
eAppendix for "On a square-root transformation of the odds ratio
for a common outcome"

Let p1 and p0 denote the outcome probabilities with and without the exposure respectively, RR =
p1=p0, and OR =

p1(1�p0)
(1�p1)p0 . The �rst proposition demonstrates that the square root transformation

always moves the OR towards the RR.

Proposition 1. For causative exposures with p1 > p0, we have OR � RR > sqrt(OR) � RR; for
preventive exposures with p1 < p0, we have OR�RR < sqrt(OR)�RR.

Proof. For causative exposures with p1 > p0, we have OR =
p1(1�p0)
(1�p1)p0 > 1 and thus (OR�RR)�

(sqrt(OR)�RR) = OR�sqrt(OR) = p1(1�p0)
(1�p1)p0�

q
p1(1�p0)
(1�p1)p0 =

q
p1(1�p0)
(1�p1)p0

�q
p1(1�p0)
(1�p1)p0 � 1

�
> 0. If p1 <

p0, we haveOR =
p1(1�p0)
(1�p1)p0 < 1 and thus (OR�RR)�(sqrt(OR)�RR) =

q
p1(1�p0)
(1�p1)p0

�q
p1(1�p0)
(1�p1)p0 � 1

�
<

0.

The next Proposition establishes bounds on the in�ation that can occur for OR and sqrt(OR)
when the outcome probabilities themselves lie within certain bounds. That the bounds are sharp is
established by the examples in the text.

Proposition 2. For causative exposures with p1 > p0, if 0:2 � p0; p1 � 0:8, then 1 � OR
RR � 4 and

4
5 �

sqrt(OR)
RR � 5

4 ; and if 0:1 � p0; p1 � 0:9, then 1 �
OR
RR � 9 and

3
5 �

sqrt(OR)
RR � 5

3 .

Proof. If 0:1 � p0; p1 � 0:9, then OR
RR =

1�p0
1�p1 �

1�0:1
1�0:9 = 9 and if 0:2 � p0; p1 � 0:8 then OR

RR =

1�p0
1�p1 �

1�0:2
1�0:8 = 4. We also have that sqrt(OR)

RR =
q

p1(1�p0)
(1�p1)p0 =

p1
p0
=
q

p0(1�p0)
(1�p1)p1 ; if 0:1 � p0; p1 � 0:9

then
q

p0(1�p0)
(1�p1)p1 �

q
0:5(1�0:5)
(1�0:9)(0:9) = 5=3 and

q
p0(1�p0)
(1�p1)p1 �

q
0:1(1�0:1)
(1�0:5)(0:5) = 3=5; if 0:2 � p0; p1 � 0:8 thenq

p0(1�p0)
(1�p1)p1 �

q
0:5(1�0:5)
(1�0:8)(0:8) = 5=4 and

q
p0(1�p0)
(1�p1)p1 �

q
0:2(1�0:2)
(1�0:5)(0:5) = 4=5.

For preventive exposures with p1 < p0 by an analogous argument we have that if 0:2 � p0; p1 �
0:8, then 1

4 �
OR
RR � 1 and 4

5 �
sqrt(OR)
RR � 5

4 ; and if 0:1 � p0; p1 � 0:9, then 1
9 �

OR
RR � 1 and

3
5 �

sqrt(OR)
RR � 5

3 . Proposition 3 establishes the relative proportion of values of p1 and p0 for which
the in�ation or de�ation factor for sqrt(OR), above to below the RR, is smaller than the in�ation
or de�ation factor for OR, above or below the RR. By symmetry the proportion is the same for
causative and preventive exposures.

Proposition 3. We have thatZ
p0;p12[0:1;1]

1

�
max(

OR

RR
;
RR

OR
) > max(

sqrt(OR)

RR
;

RR

sqrt(OR)
)

�
d(p0; p1) � 0:93Z

p1;p02[0:2;1]
1

�
max(

OR

RR
;
RR

OR
) > max(

sqrt(OR)

RR
;

RR

sqrt(OR)
)

�
d(p0; p1) � 0:99Z

p1;p02[0:25;1]
1

�
max(

OR

RR
;
RR

OR
) > max(

sqrt(OR)

RR
;

RR

sqrt(OR)
)

�
d(p0; p1) = 1:

Proof. The factor by which the OR is in�ated or de�ated compared to the RR is given by
max(ORRR ;

RR
OR). The factor by which sqrt(OR) is in�ated or de�ated, compared to the RR, is given
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by max( sqrt(OR)RR ; RR
sqrt(OR)). To obtain the proportion of outcome probabilities for which the factor of

in�ation or de�ation is greater for OR than for sqrt(OR) we simply integrate the indicator function
over the relative range of probabilities. The results in the Proposition are obtained by numerical
integration.

The next Proposition establishes the bounds on the in�ation or de�ation of the OR and sqrt(OR)
as compared to the RR on the absolute scale. It can be seen from the proof that the bounds are
sharp.

Proposition 4. For causative exposures with p1 > p0, if 0:2 � p0; p1 � 0:8, then jOR�RRj � 12
and jsqrt(OR)�RRj � 0:5509; and if 0:1 � p0; p1 � 0:9, then jOR�RRj � 72 and jsqrt(OR)�RRj �
2:43.

Proof. With p1 > p0, we have jOR � RRj = OR � RR = p1(1�p0)
(1�p1)p0 �

p1
p0
= p1

p0

�
(1�p0)
(1�p1) � 1

�
and

if 0:1 � p0; p1 � 0:9 then p1
p0

�
(1�p0)
(1�p1) � 1

�
� 0:9

0:1

�
(1�0:1)
(1�0:9) � 1

�
= 72 and if 0:2 � p0; p1 � 0:8 then

p1
p0

�
(1�p0)
(1�p1) � 1

�
� 0:8

0:2

�
(1�0:2)
(1�0:8) � 1

�
= 12. That jsqrt(OR) � RRj � 2:43 if 0:1 � p0; p1 � 0:9, and

that jsqrt(OR)�RRj � 0:5509 if 0:2 � p0; p1 � 0:8 can be obtained by numerical grid search.

The next Proposition establishes the relative proportion of values of p1 and p0 for which the
absolute di¤erences jOR � RRj are larger than jsqrt(OR) � RRj. Because di¤erences in ratios are
not symmetric, the results are reported separately for causative and preventive exposures.

Proposition 5. For causative exposures with p1 > p0 we have thatZ
0:1�p0�p1�1

1fjOR�RRj > jsqrt(OR)�RRjgd(p0; p1) � 0:95Z
0:2�p0�p1�1

1fjOR�RRj > jsqrt(OR)�RRjgd(p0; p1) � 0:99

and for preventive exposures with p1 < p0 we have thatZ
0:1�p1�p0�1

1fjOR�RRj > jsqrt(OR)�RRjgd(p0; p1) � 0:90Z
0:2�p1�p0�1

1fjOR�RRj > jsqrt(OR)�RRjgd(p0; p1) � 0:98:

Proof. To obtain the proportion of outcome probabilities for which the absolute di¤erence jOR�
RRj is larger than jsqrt(OR)�RRj we simply integrate the indicator function over the relative range
of probabilities. The results in the Proposition are obtained by numerical integration.

Unfortunately, the same approach of taking a square root does not work as well with transforming
hazard ratios (HR) to risk ratios, for outcomes that are common by the end of follow-up. Even if the
outcome probabilities by the end of follow-up are between 0:2 and 0:8, a square root transformation
of the hazard ratio can still be biased for the risk ratio by up to 48% (i.e. a factor of 1:48) and
the untransformed hazard ratio by up to 80%; if the outcome probabilities by the end of follow-up
are between 0:1 and 0:9, a square root transformation of the hazard ratio can still be biased for the
risk ratio by up to 107% (i.e. a factor of up to 2:07) and the untransformed hazard ratio by up to
142%. However, a slightly di¤erent transformation to convert hazard ratios to risk ratios works well

2



under a proportional hazard model. The transformation RR � (1 � 0:5sqrt(HR))=(1 � 0:5sqrt(1=HR))
reduces bias for the risk ratio considerably. If the outcome probabilities by the end of follow-up are
between 0:2 and 0:8, this transformation is biased for the risk ratio by at most 16% (i.e. by a factor
of at most 1:16), and if the outcome probabilities by the end of follow-up are between 0:1 and 0:9,
this transformation is biased for the risk ratio by at most 45% (i.e. by a factor of at most 1:45).
More formally, if we let �1(t) and �0(t) denote the hazard at time t for the exposed and unexposed
respectively, we then have the following result.

Proposition 6. Under a proportional hazard model for the exposure such that �1(t)�0(t)
= HR for all

t, we have that

if 0:2 � p0; p1 � 0:8,
1

1:16
<
(1� 0:5sqrt(HR))=(1� 0:5sqrt(1=HR))

RR
< 1:16

and if 0:1 � p0; p1 � 0:9,
1

1:45
<
(1� 0:5sqrt(HR))=(1� 0:5sqrt(1=HR))

RR
< 1:45:

Proof. The survival function at the end of follow-up for the unexposed, 1 � p0, is given by

e
�

Z
�0(t)d(t)

and the survival function at the end of follow-up for the exposed, 1 � p1, is given by

e
�

Z
�1(t)d(t)

= e
�HR

Z
�0(t)d(t)

. We thus have the relation (1 � p1) = (1 � p0)HR and from this it
follows HR = log(1�p1)

log(1�p0) . If we then use a numerical search for all values of the ratio

(1� 0:5sqrt(HR))=(1� 0:5sqrt(1=HR))
RR

=
(1� 0:5sqrt(

log(1�p1)
log(1�p0)

)
)=(1� 0:5sqrt(1=

log(1�p1)
log(1�p0)

)
)

p1=p0
;

when 0:2 � p0; p1 � 0:8, there are no values that are above 1:16 or below 1=1:16; and when 0:1 �
p0; p1 � 0:9, there are no values that are above 1:45 or below 1=1:45.
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