM (iA,iU )

0

P (Y A=a = 1|εM = ε,A = iA, U = iU )

4P (M = 1)
dε

=
∑

iA∈{0,1}
iU∈{0,1}

∫ pM (iA,iU )

0

P (εY ≤ pY (a,MA=a, U)|εM = ε,A = iA, U = iU )

4P (M = 1)
dε

where we use the facts that (i) M = 1|(A = iA, U = iU ) is equivalent to εM ≤

pM (iA, iU ) and (ii) the conditional density of εM given (A = iA, U = iU ) uniformly

equals 1 over the interval [0, 1] to establish equality (∗). Then, successively using the

fact that (i) MA=a = 1I[εM ≤ pM (a, U)], and (ii) P (εY ≤ ρ) = ρ for any ρ ∈ [0, 1],
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and setting x ∧ y = min(x, y), it follows that

P (Y A=a = 1|M = 1)

=
∑

iA∈{0,1}
iU∈{0,1}

∫ [pM (iA,iU )∧pM (a,iU )]

0
P (εY ≤ pY (a, 1, iU ))dε+

∫ pM (iA,iU )

[pM (iA,iU )∧pM (a,iU )]
P (εY ≤ pY (a, 0, iU ))dε

4P (M = 1)

=
∑

iA∈{0,1}
iU∈{0,1}

∫ [pM (iA,iU )∧pM (a,iU )]

0
pY (a, 1, iU )dε+

∫ pM (iA,iU )

[pM (iA,iU )∧pM (a,iU )]
pY (a, 0, iU )dε

4P (M = 1)

=
∑

iA∈{0,1}
iU∈{0,1}

pY (a, 1, iU )[pM (iA, iU ) ∧ pM (a, iU )] + pY (a, 0, iU ){pM (iA, iU )− [pM (iA, iU ) ∧ pM (a, iU )]}
4P (M = 1)

.

Because P (M = 1) =
∑

iA,iU
pM (iA, iU )/4, it is straightforward to compute

P (Y A=a = 1|M = 1), hence ∆CE , for any combinations of values for the param-

eters αA, αU , αAU , βA, βU , βM , βAM , βAU , βUM and βAUM .

3.3 Results

To be consistent with Sperrin et al.’s article, we present measures of association

and causal effects on the odds-ratio scale, rather than on the difference scale.

The corresponding quantities are denoted by ORAS , ORSp, ORCE , ORCDE and

ORCDE|A=1,M=1. For instance,

ORAS =
P (Y = 1|A = 1,M = 1)/P (Y = 0|A = 1,M = 1)

P (Y = 1|A = 0,M = 1)/P (Y = 0|A = 0,M = 1)

ORCE =
P [Y A=1 = 1|M = 1]/P [Y A=1 = 0|M = 1]

P [Y A=0 = 1|M = 1]/P [Y A=0 = 0|M = 1]

ORCDE =
P [Y 1,1 = 1]/P [Y 1,1 = 0]

P [Y 0,1 = 1]/P [Y 0,1 = 0]

ORCDE|A=1,M=1 =
P [Y 1,1 = 1|A = 1,M = 1]/P [Y 1,1 = 0|A = 1,M = 1]

P [Y 0,1 = 1|A = 1,M = 1]/P [Y 0,1 = 0|A = 1,M = 1]
·

We first consider the setting corresponding to Figure 2 of Sperrin et al., where
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βA = βAM = βAU = βUM = βAUM = 0 and βM = 0; see the top row of Figure

2, which corresponds to the top row of Figure 2 in our Letter. We obtain the exact

same results as Sperrin et al. Indeed, this setting corresponds to the case where A

has neither a direct nor an indirect effect, and causal odds-ratios ORCE , ORCDE and

ORCDE|A=1,M=1 all equal 1. This is actually one particular situation where Y A=a⊥⊥

A|M under the model of Figure 1; see Section 4.3 below for some additional remarks

under a simplified model. Therefore ORSp = ORCE =1. On the other hand, ORAS is

generally not equal to 1, but the difference with the other quantities is typically small.

According to Sperrin al., βM can be set to 0 without loss of generality. The bottom

row of Figure 2 shows that it is not the case just as the bottom two rows of Figure 2

in our Letter. Indeed, when βM 6= 0, A has an indirect effect, hence a total effect,

and ORCE is typically different from 1, as discussed in Section 2 above. On the other

hand, the quantity ORSp still equals 1, and so do ORCDE and ORCDE|A=1,M=1. As

for ORAS , it behaves as in the case where βM = 0. This particular case illustrates

the discrepancy between the true value of ORCE and the quantity ORSp studied by

Sperrin et al. It further shows that if ∆CE is the target quantity, then ORAS can be

severely biased and, then, that Sperrin et al.’s conclusion is false. In particular when

αA > 2 and the other parameters are set to their default values, ORAS is sensibly

lower than 1 while ORCE is sensibly greater than 1.

However, if the target quantity is ORCDE or ORCDE|A=1,M=1 the bias attached

to ORAS is less sensible under the configurations presented on Figure 2. We present

results under configurations where αA = αU = βA = βUM = 2, βU = 3 and

βAM = −2. In each panel of Figure 3, one of the four remaining parameters, αAU ,

βM , βAU and βAUM , varies between −3 and 3, while the other three are fixed at 1.

Overall, under these configurations, ORAS is sensibly inferior to 1 while ORCDE ,

ORCDE|A=1,M=1 and ORCE are all sensibly superior to 1.

To recap, our numerical results establish that a negative association between A and
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Figure 2: Causal and “observable”odds-ratios in the case where βA = βAM = βAU =
βUM = βAUM = 0, with βM set to either 0 or 1, and for varying values of the other
parameters αA, αU , βU and αAU . In each panel, along the x axis, one of these param-
eters is varied from −3 to 3 (left panel: αA, mid-left panel: αU , mid-right panel: βU ,
right panel: αAU ), and the other parameters are set to a default value (1 for αA, αU , βU
and 0 for αAU ).

αA αU βU αAU

0.7

0.8

0.9

1.0

1.1

0.5

1.0

1.5

β
M

=
0

β
M

=
1

−2 0 2 −2 0 2 −2 0 2 −2 0 2
AS CDE CDE|A=1,M=1 CE Sp

Y , when restricting our attention to patients with M = 1, ORAS < 1, does not imply

either ORCE < 1, or ORCDE < 1 or ORCDE|A=1,M=1 < 1. Therefore, even under

the simple generative model considered by Sperrin et al., the “obesity paradox” can be

artifactual and fully due to collider or confounding bias.

4 Additional remarks under a simplified model

4.1 The simplified model

It is instructive to inspect the simplified causal model of Figure 4, which is a special

case of that of Figure 1. As such, a result that is generally false under this simplified

causal model is generally false under the model considered by Sperrin et al. too.

In this simplified model, A is not a parent of Y , and there is no confounder. Then,
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Figure 3: Causal and “observable”odds-ratios in the case where αA = αU = 2 =
βA = βUM = 2, βU = 3 and βAM = −2, for varying values of the other parameters
αAU , βM , βAU and βAUM . In each panel, along the x axis, one of these parameters is
varied from −3 to 3 (left panel: αAU , mid-left panel: βM , mid-right panel: βAU , right
panel: βAUM ) and the other parameters are set to the default value 1.

αAU βM βAU βAUM

1

2

3

−2 0 2 −2 0 2 −2 0 2 −2 0 2
AS CDE CDE|A=1,M=1 CE Sp

Figure 4: A simplified version of the DAG considered in Sperrin et al., corresponding
to the special case of no confounder and no direct effect of A on Y .

A YM

the set of structural equations becomes


A = fA(εA)

M = fM (A, εM )

Y = fY (M, εY ).
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Accordingly, the counterfactual variables Y A=a,MA=a and Y a,m are defined as


MA=a = fM (a, εM )

Y A=a = fY (MA=a, εY )

Y a,m = fY (m, εY ).

4.2 Total effects, controlled direct effects and ∆CE

In this DAG, the empty set satisfies the back-door criterion and, then, Y A=a ⊥⊥ A. As

a result, P [Y A=a = 1] = P [Y = 1|A = a], and the average total effect is generally

non-null, as expected:

P [Y A=1 = 1]− P [Y A=0 = 1] = P [Y = 1|A = 1]− P [Y = 1|A = 0] 6= 0. (3)

More precisely, this total effect is always non-null except in the absence of either the

arrow pointing from A to M or the arrow pointing from M to Y .

Next, we have Y ⊥⊥ A|M so that P [Y = 1|A = 1,M = 1] = P [Y = 1|A =

0,M = 1] and ∆AS = 0. Given the expression (1) and (2), it follows that ∆CDE = 0

and ∆CDE|A=1,M=1 = 0 too.

However, M is still a collider here, its parents being A and εM . Then, conditioning

on M typically creates spurious correlation between εA and εY . Therefore, collider

bias is still at play, provided A has a causal effect on M and M has a causal effect on

Y . As a matter of fact, {M} does not satisfy the back-door criterion, and Y A=a⊥⊥A|M

generally does not hold: P [Y A=a = 1|M = 1] generally differs from P [Y = 1|A =

a,M = 1]. Consequently, ∆CE is generally non-null, contrary to what Sperrin et al.

wrote on the right column of Page 526. Indeed, considering the case where βA =

βAM = 0 under their generative model, which corresponds to a situation where A has

no direct effect on Y , they claim that P [Y A=1 = 1|M = 1] = P [Y A=0 = 1|M = 1],
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so that ∆CE = 0. This is generally false, as discussed in the first paragraph of Section

2 above, and illustrated in Figure 2.

4.3 Alternative proofs of Y A=a ⊥6⊥ A|M under this model

Under this simple model, the fact that Y A=a ⊥6⊥ A|M can also be shown by a simple

reduction to absurdity argument. If Y A=a was independent of A given M , we would

get the following chain of equalities:

P [Y A=a = 1] =
∑
m

P [Y A=a = 1|M = m]P [M = m] by the tower rule

=
∑
m

P [Y A=a|M = m,A = a]P [M = m] if Y A=a ⊥⊥A|M

=
∑
m

P [Y = 1|M = m,A = a]P [M = m] by consistency

=
∑
m

P [Y = 1|M = m]P [M = m], because Y ⊥⊥A|M

= P [Y = 1] by the tower rule.

Therefore, the assumption Y A=a ⊥⊥ A|M = 1 yields P [Y A=1 = 1] − P [Y A=0 =

1] = P [Y = 1]− P [Y = 1] = 0, which contradicts Equation (3) . This completes our

reduction to absurdity argument and establishes that Y A=a ⊥⊥ A|M = 1 is generally

false under the model of Figure 4.

Further observe that our chain of equalities does not lead to any contradiction in

the absence of either the arrow pointing from A to M or the arrow pointing from M

to Y : these are actually two special cases of the model for which Y A=a ⊥⊥ A|M = 1

does hold. This is why we observed ∆CE = ∆Sp in the absence of interaction terms

in the Y -model and if, in addition, βM = 0; see the top row of Figure 2 as well as the

top two rows of Figure 2 in our Letter.

The fact that Y A=a⊥6⊥A|M can also be shown using the SWIG approach.4 Figure 5

presents the SWIT corresponding to the intervention do(A = a). From this representa-
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Figure 5: The SWIT resulting from the intervention do(A = a) in the simplified causal
model of Figure 4.

A a Y A=aMA=a

tion, it directly follows thatA⊥⊥(Y A=a,MA=a), and therefore that Y A=a⊥⊥A|MA=a;

see Section 3.5.3 in4. Then, the following holds

P (Y = 1|M = 1, A = a) = P (Y A=a|MA=a = 1, A = a) by consistency

= P (Y A=a|MA=a = 1) since Y A=a ⊥⊥A|MA=a. (4)

Observe that the random sets {MA=a = 1} and {M = 1} are generally different. On

the one hand, {MA=0 = 1} consists of the individuals who would have suffered from

diabetes in the counterfactual world ΩA=0 that we would have observed had obesity

been eliminated. On the other hand, {M = 1} consists of the individuals with diabetes

in the actual world, among whom some are obese and others are not. If obesity causes

diabetes it is clear that {MA=1 = 1} 6= {MA=0 = 1} and then that {M = 1} differs

from {MA=a = 1}, for a ∈ {0, 1}. To be more concrete, consider the generative

model described in Section 3.1 above. Set βA = βU = αU = 0 and βAM = βAU =

βAUM = βUM = αAU = αUM = 0 to ensure that there is no arrow pointing fromA to

Y and no confounder U . Then, we have {MA=0 = 1} = {εM ≤ expit(α0)}, so that

P (MA=0 = 1) = expit(α0). Moreover, {MA=1 = 1} = {εM ≤ expit(α0 + αA)},

so that P (MA=1 = 1) = expit(α0 + αA). As for {M = 1}, we have

{M = 1} = {εM ≤ expit(α0 + αAA)}

= ({εM ≤ expit(α0 + αA)} ∩ {εA ≤ pA}) ∪ ({εM ≤ expit(α0)} ∩ {εA > pA}),
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so that P (M = 1) = pAexpit(α0 + αA) + (1 − pA)expit(α0). Therefore, {M =

1} 6= {MA=0 = 1}, {M = 1} 6= {MA=1 = 1} and {MA=0 = 1} 6= {MA=0 = 1}

as soon as αA 6= 0 in this simplified setting.

Because {MA=a = 1} and {M = 1} are generally different, quantities P [Y A=a =

1|MA=a = 1] and P [Y A=a = 1|M = 1] are generally different too. In view of

(4), this yields P [Y A=a = 1|M = 1] 6= P (Y = 1|M = 1, A = a), and then

Y A=a ⊥6⊥A|M .

5 Discussion

Obesity is widely considered as a cause of early death. With the notations used here,

this means that the causal odds-ratio,

[P (Y A=1 = 1)/P (Y A=1 = 0)]/[P (Y A=0 = 1)/P (Y A=0 = 0)],

is superior to 1. However, several observational studies reported an observed odds-

ratio among individuals with diabetes or heart failure10,11,12 less than one, suggest-

ing that ORAS < 1. This observation could indeed be considered as paradoxical if

the observed odds-ratio among individuals with chronic disease was a consistent es-

timate of ORCE . However, this is not the case because M is a descendent of A, as

already suggested in the literature13. Contrary to what Sperrin et al. reported1, we

show that the difference between ORAS and ORCE can be sensible even under the

simple causal model they considered. In addition, we show that ORAS , ORCDE and

ORCDE|A=1,M=1 share some similarities, but are still different. In particular, by con-

sidering additional interaction terms in the generative model proposed by Sperrin et

al., we exhibited configurations where ORAS < 1 while ORCE > 1, ORCDE > 1

and ORCDE|A=1,M=1 > 1. Therefore, estimates of ORAS should be regarded with

caution since they can not be related to any meaningful causal effects. Furthermore,
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the confounder U has to be observed in order to estimate the causal quantitiesORCDE

and ORCDE|A=1,M=1. As for ORCE , it can not be identified from the distribution of

(A,M,U, Y ) without further assumptions on the causal model.

We shall add that even if we could estimate ORCDE and ORCE , these quantities

might not be appropriate to answer the question of whether weight loss would be ben-

eficial for an obese patient with diabetes or heart failure10. The risk of early death

for such a patient is P (Y = 1|A = 1,M = 1) = P (Y A=1 = 1|A = 1,M = 1),

by consistency. But what would be his risk after a weight loss? If it can be assumed

that his risk would be the one he would have had in the counterfactual world ΩA=0,

that is, his risk had he never been obese, then it is simply P (Y A=0|A = 1,M = 1).

Because P (Y A=0 = 1|A = 1,M = 1) = P (Y A=0,M=MA=0

= 1|A = 1,M = 1), it

is noteworthy that this assumption implies that this patient might be cured of diabetes

after his weight loss. Under this assumption, the quantity of interest is therefore

P (Y = 1|A = 1,M = 1)− P (Y A=0 = 1|A = 1,M = 1)

= P (Y A=1 = 1|A = 1,M = 1)− P (Y A=0 = 1|A = 1,M = 1).

It is related to ∆CE , but also to the excess fraction and, under some assumptions, to

the attributable fraction and the probability of disablement2,5. However, if weight loss

is unlikely to cure this patient of diabetes, his risk after a weight loss might rather be

P [Y A=0,M=1 = 1|A = 1,M = 1]. Then, the quantity of interest would be

P (Y = 1|A = 1,M = 1)− P [Y A=0,M=1 = 1|A = 1,M = 1]

= P (Y A=1,M=1 = 1|A = 1,M = 1)− P (Y A=0,M=1 = 1|A = 1,M = 1)

= ∆CDE|A=1,M=1.

Lastly, because there is no unique and well-defined intervention resulting in weight loss

(or weight gain), causal inference on observational data is a particularly complicated
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task when dealing with obesity7. As a matter of fact, to answer the question whether

weight loss would be beneficial for obese patients with diabetes, a safer roadmap would

be first specifying the envisaged intervention(s) which might result in weight loss, and

then planning a randomized interventional study.
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