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1. Details related to patient exclusions 

eFigure 1 provides a flowchart illustrating the derivation of the analysis sample. Of the 19,264 

patients who initiated hemodialysis during the study period, we excluded the following: 536 patients 

who recovered kidney function, 879 patients with unknown height, race, or comorbidity status, 21 

patients with extreme (<130 cm) baseline height, 1376 patients with an extreme (≥45 or <17.5 

kg/m2) BMI measurement during follow up. Since there were some overlaps for these exclusion 

categories (e.g. a patient might have had a missing height measurement and have recovered 

kidney function) these exclusions meant there were 16,585 patients remaining, of which 16,414 

patients had at least one BMI measurement recorded prior to death, transplant or censoring and 

were therefore included in the main analyses. 

2. Observed BMI trajectories 

Observed longitudinal BMI trajectories for a random sample of 25 patients are shown in eFigure 2. 

3. Numbers of patients with BMI measurements in the 1st, 2nd, 3rd, 4th and 5th years 

In the main manuscript we report that the percentage of patients with 1, 2, 3, 4, and 5 BMI 

measurements respectively (prior to death, transplant or censoring) was 18%, 21%, 17%, 14% and 

30%. In Table 1 of the main manuscript we also report the specific number of patients with 1, 2, 3, 

4, and 5 BMI measurements respectively. Here we provide some additional information about the 

frequency of the BMI measurements: 

- Of the 12,449 patients who were still at risk of an event after 1 year of follow up, we found 

that 12,325 (99.0%) patients had a BMI measurement during their first year. 

- Of the 9,196 patients who were still at risk of an event after 2 years of follow up, we found 

that 9,140 (99.4%) patients had a BMI measurement during their second year. 

- Of the 6,588 patients who were still at risk of an event after 3 years of follow up, we found 

that 6,540 (99.3%) patients had a BMI measurement during their third year. 



- Of the 4,511 patients who were still at risk of an event after 4 years of follow up, we found 

that 4,484 (99.4%) patients had a BMI measurement during their fourth year. 

Of the 3,049 patients who were still at risk of an event after 5 years of follow up (i.e. those who were 

censored at the maximum follow up time), we found that 3,019 (99.0%) patients had a BMI 

measurement during their fifth year. 

4. Computational details for the latent class joint model 

4.1. Overview 

The latent class joint model, defined in the main manuscript, was estimated using the ‘Jointlcmm’ 

command in the ‘lcmm’ R package [1–3]. Maximum likelihood estimates are obtained using a 

modified Marquardt algorithm (see the package documentation for details [2]). The package’s 

default setting enforces strict convergence criteria, which we did not alter (tolerance of 1E-4 for 

each of: parameter stability, log-likelihood stability, and stability of the first derivatives). We chose to 

use the default square transformation of the baseline hazard parameters (argument ‘logscale = 

FALSE’) to ensure positivity of the baseline hazard throughout the estimation process. 

Several possible extensions to the model were also explored, but often led to difficulties achieving 

convergence. Attempts were made to use a baseline hazard modelled with cubic M-splines 

(argument ‘hazard = “splines”’), however, difficulties with convergence were encountered (even 

when using a small number of internal knots for the splines). Therefore, a simpler Weibull baseline 

hazard specification was used for the models in the main manuscript. We also encountered 

difficulties achieving convergence when the variance of the individual-level random effects was 

allowed to differ across latent classes.  

4.2. Example code 

In several supplementary files, we provide an example of the R code used to fit the latent class joint 



model. These files are named:  

- “example_code_default.R” 

- “example_code_gridsearch.R” 

- “example_code_randominits.R” 

The three files differ in their approach to starting / initial values for the parameters. The three 

approaches used for initial values are described in the next section. 

4.3. Initial values 

We found that we encountered difficulties with convergence unless reasonable initial values were 

used. In particular, our solution reported in the main manuscript was found using two strategies, 

described as follows. 

Strategy A: example code shown in the supplementary file “example_code_default.R”. 

A1. We first fit a model with the same structure as our intended latent class joint model, but with 

only one class (i.e. specifying the argument ‘ng = 1’ to the ‘Jointlcmm’ function in the lcmm R 

package). We denote this model: ‘initmod’. 

A2. We then use the parameter estimates from the one class model (‘initmod’) to generate initial 

values for the M-class model we wish to fit (where M is the number of desired classes). This is 

achieved by specifying the arguments ‘ng = M’ and ‘B = initmod’ to the ‘Jointlcmm’ function. We 

use a maximum of 200 iterations. We denote this model: ‘mod’. 

A3. If the M-class model (‘mod’) converged, then we stop. Otherwise, if the M-class model 

(‘mod’) did not converge after 200 iterations then we do the following: 

A3.1. We extract the final parameter estimates from the M-class joint model that did not 

converge. 

A3.2. We then fit an M-class model for the longitudinal BMI data only (ignoring the death and 



transplant data) and we extract the final parameter estimates from that model. 

A3.3. We substitute the estimates from Step A3.2 into the vector of parameter estimates 

from Step A3.1 and then refit the model using those parameter estimates as starting values 

for a new attempt at fitting the M-class joint model. 

Strategy B: example code shown in the supplementary file “example_code_gridsearch.R”. Note that 

Strategy B is the same as Strategy A, except that a grid search is used in the second step.  

B1. Same as Step A1. 

B2. We then use the parameter estimates from the one class model (‘initmod’) to randomly 

generate 3 sets of initial values for M-class model, we then run each of these 3 models for a 

maximum of 50 iterations. This is achieved by using the ‘gridsearch’ function in the lcmm 

package, with arguments ‘rep = 3’ and ‘maxiter = 50’. We then take the model with the highest 

log-likelihood, and run that model until convergence or until the maximum number of iterations 

(200) is reached. Let us denote this model: ‘mod’. 

B3. Same as A3. 

We then confirmed that Strategy A and Strategy B led to the same solution. Note that in most cases 

the model in Step A2/B2 did not converge, and the parameter estimates from an M-class model with 

just the longitudinal BMI data was required to produce starting values for the M-class joint model 

(i.e. Steps A3.1 through A3.3, or Steps B3.1 through B3.3, were required). 

Additional Strategy: In response to a reviewer’s suggestion, we then also ran the five-class joint 

model (i.e. our final model) with a variety of random initial values. Specifically, we used 27 randomly 

generated sets of initial values. The function to generate the initial values can be found in the 

supplementary file “example_code_randominits.R”. From these 27 models, we found the following: 

- 11 stopped abnormally (with no additional information provided by the lcmm package) 

- 13 models did not converge after 200 iterations 



- 3 models converged 

Of the models that converged, one provided a seemingly nonsensical solution. The two other 

models converged to a common solution that was very similar, but not identical, to the solution 

found using Strategy A and Strategy B.  

Compared with the final solution reported in the manuscript (found using Strategy A and Strategy 

B), the solution found with the random initial values had a slightly higher log-likelihood (-27324 vs -

27434) and slightly lower BIC value (55367 vs 55586). However, these differences are small relative 

to the decrease in BIC observed with adding additional latent classes; for example, the six-class 

solution reported in the manuscript had a BIC value of 54878. Moreover, the findings related to the 

predicted longitudinal trajectories and hazard functions (see eFigure 3) were very similar to the 

results reported in the manuscript. 

Since multimodality is such a critical issue in latent class models, one ideally wants to use many 

sets of randomly selected initial values. This can provide reassurance (but not certainty) that the 

final solution corresponds to a global maximum. Ideally, many sets of randomly selected initial 

values would also be used for the models estimated along the model building / selection / 

comparison process. However, we found that such an endeavour is somewhat hampered in latent 

class joint models by their computational complexity and - in particular – issues with convergence 

and long computation times (see the next section). Nonetheless, it is worth noting that the 

computation times would be shorter if fitting these models to a smaller dataset (for example less 

individuals and/or less longitudinal measurements), which would allow a greater number of models 

to be estimated in a given time.  

4.4. Computation times  

Fitting the latent class joint models was time consuming. For example, for the five-class joint model 

using Strategy A for specifying the initial values, it took approximately 30 hours to fit the final model 

using a single 2.5GHz core on the Monash University computing cluster. However, Steps A3.1 



through A3.3 (see Strategy A in the previous section) of that process took only 3 hours, meaning 

that once reasonable starting values were used for the five class-specific longitudinal BMI 

trajectories the estimation time decreased dramatically.  

5. Choice of individual-level random effects structure 

We considered adding additional individual-level random effects to the model. Specifically, we 

considered including individual-level random effects for the coefficients of the cubic splines basis 

terms. However, this led to a model where the predicted BMI trajectory for each latent class was 

relatively stable/flat, with the latent classes primarily distinguished by different starting/average BMI 

values, or differences in the event rates, and not by differences in the shapes of the longitudinal BMI 

trajectories (see eFigure 4). That is, in a model that included individual-level random effects for the 

cubic spline terms, variation in the shapes of the longitudinal BMI trajectories appeared to be 

attributed to between-individual (i.e. within-class) heterogeneity.  

Accordingly, we chose to simplify the individual-level random effects structure in our model (that is, 

only include an individual-level random intercept). By doing this, we believe that differences in the 

shapes of the longitudinal profiles are exhibited primarily through between-class differences, and 

less absorbed by within-class (between-individual) variation. We believe that this approach more 

closely aligns with our study objectives, specifically to explore differences in the shapes of the class-

specific longitudinal BMI trajectories, and how those are associated with differences in the class-

specific rates of the competing events. 

6. Results for the six-class joint model 

eFigure 5 shows the predicted BMI trajectories and cause-specific hazard functions, for each latent 

class, based on the six-class model. The covariate values used in the predictions are the same as 

used for the hazard functions in Figure 2 of the main manuscript. The difference here is that eFigure 

5 is for the six-class model, whereas Figure 2 in the main manuscript is for the five-class model.  



As discussed in the main manuscript, we calculated Bayesian information criterion (BIC) values for 

models with a varying number of latent classes. The BIC values suggested that higher numbers of 

latent classes consistently resulted in a better fitting model. However, as the number of latent 

classes increased, the groups became less distinguished from one another (accompanied by a 

decrease in relative entropy, see Table 1 of the manuscript) and therefore less useful in terms of 

drawing meaningful conclusions from a clinical perspective. That is, based on a purely statistical 

criterion (the BIC), there is a suggestion that increasing numbers of classes are better, but from an 

interpretational perspective an ever-increasing number of latent classes was not useful. We 

therefore chose the five-class model as our final model.  

It can be seen in eFigure 5 that, for the six-class model, the main difference from the five-class 

model is that the “late BMI decline” class is split based on baseline BMI values and associated 

hazard rates for transplant. Since our primary interest is in the association between BMI and risk of 

death, we determined that increasing the number of latent classes to six was not warranted and we 

had similar conclusions from exploratory analysis with models having higher numbers of classes.  

7. Cumulative incidence functions 

The cause-specific hazard functions presented in Figure 2 of the main manuscript show the 

instantaneous rates (i.e. “hazard”) of each event at time t, given that the individual is still at risk of 

the event. Alternatively, we can present cumulative incidence functions for each of the competing 

events; these are shown in eFigures 6 (without 95% confidence limits) and 7 (with 95% confidence 

limits), for the same covariate profile as used for the hazard functions in Figure 2 of the main 

manuscript. The cumulative incidence functions show the cumulative risk (i.e. probability) of the 

event having occurred at any point up to time t.  

Broadly speaking, the cause-specific hazard functions are useful for understanding the potential for 

etiological associations between the class-specific BMI trajectories and the occurrence of the 

competing events and thus more suited to the aims of our manuscript. On the other hand, the 

cumulative incidence functions are generally suited to understanding patient prognosis; for example, 



“what is the probability that a patient in latent class X will experience death within 5 years”. 

Importantly, the cumulative incidence function for one of the events, say death, depends on the 

hazard rates for both of the competing events. For example, whether a patient dies within 5 years 

depends partly on the rate of death, and partly on their rate of the competing event of transplant. 

Therefore, the association of a characteristic, say BMI, and the cumulative incidence function of an 

event, say death (without transplant), will depend on the associations between BMI and the hazard 

of both competing events, say death (without transplant) and transplant. Thus, in general, the 

association of a characteristic with the hazard of an event will be different to that with the cumulative 

incidence function of the same event, and in extreme cases could even be in opposite directions [4]. 

If the aims of our paper had been related to developing a model for patient prognosis, then we 

would have been interested in measures of predictive performance for the fitted models. Moreover, 

issues such as non-proportional hazards would have been more relevant since they can have a 

significant impact on the prognostic performance of the fitted model. 

For a more thorough discussion of the differences between cause-specific hazard functions and 

cumulative incidence functions, and how they each align with the intended aims of a study, we refer 

the reader to Koller et al. [5]. 

8. Goodness of fit of the final model (observed vs predicted longitudinal trajectories) 

eFigures 8 and 9 show observed and predicted, class-specific, longitudinal BMI trajectories. They 

are based on weighted means of the observed and predicted BMI values. The weighting refers to 

the estimated class membership probabilities for each individual, whilst the means are taken by 

splitting the distribution of observed measurement times into 15 quantiles (i.e. 15 “bins”).  

The plots show that the predicted mean longitudinal trajectories generally provide a good fit to the 

observed data. There is some discrepancy between the observed and marginal predicted BMI 

values beyond 2.5 years for the “rapid BMI decline” class (i.e. the black curve in eFigure 8). 

However, this is probably due to the fact that this class has a relatively small number of patients 



overall, and has a high mortality rate early on in the follow up period. Therefore, the majority of the 

BMI measurements for this class are observed earlier in the follow up period. Because the bulk of 

the data is observed earlier in the follow up period the spline-based trajectory is seen to fit best in 

that region, whereas it has insufficient flexibility to capture the stabilising of the BMI curve after 2.5 

years. Note however, that incorporating the subject-specific random intercept (i.e. the subject-

specific predictions in eFigure 9) resolves the discrepancy between the observed and predicted BMI 

values. 

9. GRoLTS checklist 

eTable 2 shows a completed GRoLTS (Guidelines for Reporting on Latent Trajectory Studies) 

checklist for our study [6].  

(To satisfy Item #15 of the GRoLTS checklist we have also included another file in our online 

Supplementary Materials entitled “table_full_model_estimates.txt”. This plain text file includes an 

unformatted table of the entire list of parameter estimates from the final model.) 
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eTable 1. Mean posterior probabilities of class membership, stratified by class membership (as 

determined by an individual’s highest class-specific probability, and shown on the rows).    

 Class membership 
(% of patients) 

Mean probabilities of class membership 

Prob 
(Class A) 

Prob 
(Class B) 

Prob 
(Class C) 

Prob 
(Class D) 

Prob 
(Class E) 

Class A (74.7%) 0.89 0.04 0.04 0.01 0.03 

Class B (13.8%) 0.11 0.73 0.09 0.03 0.04 

Class C (6.2%) 0.13 0.08 0.77 0.03 0.00 

Class D (1.5%) 0.07 0.02 0.10 0.81 0.00 

Class E (3.9%) 0.13 0.08 0.00 0.00 0.78 

 

 

 

  



eTable 2. GRoLTS checklist. 

GRoLTS checklist item Yes/No Additional comments 

1. Is the metric of time used in the 
statistical model reported?  

Yes Time metric is years. 

2. Is information presented about the 
mean and variance of time within a 
wave?  

NA Exact time of the measurement (ANZDATA 
survey date - baseline date) is used in the 
analysis, so time-structured data is not 
relevant in this study. 

3a. Is the missing data mechanism 
reported?  

Yes 
 

3b. Is a description provided of what 
variables are related to attrition/missing 
data?  

Yes 
 

3c. Is a description provided of how 
missing data in the analyses were dealt 
with?  

Yes Described in the Methods section in the 
manuscript, and supported by eFigure 1 in 
the Supplementary Materials. 

4. Is information about the distribution of 
the observed variables included? 

Yes Described in the model specification in the 
manuscript. 

5. Is the software mentioned?  Yes 
 

6a. Are alternative specifications of 
within-class heterogeneity considered 
(e.g., LGCA vs. LGMM) and clearly 
documented? If not, was sufficient 
justification provided as to eliminate 
certain specifications from consideration? 

Yes We wish to allow for some between-
individual variation within classes. 
Accordingly, we allow for this within-class 
heterogeneity through individual-level 
random effects, as described in the model 
specification.  

6b. Are alternative specifications of the 
between-class differences in variance–
covariance matrix structure considered 
and clearly documented? If not, was 
sufficient justification provided as to 
eliminate certain specifications from 
consideration? 

Yes Our supplementary materials describe our 
choice of structure for the individual-level 
random effects, as well as the predictions 
under a model with a more extensive 
individual-level random effects structure 
(including random effects for the spline 
terms). 

7. Are alternative shape/functional forms 
of the trajectories described?  

Yes We believe cubic splines with 3 df provide 
sufficient flexibility to capture the underlying 
functional form of the longitudinal 
trajectories. In addition, the goodness of fit 
plots (observed vs predicted) suggest that 
this is the case.  

8. If covariates have been used, can 
analyses still be replicated?  

NA The data for this study is not publically 
available. 

9. Is information reported about the 
number of random start values and final 
iterations included?  

Yes In the Supplementary Materials. 

10. Are the model comparison (and 
selection) tools described from a 
statistical perspective?  

Yes A subsection is contained in the Methods 
section of the manuscript. 



11. Are the total number of fitted models 
reported, including a one-class solution?  

Yes Table 1 in the manuscript presents the 
different models that were considered. Note 
that the one-class solution is not 
appropriate for answering the research 
question in this study, since the one-class 
joint model corresponds to the assumption 
of no association between the longitudinal 
BMI trajectories and death/transplant event 
rates. 

12. Are the number of cases per class 
reported for each model (absolute 
sample size, or proportion)?  

Yes Table 1 in the manuscript. 

13. If classification of cases in a trajectory 
is the goal, is entropy reported?  

Yes Relative entropy is shown in Table 1. In 
addition, the mean posterior probabilities of 
class membership, stratified by class 
membership are presented in eTable 1.   

14a. Is a plot included with the estimated 
mean trajectories of the final solution?  

Yes Figure 2 in the manuscript. 

14b. Are plots included with the 
estimated mean trajectories for each 
model?  

Yes We provide plots of the six-class model, and 
an alternative model specification that 
includes additional individual-level random 
effects. It is infeasible to include plots of 
every model in our manuscript or 
supplementary. 

14c. Is a plot included of the combination 
of estimated means of the final model 
and the observed individual trajectories 
split out for each latent class? 

Yes It is infeasible for us to plot all observed 
trajectories for the given sample size. But, 
we have provided plots of the mean 
predicted and mean observed BMI values 
across follow up; this answers a slightly 
different but nonetheless related question 
about goodness of fit. 

15. Are characteristics of the final class 
solution numerically described (i.e., 
means, SD/SE, n, CI, etc.)?  

Yes Included in a separate .txt document in the 
supplementary materials. 

16. Are the syntax files available (either 
in the appendix, supplementary 
materials, or from the authors)?  

Yes Example code is provided in the 
Supplementary Materials. The data is not 
publically available. 

  



eFigure 1. Flowchart showing numbers of patients excluded from the analysis. 

  



eFigure 2. Observed BMI trajectories for a random sample of 25 patients. 

 



eFigure 3. Predicted longitudinal BMI trajectories (left panel) and cause-specific hazard functions for 

death without transplant (middle panel) and transplant (right panel) for the alternative solution for 

the five-class model found using random initial values. The BMI predictions are on average (since 

no covariates were included in the BMI submodel), whilst the event outcome predictions are for a 

Caucasian male, aged ≤50 years, initiating RRT between 2005-09 with diabetic nephropathy, 

cerebrovascular disease and coronary artery disease. 

 

  



eFigure 4. Predicted longitudinal BMI trajectories (left panel) and cause-specific hazard functions for 

death without transplant (middle panel) and transplant (right panel) for the five-class joint model 

after including individual-level random effects for the cubic splines (for the longitudinal BMI 

trajectories). The BMI predictions are on average (since no covariates were included in the BMI 

submodel), whilst the event outcome predictions are for a Caucasian male, aged ≤50 years, 

initiating RRT between 2005-09 with diabetic nephropathy, cerebrovascular disease and coronary 

artery disease. 

 

  



eFigure 5. Predicted longitudinal BMI trajectories (left panel) and cause-specific hazard functions for 

death without transplant (middle panel) and transplant (right panel) from the six-class model. The 

BMI predictions are on average (since no covariates were included in the BMI submodel), whilst the 

event outcome predictions are for a Caucasian male, aged ≤50 years, initiating RRT between 2005-

09 with diabetic nephropathy, cerebrovascular disease and coronary artery disease. 

 

 

  



eFigure 6. Predicted longitudinal BMI trajectories (left panel) and cumulative incidence functions 

for death without transplant (middle panel) and transplant (right panel) from the five-class model. 

The predictions are shown for each of the five possible latent classes. The BMI predictions are on 

average (since no covariates were included in the BMI submodel), whilst the event outcome 

predictions are for a Caucasian male, aged ≤50 years, initiating RRT between 2005-09 with diabetic 

nephropathy, cerebrovascular disease and coronary artery disease. These are the cumulative 

incidence functions for the same covariate profile as for the hazard functions shown in Figure 2 in 

the main manuscript. 

 

 

  



eFigure 7. These are the same figures as described in eFigure 6, but with 95% confidence limits 

included in the plots.  

 

  



eFigure 8. Observed and predicted BMI trajectories (marginal predictions). The plot shows class-

specific BMI trajectories based on weighted means of the observed BMI data (with 95% confidence 

limits) and weighted means of the marginal predictions. The weighting is based on class 

membership probabilities, whilst the means are taken by splitting the distribution of observed 

measurement times into 15 quantiles (i.e. 15 “bins”). 

 

  



eFigure 9. Observed and predicted BMI trajectories (subject-specific predictions). The plot shows 

class-specific BMI trajectories based on weighted means of the observed BMI data (with 95% 

confidence limits) and weighted means of the subject-specific predictions. The weighting is based 

on class membership probabilities, whilst the means are taken by splitting the distribution of 

observed measurement times into 15 quantiles (i.e. 15 “bins”). 

 


