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LUNG HEALTH STUDY DATA

The data from the Lung Health Study were download from the database for Genotype and Phenotypes

(dbGaP; https://www.ncbi.nlm.nih.gov/gap) that was designed to share data from studies that have exam-

ined genotype-phenotype associations in humans. Instructions for applying for dbGaP data can be found at

https://www.ncbi.nlm.nih.gov/books/NBK5294/, and instructions for downloading and extracting data can

be found at https://www.ncbi.nlm.nih.gov/books/NBK5291/.

MULTIPLE IMPUTATION APPROACH

The primary goal of our imputation model is to estimate, and sample from, the conditional exposure distribu-
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exposure (SNP rs7671167), binary response vector (chronic bronchitis indicator), completely observed co-

variates and sampling indicator, respectively. There are several approaches to estimating this quantity. Our

analysis of the Lung Health Study implemented one approach that utilized the machinery of the ascertain-

ment corrected likelihood coupled with the explicit modeling of the marginal exposure distribution among

sampled subjects.
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Via equation (1) and Bayes’ Theorem, the associated conditional (on y
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) exposure odds model for non-

sampled subjects may then be written as
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where the right hand side of equation (2) corresponds to the product of ascertainment-corrected likelihood

ratio and a marginal exposure odds model in sampled subjects. Further, the marginal exposure model in the

sampled subjects may be represented as a product of ratio of ascertainment corrections and the marginal

exposure model in the population
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and may be estimated using a logistic regression model with log of the ascertainment corrections as an o↵set.

To construct imputation dataset m, where m = 1, . . . ,M , the following steps were performed:

1. On sampled subjects, maximize the ascertainment corrected log-likelihood, log[Lc

i

(✓|Y
i

,X

i

)], as de-

scribed above, and estimate response model parameters, ✓̂ and dCov(✓̂).
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3. On sampled subjects, estimate marginal exposure model parameters, !, by fitting a logistic regression

of X
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4. For non-sampled subjects, calculate and multiply (2a) and (3a) to obtain the conditional exposure

odds, and subsequently draw imputed values of X(m)
ei

.

With each complete imputation dataset, standard maximum likelihood analysis is performed and results

stored. Standard methods (e.g., Rubin’s rules) may be used to combine results across imputations and to

perform inferences regarding target model parameters.
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