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eAppendix A: asymptotic unbiasedness of the two-

stage estimator

Let Ri(t) ≡ I(Ti ≥ t), dNi(t) = I(Ti = t) and Ri0(t) ≡ I(Ti0 ≤ t). Following a similar

reasoning as in1, one can see that the suggested two-stage estimator is asymptotically

equivalent to the solution to the following estimating equation:

0 =
n∑

i=1

∫ ∞

0

[Mi(t)− E {Mi(t)|Ti ≥ t, Ti0 < t}]Ri(t)Ri0(t) {dNi(t)− ψMi(t)dt− dΩ0(t)} .

When Mi(t) is obtained by fitting model

E(Ai|Zi, Ti ≥ t, Ti0 < t) = α0(t) + α1(t)Zi,
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using ordinary least squares, then α0(t) and α1(t) are obtained as solutions to

0 =
n∑

i=1

(
1
Zi

)
Ri(t)Ri0(t) {Ai −Mi(t)} . (1)

Under the considered additive hazard model, Equation 3 of the main paper, the contri-

butions to the estimating equation for ψ then have mean

E

(∫ ∞

0

[Mi(t)− E {Mi(t)|Ti ≥ t, Ti0 < t}]Ri(t)Ri0(t) [ψ {Ai −Mi(t)} dt+ dΩ(t, Ui)]

)
,

for some function Ω(t, Ui), which reduces to

E

(∫ ∞

0

[Mi(t)− E {Mi(t)|Ti ≥ t, Ti0 < t}]Ri(t)Ri0(t)dΩ(t, Ui)

)
,

by the ordinary least squares restrictions (1), regardless of whether the first-stage model is

correctly specified. The latter expectation equals zero under the restrictions in Equation

5 of the main paper. Note that these restrictions are satisfied under the additive hazards

model, Equation 3 of the main paper, when

Ai − E(Ai|Zi) ⊥⊥ Ui

and Ti0 ⊥⊥ (Zi, Ai, Ti)|Ui (see2). The latter assumption is guaranteed to hold when there

is no birth cohort effect on the genotype distribution, in the sense that Z is independent

of T0 (i.e., when the population allele frequencies are the same across birth cohorts), for

then one can let U be a vector of variables that includes T0 (see2).

eAppendix B: R code

The proposed analysis can be conducted based on the following R code, where ti is the

vector of observed event (or censoring) times, t0 is the vector of observed entry times, d

the event indicator (1 if an event occurred, 0 if censoring occurred), a the exposure, z the

IV and id a subject identifier. We provide an artificial, simulated dataset to enable the

user to perform a test run of the code.
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install.packages("timereg")

library(timereg)

# generate artificial test dataset

n <- 500

u <- rnorm(n)

z <- rbinom(n,1,0.5)

a <- rnorm(n,3+z-u)

ti <- rexp(n,1/abs(0.5*a+0.25*u))

d <- ifelse(ti<10,1,0)

ti <- pmin(ti,10)

t0 <- runif(n,0,0.5)

id <- 1:length(a)

# vector of observed event times

times <- sort(unique(c(t0,ti)[t0<ti]))

n <- length(times)

# construct longitudinal dataset which expresses all observed at risk periods

dataset <- data.frame(y=rep(y,each=n),ti=rep(ti,each=n),t0=rep(t0,each=n),

d=rep(d,each=n),a=rep(a,each=n),z=rep(z,each=n),id=rep(id,each=n),

start=rep(c(0,times[-n]),length=n),stop=rep(times,length=n))

dataset <- dataset[dataset$t0<dataset$ti,]

dataset <- dataset[dataset$t0<=dataset$start,]

dataset <- dataset[dataset$ti>=dataset$stop,]

dataset$d[dataset$ti>dataset$stop] <- 0

# construct predictions M(t) - denoted m

dataset$m <- NULL

for (i in 1:(length(times)-1)){

ty <- times[i]

s <- (dataset$ti >= ty)&(dataset$t0 <= ty)

dataset$m[dataset$start==ty] <- predict(lm(a~z, data=dataset[s,]),

newdata=data.frame(z=dataset$z[dataset$start==ty]))

}

# fit the second-stage additive hazards model

aalen(Surv(start,stop,d)~const(m),data = dataset)
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We moreover provide code for assessing the plausibility of the location shift assump-
tion.

res <- matrix(0,ncol=3,nrow=100)

delta <- resid(lm(a~z))

for (i in 1:100){

# choose a range of values theta up to the maximum accumulated exposure effect

# here an exposure effect of 0.08 which accumulates for at most 30 years

res[i,1] <- (30*i/100)*0.08

# calculate the correlation

res[i,2] <- cor(z,exp(-res[i,1]*delta))

# test for evidence of a correlation

res[i,3] <- cor.test(z,exp(-res[i,1]*delta))$p.value

}

par(mfrow=c(1,2))

plot(res[,1],res[,2],xlab=expression(theta),ylab="Correlation")

plot(res[,1],log(res[,3]),xlab=expression(theta),ylab="log p-value",

ylim=c(log(0.001),0))

abline(h=log(0.05))

Significant evidence of a correlation is suggestive of a violation of the location shift

assumption.
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