
Presence of Time-Varying confounders in

TT design

We show what happens in the presence of time-varying unmeasured
confounders when using TT design. We first stratify the entire population
into g strata according to the quintiles of the estimated CPE, which is
estimated based on the observed covariates via the logistic regression. For
each subgroup G and each time point t, we aggregate the individual-level
data to obtain quantities in the following 2× 2 table

outcome Y t
i = 1 outcome Y t

i = 0 Total

Exposure Zti = 1 nt11 nt10 nt1
Exposure Zti = 0 nt01 nt00 nt0

Because h is the logit function, we have:

E(Y t
i |Zti , G) = E(E(Y t

i |Zti , G,Xt
i ))

=

∫
exp(β0 + β1Z

t
i + β2t+ γTXi)

1 + exp(β0 + β1Zti + β2t+ γTXt
i )
dF (Xt

i |Zti , G), (1)

where Xt is the vector of measured/unmeasured confounders. We first
show that the treatment effect wont be identifiable under the standard TT
assumptions that are

1. Covariates and time have multiplicative effects on being exposed. i.e.
P (Zti |Xt

i ) = h1(X
t
i )h2(t).

2. Covariates for all individuals in any subgroup G are random variables
from an unknown distribution. i.e., p(Xt

i |G) = f tG.

3. The outcome is a rare event, and therefore we can omit the denominator
of the integrand in equation (1).

With these assumptions, we have:

E(Y t
i |Zti , G) ≈

∫
exp(β0 + β1Z

T
i + β2t+ γTXt

i )dF (Xt
i |Zti , G)

= exp(β0 + β1Z
T
i + β2t)E(exp{γTXt

i}|Zti , G) (2)
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In order to expand E(γTXt
i |Zti , G), we compute the conditional distribution

of covariates Xi given ZTi and G using the Bayes rule:

p(Xt
i |Zti = 1, G) =

p(Zti = 1, Xt
i |G)

p(Zti = 1|G)
=
p(Zti = 1|Xt

i , G)p(Xt
i |G)

p(Zti = 1|G)

=
p(Zti = 1|Xt

i )p(X
t
i |G)

p(Zti = 1|G)
=
h1(X

t
i )h2(t)f

t
G

p(Zti = 1|G)

p(Xt
i |Zti = 0, G) =

p(Zti = 0, Xt
i |G)

p(Zti = 0|G)
=
p(Zti = 0|Xt

i , G)p(Xt
i |G)

p(Zti = 0|G)

=
p(Zti = 0|Xt

i )p(X
t
i |G)

p(Zti = 0|G)
=
f tG − h1(Xt

i )h2(t)f
t
G

p(Zti = 0|G)

Therefore,

p(Xt
i |Zti = 1, G) =

h1(X
t
i )h2(t)f

t
G

p(Zti = 1|G)

p(Xt
i |Zti = 0, G) =

f tG − h1(Xt
i )h2(t)f

t
G

p(Zti = 0|G)

Define the following constants which depend on both G and t

Ct1G :=

∫
exp(γTXt

i )h1(X
t
i )f

t
GdX

t
i

Ct2G :=

∫
exp(γTXt

i )f
t
GdX

t
i

Ct3G :=

∫
h1(X

t
i )f

t
GdX

t
i

The marginal expectation E(Y t
i |Zti , G) now becomes:

E(Y t
i |Zti = 1, G) = exp(β0 + β1 + β2t)

Ct1G
Ct3G

E(Y t
i |Zti = 0, G) = exp(β0 + β2t)

Ct2G − Ct1Gh2(t)
1− Ct3Gh2(t)

The two equations above are covariates-free. Thus, the marginal expectation
of outcome is the same across treated/control individuals within the same
subgroup and time.
Because each Y t

i is a binary variable, aggregating outcomes for the treated
and the control yield two binomial distributions. Consequently, we can write
down the parametric likelihood for (nt11, n

t
01, n

t
10, n

t
00):

nt11 ∼ Binomial(nt11 + nt10, e
β0+β1+β2t

Ct1G
Ct3G

) (3)

nt01 ∼ Binomial(nt01 + nt00, e
β0+β2t

Ct2G − h2(t)Ct1G
1− h2(t)Ct3G

) (4)
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where Ct1G, C
t
2G, C

t
3G are unknown constants that depend on group and time.

The resulted parametric likelihood has more parameters than data points,
and thus, the parameters are not identifiable. One way to reduce the number
of parameters is to impose two additional assumptions:

1’. Covariates and time have multiplicative effects on being exposed. i.e.
P (Zti |Xt

i ) = h1(X
0
i )h2(t), where X0 denote the vector of confounders

at baseline.

2’. Covariates for all individuals in any subgroup G are random variables
from an unknown distribution such that

E(exp{γTXt
i}|Zti , G) = κh3(t)E(exp{γTX0

i }|Zti , G).

where κ is a constant and h3(t) is a function of time. This assumption
holds when, for example, Xt = ω(t) +X0 + ε, where ε is a mean zero
random noise that is independent of (Zt, G). Then,

E(exp{γTXt
i}|Zti , G) = exp{γTω(t)}E(exp{γT ε})E(exp{γTX0

i }|Zti , G)

Let f0G = p(X0
i |G). Under these two assumptions,

p(Xt
i |Zti = 1, G) =

h1(X
0
i )h2(t)f

0
Gh3(t)

p(Zti = 1|G)

=
h1(X

0
i )h2(t)f

0
Gh3(t)∫

h1(X0
i )h2(t)f0Gh3(t)dX

0
i

=
h1(X

0
i )f0G∫

h1(X0
i )f0GdX

0
i

p(Xt
i |Zti = 0, G) =

f0Gh3(t)− h1(X0
i )h2(t)f

0
Gh3(t)

p(Zti = 0|G)

=
f0Gh3(t)− h1(X0

i )h2(t)f
0
Gh3(t)

1−
∫
h1(X0

i )h2(t)f0Gh3(t)dX
0
i

=
f0Gh3(t)− h1(X0

i )h2(t)f
0
Gh3(t)

1− h∗2(t)
∫
h1(X0

i )f0GdX
0
i

,

where h∗2(t) = h2(t)h3(t). Therefore,

C1G :=

∫
exp(γTXt

i )h1(X
0
i )f0GdX

0
i

C2G :=

∫
exp(γTX0

i )f0GdX
0
i

C3G :=

∫
h1(X

0
i )f0GdX

0
i

The marginal expectation E(Y t
i |Zti , G) now becomes:

E(Y t
i |Zti = 1, G) = exp(β0 + β1 + β2t)

C1G

C3G

E(Y t
i |Zti = 0, G) = exp(β0 + β2t)

h3(t)C2G − C1Gh
∗
2(t)

1− C3Gh∗2(t)
.
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The model above has 3∗g+2∗T +3 parameters and g ∗T data points.
Thus as long as 3 ∗ g + 2 ∗ T + 3 ≤ g ∗ T , the treatment effect would
be identifiable.
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