
Bayesian model averaging with change points to assess the impact of vaccination 

and public health interventions 

 

SUPPLEMENTARY METHODS 

 

Data sources 

 

U.S. hospitalization data were obtained from the Healthcare Cost and Utilization 

Project (HCUP) State Inpatient Databases (SID) for the period 1996 through 2010 for 10 

states: Arizona, Colorado, Iowa, Massachusetts, New Jersey, New York, Oregon, Utah, 

Washington, and Wisconsin. The SID contain ~100% samples of ICD9-coded 

(international classification of diseases, ninth revision) hospitalization data for these 

states 
1
.   

Data on hospitalizations in Brazil were obtained for the period 2003 through 2013 

from the Brazil Unified Health System (Sistema Único de Saúde; SUS), which maintains 

a nationwide administrative database that records all hospitalizations paid by the public 

sector; the data we used are available to the public through SUS and were obtained from 

the Ministry of Health. The database includes ICD10-coded hospitalizations from 

government-owned hospitals, as well as private and non-profit hospitals under contract to 

the SUS.  

Data on hospitalizations in Chile were obtained for the period 2001 through 2012 

from the Chilean Ministry of Health, Department of Statistics and Health (Departamento 

de Estadísticas e información de Salud; DEIS) information. Hospitals in Chile are 

required to submit ICD-10 coded (international classification of diseases, tenth revision) 

diagnostic, patient demographic and other data on all hospitalizations to the DEIS, which 

aggregates these data and publishes it online 
2
.  



In the U.S., PCV coverage of all infants <1 year was above 80% after 12 months, 

and in Brazil and Chile, with centrally directed health delivery systems, it was well above 

90%.  

 

Model averaging, specification of priors, and calculation of posteriors 

 

For the Bayesian model averaging, we fit each of the three model structures with 

every possible combination of covariates and each candidate change point. This results in 

a large set of candidate models. For each of these, the Bayesian information criterion 

(BIC) 
3
 was estimated, which measures the goodness of the model fit while penalizing 

more complex structures. These BIC scores were used, along with the prior probabilities 

for each model, to assign a weight (posterior probability) to each model. To estimate the 

model weights (posterior probabilities), we used the approach of Burnham and Anderson 

(2004)
4
.   Based on the BIC scores, we calculate the posterior probability/weight for each 

model by 

    
      

 

 
        

       
 

 
        

 
   

   

where       is the difference of BIC for model i and the minimum BIC value among all 

models, and    is the prior probability of model i, where i=1 to R, the total number of 

models.  

For Bayesian methods, selecting a suitable prior probability is important. We 

followed a weakly informative approach when assigning priors, assuming first that it was 

equally likely that a change point did or did not exist, and second that if a change point 

did exist, that it was equally likely to be located at any particular time point. Likewise, 



we used non-informative priors for additional covariates, with an equal prior probability 

that the model includes a particular variable.  

After computing the weight of each model, we computed the model-averaged 

regression coefficients and their corresponding variances as  
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where     is the estimate for the parameter and           is its variance in model i.  

Finally, we estimated the magnitude of change in an outcome by comparing 

model-averaged fitted values with counterfactual predicted values. We computed model-

averaged fitted values as 

         

 

   

   

where     is the fitted value under model i and     is the posterior probability of this 

model. The weighted average of the predicted value from each of the candidate models 

provides a consensus estimate of the predicted value at each time point. The 

corresponding estimated variance for the model-averaged fitted values is          

              
 
   , where             is the estimated variance for the fitted value under 

model i. Thus, the 95% approximate pointwise confidence interval for the model-

averaged fitted values is computed as  

                  
   

  

 

 



Estimation of the smooth function      : 

 

For the sake of simplicity, we described the estimation procedure in terms of linear mixed 

models; extension to generalized mixed models with change points is straightforward. 

The procedure given below describes the estimation of the smooth function       

(equations (1)-(3) in the main text) via a nonparametric mixed model approach. By using 

this approach, the smooth function is decomposed into fixed and random effects.  

The observations            at times    follow the relationship  

           ,                                                             (S1) 

where        ,      is an unknown smooth function to be estimated, and the error 

term follows a normal distribution with mean zero and covariance matrix    . The 

smoothing spline for fitting a function of the form (S1) in the one dimensional case is 

computed by maximizing the following penalized likelihood
5
 

                                                           (S2) 

where    controls the amount of smoothing.  

Let         to be          and             matrices, respectively, where  

    
 

  
           

 

  
 

 

    
          

 

    
  

       
    

 
     

       

 
  

are the only nonzero elements in these matrices with                              

At the observed data points, the cubic smoothing spline estimate for g is 

                                                               (S3) 

where             .  



Define   to be a      matrix whose first column is a vector 1s and the second column 

is   

           and            . According to 
5
, equation (S3) can be written as follows: 

                                                                       (S4) 

where    is the best linear unbiased predictor of a conditional mean vector (See 
5
 for the 

technical proof). Given equation (S4), (S1) can be written as a mixed model 

             ,                                             (S5) 

where   is the     vector of fixed effects,   are the normally-distributed         

vector of random effects with mean zero and covariance matrix       , and   are 

normally distributed error terms with mean zero and variance   . In the penalized 

likelihood (S2), the log likelihood is the conditional likelihood of   given  , and the 

penalty function is proportional to the log-density function of  .  

In order to estimate the random effects, first, we transformed the random effects to 

independent random effects by     , and        , where L is the lower triangle of 

the Cholesky decomposition of  . Then (S5) can be reformulated as  

              , 

where           .  

The R package gamm4 can be used to implement this type of random effects while fitting 

generalized linear mixed models. Running a single dataset containing 120 months with 

120 candidate change point locations and a single covariate took 87 seconds when 

implemented with a 3.5 GHz Intel Core i7 CPU.  

As we used observational-level random effects, using traditional methods to estimate 

random effects run out of degrees of freedom, thus, using the smoothing splines approach 



was useful to avoid this challenge. In addition, this approach takes the temporal 

correlations into account and adjusts for the unobserved trends in the data by using the 

splines. However, a comparison of this method to mixed models with random effects that 

has a different covariance structure such as lag 1 autocorrelation (AR(1)) would be an 

interesting area for future work.  

 

Characteristics of bootstrap samples 

 

As the original bootstrap proposed by 
6
 is for iid random samples, it cannot be directly 

applied to dependent data. Therefore, to estimate the distribution of the incidence rate 

ratio, we proposed to use a nonparametric bootstrap method, which suggest applying the 

classical bootstrap method to the residuals.  

Let         be the time series observations. For some fixed    , denote the estimator 

of the conditional expectation                   by                 . This estimator 

results in the following residuals: 

                                   

and in the next step, we calculate the bootstrap time series as follows 

  
                     

            

where   
      

  the residuals sampled from           with replacement. An alternative 

to the above equation would be to use         
        

   instead of                 , 

but as pointed out by 
7
 using                  creates the stability and satisfies some 

weak dependence properties for the triangular array of dependent observations that helps 

establishing asymptotic consistency along with other asymptotic results of the bootstrap 

process. We obtain the estimator                  using the models built for Brazil, 



Chile, and the U.S. data sets, respectively. After generating 400 bootstrap samples, we 

run our estimation procedure and obtain the incidence rate ratio for each sample.  

Note that estimation of the bootstrap confidence intervals for the IRR can be 

computationally heavy, a naïve approach to obtain the confidence intervals is by dividing 

the upper and lower bounds of the confidence interval of the model-averaged fitted 

values by the counterfactual predictions. The statistical significance of IRR obtained from 

the naïve approach is same as the bootstrap approach, and the upper and lower bounds 

would be close.  

Characteristics of simulated data sets 

 

We generated five sets of simulated time series that resembled observed time 

series in terms of number of monthly cases, seasonality, and degree of random 

unexplained variability but on which we imposed changes of known timing and 

magnitude. Specifically, for each set we generated 100 time series that followed a 

Poisson distribution given by 

                

                                                     (4) 

 

where N is the number of all cause hospitalizations per month, κ is the increase in 

number of cases per year unrelated to the vaccine, δ is the seasonal amplitude , h(ti) is the 

harmonic term (calculated by                   ,  θ is the change point month, η is 

the vaccine-associated change per year (given by                    where   as the 

vaccine-associated decline/year), and           with n as the total number of time 

points. The parameters used to generate the simulations in equation (4) were extracted 



from IPD and pneumonia time series from the U.S., Chile, and Brazil using a Poisson 

regression model in PROC MCMC in SAS
8
. The last simulation study used parameters 

obtained from Brazil pneumonia series and was used to demonstrate the performance of 

our method in the absence of a vaccine effect. 

In the U.S. IPD simulation, each time series had 4 years of pre-vaccine and 10 

years of post-vaccine data, with an average of 16 cases per month, and change points at 

06/2000 and 12/2003. We evaluated vaccine-associated rate reduction of 10% per year 

for 3.5 years beginning in 6/2000 and allowed the vaccine effect to be constant after 

12/2003. In the U.S. ACP simulation, each time series had the same amount of data as in 

the first simulation, but this time an average of 650 cases per month. In this simulation, 

we imposed two change points: 12/1997 and 01/2004. Starting from the first change 

point, we assessed a vaccine effect of 3% decline per year until the second change point 

and allowed the vaccine effect to be constant after the second change point. In the third 

simulation, the time series mimicked the Chilean all-cause pneumonia data by having 10 

years of pre-vaccine and 1 year of vaccine data with an average of 118 cases per month. 

In this simulation, we introduced two change points: 07/2007 and 07/2011, and imposed 

a vaccine effect of 3% decline per year between these points. In the fourth and fifth 

simulation studies, each data set had 7 and 3 years of pre-vaccine and post-vaccine data, 

respectively, with 10000 cases per month replicating the Brazil all-cause pneumonia data. 

In the fourth study, we introduced a change point in 07/2010, and used a vaccine effect of 

3% per year until 12/2013. We imposed a vaccine effect of 0% in the last simulation 

study to demonstrate the performance of our approach in the absence of a vaccine effect.  

 

 



 

 

 

 

Comparison of traditional interrupted time-series approach with BMA-CP 

 

For the simulated data sets, in the ITS approach, we used an autoregressive model 

of order 1, which includes terms for the vaccine introduction and secular trend, along 

with harmonic terms with 6-and 12-month periods to account for seasonality. The 

comparison of the BMA-CP approach with ITS (Supplementary Table 2) shows that for a 

data set with a single change point (similar to characteristics of Brazil ACP data), these 

two methods give mostly comparable results. One exception is when the ITS had a cut off 

point 12 months after the true change point, we observed that ITS estimated an IRR of 1, 

whereas the true IRR is 0.970 for the simulated data set with 3% vaccine effect. For the 

simulation with two change points (similar to characteristics of Chile ACP data), the IRR 

results from the ITS approach were generally more biased than the BMA-CP approach. 

With two change points, the results of ITS and BMA-CP were closest when the cut off 

for ITS was close to the mean second change point calculated with BMA-CP (Table 1).  

In the data applications, in our ITS analysis, we used an autoregressive model, in 

which, error covariance structures had lag 1 autocorrelation (AR(1)), and we included 

terms for the vaccine introduction, secular trend and an interaction between these terms 

along with harmonic terms with 6-and 12-month periods to account for seasonality. In 

Brazil ACP data, the results from the two models were comparable when the ITS cut off 

was close to the change point indicated by the BMA-CP approach (Figure 4). However, 

with the Chile data, ITS approach gives results larger than the BMA-CP approach except 



for 12 to 23 months olds when the cut off is at the vaccine introduction. Note that with 

the Chile data, the amount of data after the vaccine introduction was limited.  

 

Tables 

Supplementary Table 1: Definitions 

Outcome ICD9 codes (U.S.) ICD 10 codes (Brazil, 

Chile) 

Invasive pneumococcal 

disease (IPD) 

Any mention of 320.1 OR 

038.2 OR [(320.8 OR 790.7 

OR 038.9 OR 995.91 OR 

995.92) AND 041.2] 

 

--- 

Pneumococcal (lobar) 

pneumonia 

481 --- 

All-cause pneumonia (ACP), 

Standard definition 

Any mention of 480-486 J12-18 

All-cause pneumonia (ACP), 

definition of Griffin et al* 

First listed pneumonia (480-

486 OR 487.0) OR [first 

listed meningitis, septicemia 

or empyema AND any 

mention of pneumonia (480-

486 OR 487.0)] 

-- 

 Meningitis 321.xx, 013.x, 003.21, 036.0, 

036.1, 047, 047.0, 047.1, 

047.8, 047.9, 049.1, 053.0, 

054.72, 072.1, 091.81, 094.2, 

098.82, 100.81, 112.83, 

114.2, 115.01, 115.11, 

115.91,130.0, 320, 320.0, 

320.1, 320.2, 320.3, 320.7, 

320.81, 320.82, 320.89, 

320.8, 320.9, 322, 322.0, 

322.9 

--- 

Septicemia 038.1x, 038.4x, 003.1, 020.2, 

022.3, 031.2, 036.2, 038, 

038.0, 038.2, 038.3, 038.8, 

038.9, 054.5, 785.52, 790.7, 

995.91, 995.92 

--- 

Empyema 510 --- 

Influenza 487 J09-J11 

Rotaviral enteritis 008.61 --- 



Urinary tract infection (UTI) 599.0 N39.0 



 

 

 

 

 

 

 

Supplementary Table 2. Results of simulations. 

Simulated 

data has 

characteristics 

similar to: 

Average 

cases/month 

Number of 

months before 

the first change 

point, between 

the change 

points and after 

the second 

change point** 

True IRR 12 

months after 

the 

first/second 

change 

point* 

Median IRR +/-

range of 2.5, 97.5 

percentiles of 100 

simulations 

12 months after the 

first/second change 

point* 

Percent of 

simulation 

that detect a 

change 

(IRR<1) 

 

True change point 

 

 

Mean change 

point 

U.S. data, 

IPD 16 53, 42, 73 0.691 

0.703 (0.639, 

0.778)  100 54, 96  59.8, 97.1 

U.S. data, 

ACP 650 23, 73, 72 0.830 

0.837 (0.788, 

0.893) 100 24, 97  35.7, 98.5 

Brazil data, 

ACP 10000 84, 48 0.970 

0.948 (0.890, 

0.976) 98 91  91.8, *** 

Chile data, 

ACP 1180 78, 48, 18 0.889 

0.898 (0.739, 

0.992) 97 79, 127 83, 112.5 



Supplementary Table 3. Comparison of IRR values calculated using interrupted time series (ITS) and Bayesian model averaging 

with change points (BMA-CP) approaches for simulated data 

Simulated data 

has 

characteristics 

similar to: 

Average 

cases/month 

Change point 

location(s) 

True IRR 12 

months after 

the 

first/second 

change 

point* 

Cut off 

month for 

ITS 

Median IRR +/-range of 2.5, 97.5 percentiles of 

100 simulations 

12 months after the change point* 

     ITS BMA-CP 

Brazil data, 

ACP 
10000 85 0.970 

79 0.941 (0.899, 0.986) 

0.948 (0.890, 0.976) 
85 0.953 (0.926, 0.990) 

91 0.976 (0.957, 0.993) 

97 1.000 (1.000, 1.000) 

       

Brazil data, 

ACP with 0% 

vaccine effect 
10000 85 1.000 

79 0.999 (0.941, 1.062) 

0.995 (0.973, 1.001) 
85 0.999 (0.960, 1.044) 

91 0.999 (0.978, 1.023) 

97 1.000 (1.000, 1.000) 

       

Chile data, 

ACP 

1180 79, 127 0.889 

73 0.792 (0.569, 1.207) 

0.898 (0.739, 0.992) 

79 0.795 (0.585, 1.199) 

91 0.823 (0.619, 1.190) 

115 0.873 (0.673, 1.172) 

127 0.921 (0.718, 1.184) 

139 1.000 (1.000, 1.000) 

 

 

 

Supplementary Table 4. Comparison of estimated percent declines (1-IRR)*100) calculated using interrupted time series (ITS) and 

Bayesian model averaging with change points (BMA-CP) approaches for Brazil and Chile ACP hospitalizations data 

Data set Age group Cut off month* Percent decline 24 months after vaccine Percent decline 48 months after vaccine 



introduction [95%CI] introduction [95%CI] 

Brazil   ITS BMA-CP ITS BMA-CP 

0 to <12 

85  14% (11%, 17%) 

9% (3%, 14%) 

18% (15%, 21%) 

10% (4%, 19%) 97  10% (6%, 13%) 9% (6%, 12%) 

109  0% (-4%, 4%) 3% (-1%, 6%) 

      

12 to 23 

85  14% (10%, 17%) 

6% (1%, 9%) 

20% (17%, 23%) 

7% (1%, 10%) 97  13% (9%, 17%) 13% (9%, 16%) 

109  0% (-5%, 5%) 3% (-1%, 7%) 

      

24 to 59 

85  11% (7%, 15%) 

9% (3%, 11%) 

20% (16% 23%)  

11% (4%, 13%) 97  10% (7%, 14%) 14% (11%, 18%) 

109  0% (-4%, 4%) 5% (1%, 9%) 

       

Chile 0 to <12 121  19% (7%, 30%) 9% (1%, 17%) 

— — 

 133  59% (53%, 65%)  

    

12 to 23 121  9% (-11%, 25%) 18% (4%, 26%) 

 133  43% (32%, 53%)  

    

24 to 59 121  21% (8%, 32%) 5% (-1%, 6%) 

 133  34% (24%, 43%)  

    

 

 

Supplementary Table 5. Estimated percent decline (1-IRR)*100) and probabilities that changes occurred after 

vaccination by age group, country, and outcome 

Outcome/age group Percent decline 24 months 

after vaccine introduction 

[95%CI] 

Percent decline 48 

months after vaccine 

introduction [95%CI] 

Probability 

of any 

change in 

the time 

Probability 

that the 

change 

occurred 



series after vaccine 

introduction* 

Rotaviral enteritis     

 0 to <12 (U.S.) 1% (-10%, 5%) 2% (-10%, 4%) 1.000 1.000 

Urinary tract infection     

 0 to <12 (U.S.) 10% (4%, 13%) 23% (13%, 24%) 1.000 0.999 

 0 to <12 (Brazil) -4% (-10%, 2%) -5% (-8%, 1%) 1.000 0.004 

      

 12 to 23 (U.S.) 7% (2%, 9%) 7% (1%, 10%) 0.880 0.718 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figures 

 
 

Supplementary Figure 1. The estimated incidence rate ratios (gray dashed line) from each of 100 simulation runs along with 2.5 and 

97.5 percentiles (orange dashed-dotted lines) based on 100 simulation runs. The simulated data are based on the time series 

characteristics of the indicated country and disease. The blue and orange solid lines represent the true IRR value and the median 

estimated IRR, respectively, at each time point.   
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Supplementary Figure 2. (A) Pneumococcal (lobar) pneumonia hospitalizations versus time for 10 U.S. 

states by age group, showing observed pneumococcal (lobar) pneumonia hospitalizations per month 

(black), model-averaged fitted values (orange, solid) with their 95% approximate pointwise confidence 

intervals (orange, dotted) and counterfactual predicted values (blue). The estimated decline at specific time 

points (green triangles) are shown, with their respective 95% bootstrap confidence intervals. (B) Posterior 

probabilities corresponding to the plots in (A) for the locations of the first (x-axis) and second (y-axis) 

change points. The dashed lines represent the time that the PCV7 (01/2000) is introduced. The blue dots at 

the bottom represent the probability of a change occurring at that point. The color gets darker as the 

probability increases. The first and second sets of dots are for the first and second change points, 

respectively. 

The	U.S.	pneumococcal (lobar) pneumonia 0	to	<12	months	

	 	
The	U.S.	pneumococcal (lobar) pneumonia 12	to	23	months	

	 	
The	U.S.	pneumococcal (lobar) pneumonia 24	to	59	months	
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Supplementary Figure 3. (A) ACP (standard definition) hospitalizations versus time for 10 U.S. states by age group, showing observed 

ACP hospitalizations per month (black), model-averaged fitted values (orange, solid) with their 95% approximate pointwise confidence 

intervals (orange, dotted) and counterfactual predicted values (blue). The estimated decline at specific time points (green triangles) are 

shown, with their respective 95% bootstrap confidence intervals. The blue dots at the bottom represent the probability of a change 

occurring at that point. The color gets darker as the probability increases. The first and second sets of dots are for the first and second 

change points, respectively. (B) Posterior probabilities corresponding to the plots in (A) for the locations of the first (x-axis) and second 

(y-axis) change points. The dashed lines represent the time that the PCV7 is introduced.  
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Supplementary Figure 4. ACP hospitalizations versus time in Brazil by age group, showing observed ACP hospitalizations per month 

(black), model-averaged fitted values (orange, solid) with their 95% approximate pointwise confidence intervals (orange, dotted) and 

counterfactual predicted values (blue). The estimated decline at specific time points (green triangles) are shown, with their respective 

95% bootstrap confidence intervals. The blue dots at the bottom represent the probability of a change occurring at that point. The color 

gets darker as the probability increases. 
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Supplementary Figure 5. (A) ACP hospitalizations versus time in Chile by age group, showing observed ACP hospitalizations per 

month (black), model-averaged fitted values (orange, solid) with their 95% approximate pointwise confidence intervals (orange, 

dotted) and counterfactual predicted values (blue). The estimated decline at specific time points (green triangles) are shown, with their 

respective 95% bootstrap confidence intervals. The blue dots at the bottom represent the probability of a change occurring at that 

point. The color gets darker as the probability increases. The first and second sets of dots are for the first and second change points, 

respectively. (B) Posterior probabilities corresponding to the plots in (A) for the locations of the first (x-axis) and second (y-axis) 

change points. The dashed lines represent the time that the PCV10 is introduced.  
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Supplementary Figure 6. (A) ACP (stringent definition) hospitalizations versus time for 10 U.S. 

states by age group, showing observed ACP hospitalizations per month (black), model-averaged 

fitted values (orange, solid) with their 95% approximate pointwise confidence intervals (orange, 

dotted) and counterfactual predicted values (blue). The estimated decline at specific time points 

(green triangles) are shown, with their respective 95% bootstrap confidence intervals. (B) Posterior 

probabilities corresponding to the plots in (A) for the locations of the first (x-axis) and second (y-

axis) change points. The dashed lines represent the time that the PCV7 (01/2000) is introduced. The 

blue dots at the bottom represent the probability of a change occurring at that point. The color gets 

darker as the probability increases. The first and second sets of dots are for the first and second 

change points, respectively. 
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Supplementary Figure 7. Non-pneumoccocal outcomes. Rotaviral enteritis hospitalizations and UTI versus time. The black line 

indicates hospitalizations per month. The blue solid line shows the counterfactual predicted values. The orange solid and dashed lines 

show the model-averaged fitted values and their 95% approximate pointwise confidence intervals, respectively.  
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