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SUPPLEMENTAL DIGITAL CONTENT (corrected) 

To accompany: Oates, Kasza, Simpson, Forbes. “Repair of partly misspecified causal 

diagrams” 

This technical appendix supplements Oates et al. and provides full details for the PC-VET 

method. This appendix is organised as follows: In Sec. 1 the statistical properties of vetting 

are discussed at a high level. Sec. 2 introduces notation for the PC-VET algorithm that is 

described in detail in Sec. 3 and subjected to theoretical analysis in Sec. 4. In Sec. 5 we present 

additional results on the MCCS analysis from the main text and provide an auxiliary discussion 

of our results in Sec. 6. Then Sec. 7 contains algorithmic pseudo-code for PC-VET and Sec. 8 

contains all auxiliary figures. 

 

1. EFFICIENCY CONSIDERATIONS 

In this work we restricted attention to the addition of edges to the expert’s diagram, 

motivated by the fact that consistent estimation of the effect of the exposure on the outcome 

is possible if estimates are based on a DAG that contains at least those edges that are present 

in the true diagram. Our approach is “causally conservative”, in the sense that we err on the 

side of a diagram with too many edges. However, “statistical conservatism” requires that the 

number of non-essential edges be limited in some way. Such control is necessary from an 

efficiency standpoint:  using a “full” diagram containing all possible edges will lead to high 

variance estimates for the effect of the exposure of interest on the outcome, and vetting will 

trivially return the full diagram. Here there is an analogy with propensity score modelling, 

where a valid model must include all confounders of exposure on outcome but, for efficiency 

reasons, and because inclusion of such variables may increase bias in some situations, it is 

necessary to restrict the inclusion of variables that are independent of the outcome (1,2). In 

this paper the number of additional edges, above those given by the expert, is controlled by 

setting a threshold for the level of evidence in data required for edge addition. This 

implementation attempts to provide a sensible balance between the competing causal and 

statistical objectives.  

A strong precedent for a two-stage approach to causal inference, such as the one proposed 

here, has been established by recent work in the high-dimensional statistics literature. In that 

work, the focus is estimation of causal effects. In the first stage, all variables are screened and 

a subset is selected, which are then included in a regression model in the second stage (3-5). 

The method proposed in this paper is also a two-stage approach, distinguished in its focus on 

integrating expert information. 
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2. NOTATION AND CAUSAL DIAGRAMS 

Our study begins with a putative causal diagram elicited from an expert, represented by a 

DAG 𝐺0 = (𝑉0, 𝐸0), where 𝑉0 is an index set whose entries represent all variables relevant to 

causal inference, and 𝐸0 ⊂ 𝑉0×𝑉0  is the set of directed edges between these variables, 

characterising direct causal relationships. For example, if the expert believes that variable 𝑖 is 

a direct cause of variable 𝑗, then in the expert’s DAG there will be an edge from variable 𝑖 to 

variable 𝑗 : (𝑖, 𝑗) ∈ 𝐸0 . Our interest in causal diagrams is motivated by their role in the 

selection of confounding variables to be adjusted for when estimating the effect of an 

exposure on an outcome, for example using a propensity score model or an outcome 

regression model.  

If 𝐺𝑡𝑟𝑢𝑒 = (𝑉𝑡𝑟𝑢𝑒, 𝐸𝑡𝑟𝑢𝑒) is the “true” underlying DAG, then there are number of ways in which 

𝐺0 could differ from 𝐺. The most serious is the misspecification of the set of variables: 𝑉0 ≠

𝑉𝑡𝑟𝑢𝑒. We assume that this does not occur, i.e. that the set of variables to be considered has 

been correctly specified (denoted by 𝑉 ). Additionally, we suppose that all variables are 

measured. That is, we assume the causal sufficiency assumption. This is a strong assumption, 

which we return to in Sec. 6. 

Supposing that 𝑉0 = 𝑉, 𝐺0  and 𝐺𝑡𝑟𝑢𝑒  will differ if and only if 𝐸0 ≠ 𝐸𝑡𝑟𝑢𝑒 . This can occur in 

several ways that are highlighted in the main text. To recall: (C1) The expert is “essentially 

correct”, providing a causal super-model of the truth: 𝐸𝑡𝑟𝑢𝑒 ⊆ 𝐸0. (C2) The expert is “weakly 

incorrect”, meaning there exists a causal super-model containing both the truth and the 

expert’s model: 𝐸𝑡𝑟𝑢𝑒 ⊈ 𝐸0, but 𝐸0 can be extended, by adding edges, to a set 𝐸 such that 

𝐸𝑡𝑟𝑢𝑒 ⊆ 𝐸 and 𝐸 does not contain any cycles. (C3) The expert is “strongly incorrect”, meaning 

that neither (C1) nor (C2) hold. Examples of cases (C1)-(C3) for a simple true DAG are provided 

in eFigure 1.  

This paper restricts attention to cases (C1) and (C2): when the expert is essentially correct or 

weakly incorrect. We say that such an expert is “directionally informed”. In (C1) the expert 

may over-specify the edge set: in addition to true direct causal relationships, the expert 

incorrectly believes there is a direct causal relationship between at least one pair of variables 

when there is no such relationship. In (C2) the expert overlooks at least one direct cause and 

may specify additional edges such that, if added to 𝐺, the resulting graph would be acyclic.  

The case (C3)  can arise if the expert includes an incorrectly directed edge 𝑖 → 𝑗 in 𝐸0 where 

𝑖 ← 𝑗 belongs to 𝐸𝑡𝑟𝑢𝑒 or if the expert includes an edge such that a cycle would be induced 

were that edge included in 𝐸𝑡𝑟𝑢𝑒.  (C3) is far more challenging as vetting in this case appears 

to require full de novo structure learning. 
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3. STRUCTURE LEARNING AND VETTING DAGS 

Structure learning algorithms have been widely studied (6,7). Our implementation of vetting 

proceeds through the application of a structure learning algorithm to the data set of interest, 

restricting the search space to the subspace of all DAGs  𝐺 = (𝑉, 𝐸) satisfying 𝐸𝑡𝑟𝑢𝑒 ⊆ 𝐸. That 

is, only super-graphs of 𝐺0  are considered. To remain agnostic to the causal problem of 

ultimate interest, we focus on structure learning algorithms that are model-free, being based 

on tests of conditional independence. The aim is to determine if any DAGs with additional 

edges provide a better agreement with the independence relationships in the data than the 

expert-elicited DAG. 

In general, it is not possible to identify graphical structure from conditional independence, as 

multiple DAGs may encode identical conditional independence relationships (8). Such graphs 

are called “Markov equivalent” (9). The set of DAGs can thus be partitioned into classes of 

Markov equivalent DAGs. For our application we took inspiration from the PC algorithm (6), 

which (in its unrestricted form) returns a Markov equivalence class of DAGs. The PC algorithm 

is agnostic to the statistical problem that is of ultimate interest, since no functional or 

distributional assumptions are required for implementation. Additionally, the PC-algorithm is 

readily available in the TETRAD software (10) and in the pcalg package in R (11).  

The “PC-VET” algorithm (oracle version), described in full in Sec. 3, is summarised as consisting 

of two stages: 

I. Begin with a fully connected undirected graph: all variables are connected to all other 

variables with undirected edges. Each pair of variables 𝑖 and 𝑗  is then considered in 

turn. If an edge between 𝑖 and 𝑗  is not in the expert’s edge set 𝐸0, and there exists a 

set of variables 𝑆 ⊆ 𝑉 ∖ {𝑖, 𝑗} such that 𝑖 is conditionally independent of 𝑗 given 𝑆, the 

edge 𝑖 − 𝑗 is deleted.  

II. Second, each undirected edge 𝑖 − 𝑗  is replaced by a directed edge 𝑖 → 𝑗  whenever 

that directed edge belongs to 𝐸0: the expert’s directed edges are included in the graph. 

Once this is completed, an attempt is made to orient as many of the remaining 

undirected edges as possible, using both information from the sets 𝑆 from Stage I and 

deductive logic, based on the algebraic structure of conditional independence. 

 

The first stage of the algorithm builds an undirected skeleton for the DAG, by removing edges 

whenever there exists a set of variables that explains the co-variation of 𝑖 and 𝑗, when the 

expert does not deem such an edge necessary. In practice we do not have access to an oracle 

for conditional independence, so a judgement is made on the basis of a hypothesis test 

applied to the available data. Following the literature on the PC algorithm, for binary data we 

used a chi-squared test of conditional independence at a significance level 𝛼 = 0.05. The 

sensitivity of the final equivalence class of DAGs to the significance level can be assessed by 

running PC-VET with different values of 𝛼. Alternatively, a modification of the PC algorithm to 
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allow control of the false discovery rate is available (12), though we do not consider it here. 

The second stage of the algorithm performs deductive reasoning on the basis of both the 

expert information and the data-driven conditional independence information, by directing 

the expert’s edges as specified, and ensuring that the directions of new edges comply with 

those directions. The full version of the PC-VET algorithm and the theoretical properties of 

the algorithm are provided in Sec. 7.  

The following theoretical properties are established in Sec. 4 below: In cases (C1-2), the oracle 

version of PC-VET returns a partially directed acyclic graph that characterises a vetting 

equivalence class. Moreover, under an additional assumption (A3) in case (C2), this 

equivalence class contains the DAG with edge set 𝐸𝑡𝑟𝑢𝑒 ∪ 𝐸0. All members of this vetting 

equivalence class (i) contain the expert’s edges, and (ii) are valid for causal inference, being 

super-sets of the true causal graph.  

For a given causal quantity of interest, different DAGs in the vetting equivalence class may 

require different adjustment sets of variables. Depending on the application, it may be more 

appropriate to average the resulting estimates of the causal effect over all members of the 

vetting equivalence class or use the graph that results in the most conservative inferences 

(13). The number of DAGs in a Markov equivalence class approaches about 3.7 as the number 

of vertices increases (14), and hence provides an asymptotic upper bound on the size of a 

vetting equivalence class.  

 

4. THEORETICAL PROPERTIES 

In this section we provide a full formal definition of the PC-VET algorithm and establish its 

theoretical properties. 

Our analysis proceeds under the assumption of a causally sufficient set of observable random 

variables ViiX }{ , with finite index set V . We write ),(= EVG  for a general directed acyclic 

graph (DAG) whose vertex set is V  and whose edge set is VVE  . All DAGs below share 

the same vertex set V . A motif of the form kji   where i  and k  are non-adjacent is 

known as a “ v -structure”. Define a “path” EEiiP m   ),,(= 1  in a DAG G  to be a 

sequence of vertices that are connected by edges, agnostic of their direction. A node ki , 

mk <<1 , on P  is said to be a “collider” if the motif 11   kkk iii  occurs. A path 

),,(= 1 miiP   between 1i  to mi  in a DAG G  is said to be “blocked” by a set },{\ 1 miiVS   

whenever there is a node ki  on 𝑃 such that one of the following hold: (i) ki  is not a collider 

on P  and Sik  ; (ii) ki  is a collider on P  and neither ki  nor any of its descendants are in S . 

Given disjoint subsets VCBA ,,  we say that A  and B  are d -separated by C  in the DAG 

G  if every path between vertices in A  and B  is blocked by S . We will use the shorthand 

BA  for DAGs ),(= AEVA  and ),(= BEVB  whenever BA EE  ; i.e. all of the edges that 
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are present in A  are also present in B . Write }{\)()(Pa iVjjiG XX   for the parents of node 

i  in G . For 𝐺 = (𝑉, 𝐸) and 𝐺′ = (𝑉, 𝐸′), write 𝐺 ∪ 𝐺′ for the DAG with edge set 𝐸 ∪ 𝐸′. 

Write   for the (observational) joint distribution of the random variables ViiX }{ . To limit 

scope we consider data which are independent samples Vi

m

im x }{=x  generated from   and 

write n

mm 1=}{= xx  for the full dataset. Denote the empirical distribution of the random 

variables based on data x  by x . 

Our vetting approach is straight-forward to describe. In brief, given data x  generated from a 

true (but unknown) DAG trueG , we proceed as follows: Given the expert’s DAG 0G  we perform 

structure learning over the set  

 𝒟(𝐺0) = {𝐺: 𝐺 is a DAG, 𝐺0 ⊆ 𝐺} 

to determine whether the element �̂� ∈ 𝒟(𝐺0) that provides the best agreement with the 

independence structure in the data x . Then we base our causal inferences on Ĝ  rather than 

0G  (with the possibility that 0Ĝ G ). In situations where certain edges untrueE  do not make 

sense on physical grounds, the search space may be further constrained as  

 𝒟(𝐺0, 𝐸𝑢𝑛𝑡𝑟𝑢𝑒) = {𝐺: 𝐺 = (𝑉, 𝐸)is a DAG, 𝐺0 ⊆ 𝐺, 𝐸 ∩ 𝐸𝑢𝑛𝑡𝑟𝑢𝑒 = ∅}. 

For simplicity of presentation we assume that =untrueE  below. 

It is well-known that structure learning methods based only on conditional independence 

information cannot, in general, identify a unique DAG (15). The same holds true for vetting, 

under a modified notion of equivalence that accounts for expert information:  

Definition. (Vetting equivalence). Given 0G , write GG ~  whenever GG ,  are DAGs such 

that (i) GGG  ,0 , (ii) GG ,  have the same edges (agnostic to direction) and (iii) GG ,  

contain the same v -structures. The relation ~  defines an equivalence class structure 

𝒟(𝐺0)/~ and we refer to elements 𝔾 ∈ 𝒟(𝐺0)/~ as `vetting equivalence classes’.  

This equivalence relationship does not coincide with Markov equivalence, since expert 

information can sometimes be used to orient some edges that cannot otherwise be oriented, 

with knock-on consequences for other parts of the graph due, for example, to the global 

acyclicity constraint. Nevertheless, as with Markov equivalence, a vetting equivalence class 𝔾 

can be characterised by a partially directed acyclic graph (PDAG): 

Proposition 1. Given 0G , a vetting equivalence class 𝔾 ∈ 𝒟(𝐺0)/~ corresponds to a unique 

PDAG 𝑃 = 𝑃(𝔾), defined such that the directed edges in 𝑃 are those which appear in all 

members of 𝔾 and the undirected edges in 𝑃 are those which appear in both orientations 

among members of 𝔾. 
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Proof: Our task is to prove that the map from 𝔾  to 𝑃(𝔾)  is injective. i.e. Given 𝔾, 𝔾′ ∈

𝒟(𝐺0)/~ with 𝔾 ≠ 𝔾′, our task is to show that 𝑃(𝔾) ≠ 𝑃(𝔾′). By definition all members of 

𝔾 (resp. 𝔾′) share the same edge set 𝐸 (resp. 𝐸). The skeleton of  𝑃(𝔾) is identical to the 

skeleton of 𝐸. Thus if 𝐸 ≠ 𝐸′ then 𝑃(𝔾) ≠ 𝑃(𝔾′). So it remains only to consider the case 

where 𝔾, 𝔾′ have the same skeleton but different v -structures. Suppose all members of 𝔾 

include the v -structure 𝑖 → 𝑗 ← 𝑘, but that this is not the case for 𝔾′. From the definition, 

𝑃(𝔾) must contain 𝑖 → 𝑗 ← 𝑘. Now, if 𝑃(𝔾′) also contains 𝑖 → 𝑗 ← 𝑘 then from the definition 

of 𝑃(𝔾′)  it follows that all members of 𝔾′  contain 𝑖 → 𝑗 ← 𝑘 , which contradicts our 

supposition. This proves that the map from 𝔾 to 𝑃(𝔾) is injective, as required. 

Assuming that we are in case (C1) or, under an additional assumption (A3), in case (C2), and 

assuming that we have access to oracle information on the conditional independence 

structure of the distribution  , any logically correct structure learning algorithm that is well-

defined on 𝔾 ∈ 𝒟(𝐺0)/~ will, under standard assumptions (A1-2) below, provide a vetting 

equivalence class 𝔾 ∈ 𝒟(𝐺0)/~ that satisfies GG true  for every element 𝐺 ∈ 𝔾. Below we 

establish that the PC-VET algorithm is well-defined (Proposition 2) and logically correct 

(Proposition 3). Outside the oracle setting, we hope that data x  lead us to choose  𝔾 such 

that, with high probability, GG true  for every element 𝐺 ∈ 𝔾. Thus the output  𝔾  of vetting 

will be an equivalence class of DAGs such that (with high probability) each constituent DAG is 

valid for causal inference. Empirical experiments in the main text suggest that the PC-VET 

algorithm remains effective outside the oracle setting. 

Our method, summarised in the main text, is based on a restriction of the PC algorithm so as 

to enforce edges that are prescribed by the expert. It is described in detail in Algorithm 1. 

To describe the oracle performance of PC-VET, we make the following standard structural 

assumptions (6): 

(A1) Markov property: For all disjoint subsets 𝐴, 𝐵, 𝐶 ⊂ 𝑉, if 𝐴 and 𝐵 are d-separated by 𝐶 in 

the true graph trueG , then 𝑋𝐴 ⊥ 𝑋𝐵|𝑋𝐶, where ⊥ denotes conditional independence. 

(A2) Faithfulness property: For all disjoint subsets 𝐴, 𝐵, 𝐶 ⊂ 𝑉, if 𝑋𝐴 ⊥ 𝑋𝐵|𝑋𝐶, then 𝐴 and 𝐵 

are d-separated by 𝐶 in the true graph trueG . 

The following oracle properties, whose proofs are only sketched for brevity below, are 

consequences of established results on correctness of the standard PC algorithm.  

Proposition 2. (PC-VET is well-defined). Given an empirical distribution ℙ𝒙 , the PC-VET 

algorithm returns a PDAG 𝑃 = 𝑃(𝔾) corresponding to a unique vetting equivalence class 𝔾 ∈

𝒟(𝐺0)/~. 

Sketch: The aim is to show that the output 𝑃 of the PC-VET algorithm corresponds to a PDAG 

𝑃 of the form 𝑃(𝔾) for some 𝔾 ∈ 𝒟(𝐺0)/~ and hence defines a unique vetting equivalence 

class 𝔾 ∈ 𝒟(𝐺0)/~ (Proposition 1). Firstly, observe that the output of Stage I is an undirected 
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graph 𝐺 containing 𝐺0. At the start of Stage II the edges 𝐸0 in 𝐺 are oriented in a way that 𝐺 

is acyclic, since 𝐺0  is itself a DAG. Subsequent operations indexed by ),( jiSk  cannot 

introduce cycles, so that prior to application of (R1-4), the graph 𝐺 is a PDAG. The main result 

then follows from Meek (1995) (16) who proved that (R1-4) were sufficient to find all logically 

implied orientations while preserving acyclicity. Thus application of (R1-4) produces a PDAG 

𝑃 of the form 𝑃(𝔾) for some vetting equivalence class 𝔾 ∈ 𝒟(𝐺0)/~.  

For case (C2) we require an additional assumption: 

(A3) No triplets (𝑖, 𝑗, 𝑘) can be formed such that 

I. 𝑗 ← 𝑘 ∈ G0 and 𝑗 ← 𝑘 ∉ 𝐺𝑡𝑟𝑢𝑒 

II. 𝑖 → 𝑗 ∉ G0 and 𝑖 → 𝑗 ∈ 𝐺𝑡𝑟𝑢𝑒 

III. 𝑖 → 𝑘, 𝑖 ← 𝑘 ∉ 𝐺0 

Proposition 3. (Oracle behaviour: PC-VET is logically correct). Consider cases (C1) and (C2). 

Given oracle information ℙ , under (A1-3), the PC-VET algorithm returns a PDAG 𝑃(𝔾) 

corresponding to the unique vetting equivalence class 𝔾 ∈ 𝒟(𝐺0)/~ generated by true0 GG   

where trueG  is the true DAG. 

Sketch: Note that (C1) and (C2) each imply 0G  can be extended to a DAG Ĝ  satisfying 

GG ˆ
true  . The unique minimal choice for Ĝ , in the sense of containing the fewest possible 

edges, is 
true0

ˆ GGG  . The PC-VET algorithm starts, in Stage I, with the complete undirected 

graph and removes precisely those edges that do not appear (in directed form) in the DAG Ĝ , 

due to (A1-2) and minor modification of the standard analysis of the PC algorithm (6). The 

result is an undirected graph, equal to the skeleton of Ĝ , which is subsequently passed to 

Stage II of the PC-VET algorithm. In Stage II the directed edges 0E  are imposed, then repeated 

application of (R1-4) is necessary and sufficient to establish all logically implied edge 

orientations (16). In the case of (C2), assumption (A3) ensures that the orientation phase of 

the PC algorithm is not affected by v-structures that are incorrectly introduced due to the 

inclusion of incorrect edges in 𝐺0. The result is a PDAG 𝑃 where (using Proposition 1) we have 

𝑃 = 𝑃(𝔾) such that Ĝ ∈ 𝔾. 

Proposition 3 demonstrates that in the oracle setting, or equivalently given unlimited data, 

the PC-VET algorithm returns a vetting equivalence class of DAGs, each element of which is a 

valid DAG for the purpose of causal inference. In practice the algorithm operates with finite 

data and the error rate in testing of conditional independences must be controlled to ensure 

that the output of the empirical version of the PC-VET algorithm is a set of DAGs that are each 

valid for the inference problem.  

This performance of the PC-VET algorithm at finite 𝑛 can be explored theoretically, under 

additional assumptions, via slight modification to the theory provided in (17). This was, 
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however, beyond the scope of the present paper.  Similarly, there are numerous extensions 

to the PC algorithm in the literature that could be employed with minor modification in the 

context of vetting; these were also beyond the scope of this paper. 

 

5. ADDITIONAL RESULTS FOR THE MCCS ANALYSIS 

For the MCCS application, a contingency table of Living Alone against Alcohol Intake makes 

clear that the expert DAG was incorrect in its assumption of independence of these two 

variables: 

Alcohol Intake \ Living Alone No Yes 

0-39 g/day 6733 (85%) 844 (80%) 

40+ g/day  1215 (15%) 208 (20%) 

 

Restricting to participants who lived alone, the proportion who reported high Alcohol Intake 

was 0.20, while for participants who did not live alone the corresponding proportion was 0.15. 

It seems that in this case the expert has made a mistake and should reconsider their causal 

diagram. 

 

6. DISCUSSION  

Through simulation we demonstrated how vetting can confer more accurate estimation of 

causal effects. The strong observed performance occurs since inclusion of overlooked edges 

can change the set of variables to be adjusted for when estimating the effect of an exposure 

on the outcome and reduce bias in the estimation of the effect. 

Vetting is an easy-to-implement, independent pre-processing step that can be used to detect 

and avoid under-specification of causal models. However, the vetting procedure is unable to 

exclude or reverse the direction of any edges that are included in the expert-elicited DAG. 

Contradicting expert-supplied edges appears to require de novo learning of the entire DAG 

structure from data. For the purposes of vetting, we would encourage the expert to avoid the 

strongly incorrect case by providing information only on edges about which they are certain 

of the directionality.  

This work proceeded under the (strong) assumptions that all relevant variables were included 

in the expert-elicited DAG and that all variables were measured. Our approach could be 

extended to “partial ancestral graphs”, which permit the inclusion of latent variables and can 

be learned from data using the fast causal inference algorithm (1,2). Using such an approach 

would permit the inclusion of unmeasured variables in the expert-elicited DAG, but would be 

more data-intensive.  
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In practice we expect that vetting will be used to aid the expert elicitation of causal structure, 

as a tool to allow an expert to converge on a suitable graphical structure. In this respect it 

may be desirable to perform pre-processing and estimation on separate subsets of the data, 

to prevent any suggestion of “using the data twice”. We took a similar approach in our 

application of vetting to the MCCS data: we used a random subset of the data to vet the DAG, 

and then estimated odds ratios using the entire data set (which was itself a random 

subsample of the MCCS dataset, and thus the final estimates of the total causal effect are for 

illustrative purposes only and should not be interpreted substantively).  Finally, we advise that 

the output of vetting should ideally be verified against independent data sources, where 

possible. 

 

7. PC-VET ALGORITHM 

Below we present pseudo-code for the PC-VET algorithm. Here }{\)()(Ne iVjjiG XX   is used to 

denote the neigobours of node i  in an undirected graph G . 

 

Stage I: Obtaining the skeleton  

G  complete undirected graph on vertex set V    

0m    

while mjVj G |>)(Ne:|  do  

for Vi  such that Gji   and ji  , 0Gji   do  

test if }{\)(Ne ijS G  such that mS |=|  and Skkji XXX  )(|   

if true then  

store the set SjiS ),(     

delete the edge ji   from G   

end 

end 

1mm  

end 

Stage II: Orienting the edges  

Orient ji   into ji   whenever Gji   and 0Gji    
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for Vji ,  non-adjacent with common neighbour k do 

if ),( jiSk  then 

if Gjki   then 

Replace jki   with jki  , provided no cycles are created  

end 

if Gjki   then 

Replace jki   with jki  , provided no cycles are created  

end 

end 

end 

repeat 

R1: orient kj   into kj   whenever there is an arrow ji   such that i  and k  are 

non-adjacent.     

R2: orient ji   into ji   whenever there is a chain jki  .  

R3: orient ji   into ji   whenever there are two chains jki   and jli   

such that k  and l  are non-adjacent.  

R4: orient ji   into ji   whenever there are two chains lki   and jli   

such that j  and k  are non-adjacent.  

until no further application of R1-R4 is possible 

return a partially directed acyclic graph 𝑃 = 𝐺. 

 

Note that the output of PC-VET is dependent on the order of the operations that are carried 

out in Stage I. This particular feature is also present in the standard PC algorithm, where it is 

known that this order-dependence is not problematic in low dimensional settings. The 

standard PC algorithm can be made order-independent following the methods in (18) and 

these can also be applied to the PC-VET algorithm. However, this was beyond the scope of 

the present research. 
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8. ADDITIONAL FIGURES 

 

 

 

eFigure 1: Here we enumerate all essentially correct, weakly incorrect, and strongly incorrect 

DAGs 𝐺0 that could be proposed by an expert, where correctness is defined relative to the 

true DAG 𝐺𝑡𝑟𝑢𝑒 of the form 𝑋 → 𝑌 → 𝑍. 

 

  

True DAG: X Y Z

Essentially correct DAGs:

X Y Z X Y Z

Weakly incorrect DAGs:

X Y Z

X Y Z X Y Z X Y Z

X Y Z X Y Z

Strongly incorrect DAGs:

X Y Z X Y Z X Y Z

X Y Z X Y Z X Y Z

X Y Z X Y Z X Y Z

X Y Z X Y Z X Y Z

X Y Z X Y Z X Y Z

X Y Z X Y Z
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(a) 𝛼 = 0.025 

 

(b) 𝛼 = 0.1 

eFigure 2: Here we investigate sensitivity of the results for the Melbourne Collaborative 

Cohort Study, reported in Figure 3 of the main text, to the choice of significance threshold 

𝛼 = 0.05. (a) For 𝛼 = 0.025 we no longer have statistical power to detect an edge from 

Physical Activity to Waist (blue line). (b) For 𝛼 = 0.1 we report, in addition, undirected edges 

between Age and Smoking, and between Ethnicity and Living Alone (red lines). Context (time 

ordering) implies that these edges operate as Age → Smoking and Ethnicity → Living Alone. 

 

 

 



13 
 

 

eFigure 3: The directed acyclic graph returned by applying the unrestricted PC algorithm to 

the Melbourne Collaborative Cohort Study data. This results in many edges that do not appear 

to have reasonable subject-matter interpretations, for example the edges from Physical 

activity and Education to Ethnicity do not appear to have reasonable interpretations. 

 

 

 

 

 

 

 

  

Waist Death

Physical

activity

Age

Ethnicity

Alcohol

intake

Education

History

of illness

Family

illness

Living

alone

Smoking
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