
eAppendix: Selection bias when estimating
average treatment effects using one-sample

instrumental variable analysis

Detailed discussion on selection mechanisms

Selection completely at random, or depending on Z or U

When selection is completely at random, or selection depends on Z (Figure
1a), or selection depends on U (Figure 1b), β̂2SLS

X is not biased by selection.
Explanation: Selection does not imply conditioning on a collider (nor a
descendant of a collider). The IV assumptions remain true in the selected
sample; for example, within the selected sample, Z is not associated with C
nor U because pathways Z → X ← U and Z → X ← C remain blocked by
collider X, and pathways Z → X → Y ← U and Z → X → Y ← C remain
blocked by collider Y . Therefore, the Y − Z association is not confounded
by C nor U in the selected sample.

Selection depending on Z and C

When selection depends on Z +C (i.e., Z and C; Figure 1c), β̂2SLS
X is biased

because the Y − Z association is confounded by C in the selected sample.
Explanation: Selection implies conditioning on collider S which opens the
noncausal pathway Z → S ← C → Y [1, 2], and hence Y −Z is confounded
by C in the selected sample. Note, the Y − Z association is not confounded
by U in the selected sample (i.e., Z remains independent of U) because all
pathways between Z and U remain blocked by a collider (e.g., Z → X ← U).
Additional note: Interestingly, conditioning on C re-blocks the aforemen-
tioned noncausal pathway via S, thus eliminating the selection bias. There-
fore, whilst β̂2SLS

X is biased by selection, the two-stage least squares estimate

conditional on C, β̂2SLS
X|C , is not biased by selection. We note one exception.

Suppose selection depends on Z + C but we have measured confounder C
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with error, denoted by C∗ (DAG not shown). Conditioning on this mismea-
sured variable C∗ would not block the noncausal pathway between Z and Y
via S and C, and so selection bias would not be eliminated; that is, β̂2SLS

X|C
would remain biased by selection. Furthermore, conditioning on C∗ would
result in confounding the Y −Z association by the measurement error of C,
known as “residual confounding”.

Selection depending on X

When selection depends on X, X + C, X + Z or X + Y (Figures 1d, 1e, 1f
or 1g, respectively), β̂2SLS

X is biased by selection due to confounding of the
Y − Z association by C and U .
Explanation: Because S is a descendant of X, conditioning on S unblocks
pathways which include X as a collider (i.e., Z → X ← C and Z → X ← U)
[1, 2]; thus, Z is associated (i.e., conditionally dependent) with C and U in
the selected sample. Note, conditioning on a descendant of X is not the same
as directly conditioning on X (such as in the regression of Y on X). Because
we are not directly conditioning on X, pathways between Z and Y which
include X as a partial mediator are not closed by selection.
Additional note: Selection mechanisms X +C and X + Y have additional
pathways between Z and Y via S which can result in bias. Selection on
X + C opens the pathway Z → X → S ← C → Y , which again leads to
confounding of the Y − Z association by C in the selected sample. And,
selection on X + Y opens pathway Z → X → S ← Y , such that, in the
selected sample there is always an association between X and Y even when
X does not truly cause Y (i.e., the true causal exposure effect is null); thus,

β̂2SLS
X is biased by selection. Note, because pathway Z → X → S ← Y is

not via C nor U this latter bias will persist even when the X−Y association
is not confounded by C nor U (i.e., β̂2SLS

X will be biased even in the absence
of measured and unmeasured confounders).

Selection depending on Y only

Selection depending on Y (Figure 1h) has the special property that β̂2SLS
X

is only biased by selection when X causes Y (i.e., the true causal exposure
effect is not null).
Explanation: When X causes Y , conditioning on S unblocks pathways
Z → X → Y ← U and Z → X → Y ← C because S is a descendant
of collider Y ; thus, selection induces an association between Z and C, and
between Z and U in the selected sample. In addition, X is also a descendant
of S via Y (i.e. X → Y → S) and so conditioning on S unblocks pathways
which include X as a collider (e.g., Z → X ← C). When X does not cause

2



Y , Z is not associated with C nor U in the selected sample because pathways
Z → X Y ← U and Z → X Y ← U are now blocked, and S is no
longer a descendant of X (i.e., X Y → S). Therefore, when X does not
cause Y the Y −Z association remains unconfounded in the selected sample,
and β̂2SLS

X is not biased by selection.

Selection depending on Y and Z

When selection depends on Y +Z (Figure 1i) β̂2SLS
X is biased by selection be-

cause the instrument is directly associated with the outcome (i.e., the Y −Z
association is not via the exposure, X), which is a violation of another IV
assumption.
Explanation: Selection unblocks a pathway between Z and Y which does
not include X, (i.e., Z → S ← Y ) such that in the selected sample Z is
directly associated with Y . Of course since this pathway does not include
X → Y then selection results in bias regardless of whether or not X causes
Y . Furthermore, because pathway Z → S ← Y is not via C nor U then

β̂2SLS
X will be biased even when the X − Y association is not confounded by
C nor U .
Additional note: When X causes Y , selection also results in confounding
of the Y − Z association by C and U . As discussed for selection mechanism
Y , provided X causes Y , selection unblocks pathways in which Y and X are
colliders; thus, inducing an association between Z and C, and Z and U in the
selected sample. In practice, selection may not depend directly on Y or Z.
For example, selection may depend on Z and unmeasured factors V , where
V affects outcome Y (see eFigure 1a; a similar example shown in Boef et al
[3]). The consequences of selection on V + Z would be similar to selection
on Y + Z, violating the same two IV assumptions.

Exposure effect conditional on C

For selection mechanisms X, X + C, X + Y , Y , and Y + Z estimating the
causal exposure effect conditional on C, β̂2SLS

X|C , reduces the level of selection

bias because conditioning on C eliminates confounding by C (i.e., blocks all
pathways between Z and Y via C). However, β̂2SLS

X|C remains biased by selec-
tion because the Y − Z association is still confounded by U in the selected
sample.

Remaining selection mechanisms for our IV example

We have discussed 10 out of a possible 32 selection mechanisms for our IV
analysis example, and if we treat C and U as interchangeable, ignoring that it
is only possible to condition on measured confounders C, then this reduces to
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16 possible mechanisms. eFigures 1b to 1g depict the DAGs for the 6 selection
mechanisms not discussed above, and we can explain when selection does and
does not bias β̂2SLS

X using one of, or a combination of, the explained selection
mechanisms described above (e.g., the explanation for selection mechanism
Y applies to selection mechanism Y + C).

Detailed description of the simulation study

For our IV analysis example, we investigated the effects of 9 selection mech-
anisms on the two-stage least squares estimate of the causal exposure effect.

Methods

We ensured the three IV assumptions held true in the full sample. The
simulated data were generated under the following model:

zi ∼ N(0, 1), ci ∼ N(0, 1), ui ∼ N(0, 1),

εxi ∼ N(0, 1), εyi ∼ N(0, 1),

xi = α0 + αZzi + αZ3z3
i + αCci + αUui + εxi,

yi = β0 + βXxi + βCci + βUui + εyi,

(1)

where, yi, xi, zi, ci and ui respectively denote realizations of variables Y,X,Z,C
and U for participant i, and εxi and εyi are normally distributed errors. The
values of the data model parameters are listed in eTable 1. For simplicity, we
set the constant terms, α0 and β0, in the equations to zero. We considered
a causal exposure effect of 1 (i.e., βX = 1) and a null causal exposure effect
(i.e., βX = 0). We set the values of αC , αU , βC and βU such that, in the
full sample (i.e., the selected and unselected participants), the ordinary least
squares estimate of βX (i.e., estimated by regressing Y on X) was biased due
to confounding and the level of this bias was close to 0.22.

We considered different instrument strengths (i.e., the amount of variation
of the exposure explained by the instrument) by setting the value of αZ . To
ensure consistency across all simulation settings, we measured instrument
strength using the partial R2

X|Z statistic rather than the F statistic since the
latter is subject to large sampling variability, and so is an unreliable measure
of instrument strength [4]. Note, we report the population F statistic of our
simulations in the results section below. We chose values of αZ such that,
in the full sample, partial R2

X|Z was close to 0.39 for the strong instrument,
and 0.045 for the moderate instrument. As a sensitivity analysis, we also
considered an instrument strength of partial R2

X|Z close to 0.15. We ensured
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that all instruments had sufficient strength in order to avoid weak instrument
bias (i.e., bias due to finite sample size) in the full and selected samples.

We investigated whether the effects of selection differed between a linear
(αZ3 = 0) and a nonlinear (αZ3 = 1) X − Z association. For each com-
bination of true value of exposure effect, form of the X − Z association,
and instrument strength we generated 3, 000 simulated datasets, each with
20, 000 participants for the full sample.

Following generation of the full sample datasets, participants were inde-
pendently selected using the following selection model

Pr(participant i selected)

= expit{η0 + ηZzi + ηCci + ηXxi + ηY yi},

where expit{w} =
exp{w}

1 + exp{w}
. Different selection mechanisms were created

by setting certain parameters to 0; for example, when selection depended on
Z, parameters ηC , ηX and ηY were set to 0. To ensure a consistent strength of
selection, values for the selection model’s parameters were chosen such that
the mean and standard deviation of the selection probabilities (over the full
sample) were the same for all selection mechanisms and simulation settings.
Close to 60% of the participants were selected; that is, the mean probability
of selection was close to 0.6. The standard deviations were close to 0.2 with
one exception for selection mechanism “completely at random”, where by
definition the selection probabilities were the same for all participants and
so the standard deviation was 0. eTable 2 shows the values of the selection
model’s parameters.

We used Stata command ivregress to perform two-stage least squares es-
timation. And, analyzed the simulation results using the Stata command
simsum [5]. We also conducted a weighted two-stage least squares analysis,
using inverse probability weighting (IPW) [6], in which the weights try to
make the selected participants a representative sample of the study popula-
tion [7].

Results

When there was no selection (i.e., all 20, 000 observations were analyzed),
β̂2SLS
X was unbiased (i.e., estimates do not systematically differ from the true

value) and CI coverage was nominal (i.e., close to 95%) for all simulation
settings (causal and noncausal exposure effect, linear and nonlinear X − Z
association, and strong and moderate instrument).

eTable 3 presents the simulation results of β̂2SLS
X for the moderate and

strong instruments, when the true exposure effect was 1 (βX = 1) and the
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X −Z association was linear. The corresponding results for settings βX = 1
and nonlinear X − Z, βX = 0 and linear X − Z, and βX = 0 and nonlinear
X − Z are presented in eTables 4, 5, and 6, respectively.

Impact of instrument strength

For selection mechanisms Z+C, X+Z and Y +Z the level of bias increased
with decreasing instrument strength: in comparison to the strong instrument
(partial R2

X|Z = 0.39), the level of bias was 3 to 4 times larger for the mod-

erate instrument (partial R2
X|Z = 0.045) (eTable 3), and between 1.6 to 1.8

times larger for instrument strength partial R2
X|Z = 0.15 (eTable 7). When

selection did not depend on Z, there were only small differences in the level
of bias between the instrument strengths.

For all selection mechanisms, decreasing the instrument strength resulted
in larger standard errors: in comparison to the strong instrument, the mean
standard errors were 3 to 5 times larger for the moderate instrument, and
close to double for instrument strength partial R2

X|Z = 0.15. These increases
in the standard errors were due to weakening of the instrument, as shown
in the IV literature (e.g., [8]). The standard errors of β̂2SLS

X were neither
underestimated nor overestimated (results of the relative error statistic not
shown), and thus selection did not affect estimation of the standard errors.
Except for selection mechanism Y + Z, the larger standard errors (due to
weaker instruments) resulted in higher CI coverages.

Incorrectly concluding non-causality due to selection bias

Despite a biased two-stage least squares estimate and poor CI coverage, 100%
of the CIs showed evidence of a positive exposure effect for all simulation
settings where the true casual effect was 1. This was in part due to the
large sample size and relatively large effect size of 1 (i.e., relatively far from
0). When we lowered the effect size to 0.25, and used the moderate instru-
ment strength, a small (1%) to large percentage (76%) of the CIs incorrectly
showed evidence of a null exposure effect (i.e., included the null), where the
percentage of CIs including the null effect increased with larger selection bias.

Detailed description of the applied example

We now consider an applied IV analysis examining the causal effect of ed-
ucation on the decision to smoke using data from the UK Biobank study
[9] where nonrandom selection of participants into the analysis dataset was
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suspected. Although this data analysis has a binary exposure, outcome and
instrument the IV analysis was conducted using two-stage least squares es-
timation in the same manner as described for our example of an IV analysis
and in our simulation study.

Smoking is still a major avoidable risk factor for ill health and premature
mortality worldwide [10]. Higher educational achievement predicts lower
levels of smoking uptake and, among those who started smoking, higher levels
of quitting smoking [11, 12]. However, we do not know whether this is due to
a causal effect of education on the decision to smoke, or if this association is
due to unmeasured confounding factors. To counteract the possible effects of
unmeasured confounding an IV analysis was conducted where the instrument
was a policy reform, introduced on 1st September 1972, which raised the
school leaving age from 15 to 16 years. Individuals who turned 15 before
this date could leave school at age 15 whilst younger individuals, who turned
15 after 1st September 1972, had to remain in school at least until age 16.
This example uses the policy reform (often referred to as ROSLA, Raising
of School Leaving Age) as an instrument for time spent in education. The
ROSLA has been used as an instrument in previous examples [13, 14, 15]
and for the purposes of this example we assume that the instrument is valid.

The UK Biobank study is a sample of 502, 644 individuals who attended
23 study clinics across the UK, and did not subsequently withdraw from the
study, enrolled between 2006 and 2010 [9]. The study achieved a response
rate of 5.5% after inviting 9.2 million individuals to participate in the study
[16]. The participants of the cohort were relatively young and so partici-
pation (i.e., “selection into the study”) was unlikely to have been affected
by smoking-related mortality. Higher levels of educational achievement pre-
dicted attendance at a study clinic, and hence sampling by UK Biobank; for
example, quoting from Davies et al [13], “The UK Biobank is a volunteer
sample and, as a result, people who left school at 16 years of age were less
likely to attend the clinics than previous studies (17.5% versus 33% reported
in Clark and Royer [14])”. Therefore, it is plausible that study participants
were nonrandomly selected depending on the exposure of interest, educa-
tional attainment. As discussed earlier in the section on when selection leads
to bias, and shown by the simulation study, selection depending on the ex-
posure can bias an IV analysis.

To maximise the plausibility of the IV assumptions, we restricted our
analysis to participants who turned 15 within the period of one year before
to one year after the introduction of the ROSLA policy. Note, this example is
intended to demonstrate the impact of sample selection on linear regression
and IV analyses, and not as a comprehensive analysis of the effect of edu-
cation on smoking in adult life. We further restricted our sample to those
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participants born in England or Wales because the ROSLA only affected
England and Wales. Among those born in England or Wales, we only in-
cluded participants who answered questions about the age at which they left
school or their highest level of qualification. For the purposes of this example
we have assumed that there were no systematic differences between the UK
Biobank participants selected for analysis (i.e., aged 15 within ±1 year of
the policy introduction, born in England or Wales and had information on
the exposure) and those UK Biobank participants not selected for analysis
(i.e., not aged 15 within ±1 year of the policy introduction, born outside of
England and Wales, or no information on the exposure) with respect to the
exposure, outcome, or any confounders of the exposure-outcome association.
Under this assumption, we have ignored our selection on age at time of the
policy introduction, place of birth and whether information on the exposure
was observed or missing.

Using the same notation as previously, the outcome Y was a binary vari-
able, equal to one if the participant had ever smoked (i.e., includes ex-smokers
and current smokers), and equal to zero if the participant had never smoked.
We also considered a second outcome which was also a binary variable, equal
to one if, at the time of the study clinic, the participant was a current smoker,
and equal to zero if the participant did not smoke at that time (i.e., included
ex-smokers and never smokers). The distributions of data on the instrument,
exposure, and these two outcomes are shown in eTable 14. Note, a small
number of individuals left school before the age of 16 after the reform had
been introduced. Excluding these individuals gave similar results to those
reported in table 2 of the main paper (results not shown). Separate analyses
were performed on each outcome using the same exposure and instrument.
The exposure X was a binary variable, equal to one if the participant had
left school age 16 or older, and equal to zero otherwise. The instrument, Z,
was also a binary variable, equal to one if the participant turned 15 after
the policy reform was introduced, and equal to zero otherwise. There were a
few measured confounders, C, of the exposure-outcome association (e.g., sex,
month of birth) but we suspect there were many unmeasured confounders,
U . Although the validity of the instrument did not require conditioning on
any measured variables, following Clark and Royer [14] we have adjusted for
sex and month of birth.

We conducted the IV analysis using the linear probability model. This
model is a form of two-stage least squares estimation in which the outcome,
exposure and instrument are binary, and the causal exposure effect is on the
risk difference scale [17]. We note, fitting a linear regression model when
the dependent variable is binary may produce predicted values outside of
the 0 to 1 range [18]. Robust standard errors were calculated to account for
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assumptions about homogeneous exposure effects and the outcome distribu-
tions. For comparison, we also considered the equivalent standard analysis;
that is, the linear regression of Y on X (e.g., current smoking on “left school
age 16 or older”), also with robust standard errors. Although the standard
analysis may be biased by unmeasured confounding of the exposure-outcome
association, we know from the missing data literature (e.g., [19]) that the
results of the standard analysis are not biased by selection on the exposure,
X.

A weighted IV analysis, in which the weights try to make the selected
participants a representative sample of the study population, (e.g., [7]) can
account for unmeasured confounding and selection bias. We used the weight-
ing method known as inverse probability weighting [6]. Under the assumption
that selection only depended on the exposure X, the weights were the inverse
of the conditional probabilities of selection given the exposure. (See the next
section regarding calculation of the weights). The selected participants who
left school age 15 were weighted by 34.29, and the selected participants who
left school age 16 or older were weighted by 16.36 (weights rounded to 2
decimal places). So, those participants suspected to be under-represented in
the selected sample (i.e., left school age 15) contributed more to the analysis
than those suspected to be over-represented in the selected sample (i.e. left
school age 16 or older). For comparison, we carried out a weighted linear
regression analysis using the same weights. Information on calculation of the
weights is given below. For both weighted analyses the uncertainty of the
weights was taken into account using the sandwich variance estimator [20],
although the standard errors of the weights were small.

Calculation of the weights

To calculate the weights we have made three key assumptions: (1) that
the exposure (an extra year of compulsory education) was the only factor
causing selection into UK Biobank; (2) that there was no effect of cigarette
smoking on selection into UK Biobank (although Fry et al, [16], would suggest
otherwise); and (3) that the probability of selection for our restricted sample
is the same as the probability of selection for all invited participants to the
UK Biobank study. This example is for illustrative purposes only; in practice
a thorough investigation of the factors likely to affect selection would be
necessary.

Under the assumption that selection S only depended on the exposure
X, the weights were the inverse of the conditional probabilities of selection
given the exposure, Pr(S = 1|X). We can see from figure 1e that under this
selection mechanism, selection is independent of outcome Y and instrument
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Z after conditioning on X (i.e., pathways between S and Z, and S and Y
are closed after conditioning on X). To calculate Pr(S = 1|X) we use Bayes
theorem

Pr(S|X) =
Pr(X|S)Pr(S)

Pr(X)
. (2)

First, let us calculate the conditional probability of selection for those
participants who left school at age 15 (i.e., Pr(S = 1|X = 0)). We used
information from the 2011 UK census [21] to approximate information on
all individuals invited to participate in the study (i.e., the selected and
unselected). Prior to the introduction of the policy reform (i.e., Z = 0),
September 1972, 33% of individuals left school at age 15, and so we set
Pr(X = 0|Z = 0) = 0.33. Among the selected participants, 17.5% left school
at age 15 prior to September 1972; that is, Pr(X = 0|S = 1, Z = 0) = 0.175.
After the introduction of the policy reform, a small number of individuals did
leave school at age 15. However, for the purposes of our illustrative exam-
ple we have assumed from September 1972 onwards that all individuals left
school aged 16 or older; that is, Pr(X = 0|Z = 1) = 0 and Pr(X = 0|S =
1, Z = 1) = 0. Therefore, Pr(X = 0) = Pr(X = 0|Z = 0)Pr(Z = 0) and
Pr(X = 0|S = 1) = Pr(X = 0|S = 1, Z = 0)Pr(Z = 0). For the probability
of selection, we know that 502, 644 out of 9.2 million invited participants
attended the study clinic, and so Pr(S = 1) = 502644/9200000 = 0.055 (2
decimal places). Putting everything together we have:

Pr(S = 1|X = 0) =
Pr(X = 0|S = 1)Pr(S = 1)

Pr(X = 0)

=
Pr(X = 0|S = 1, Z = 0)Pr(Z = 0)Pr(S = 1)

Pr(X = 0|Z = 0)Pr(Z = 0)

=
0.175× 0.055

0.33

= 0.02916667.

(3)

Similarly, we can calculate the conditional probability of selection for
those participants who left school age 16 or older (i.e., Pr(S = 1|X = 1)).
From the UK census we have Pr(X = 1|Z = 0) = 1 − 0.33, and from the
selected sample we have Pr(X = 1|S = 1, Z = 0) = 1 − 0.175. Given our
assumption that post September 1972 all individuals left school aged 16 or
older, then Pr(X = 1|Z = 1) = 1 and Pr(X = 1|S = 1, Z = 1) = 1. Since
individuals could leave school age 16 or older before and after September 1972
then Pr(X = 1) = 0.67×Pr(Z = 0)+Pr(Z = 1) = 1−0.33×Pr(Z = 0), and
Pr(X = 1|S = 1) = 0.825× Pr(Z = 0) + Pr(Z = 1) = 1− 0.175× Pr(Z =
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0). The probability Pr(Z = 0) is the proportion of the 9.2 million invited
participants to which the introduction of the policy reform did not apply; that
is, the proportion that turned 15 before September 1972. The recruitment
period for the UK Biobank study was between 2006 and 2010, and so the
mid-point was 2008. Participants unaffected by the policy reform had to have
turned 51 years before September 2008. We approximate Pr(Z = 0) using
population estimates for England and Wales, Scotland and Northern Ireland
supplied by the Office for National Statistics. Based on these population
estimates for June 2008, among those aged between 40 to 70 years (UK
Biobank’s sampling ages) the proportion over 50 was 0.58. So, we estimated
that 58% of the invited UK Biobank participants had turned 51 years before
September 2008 (i.e., Pr(Z = 0) = 0.58). Putting everything together we
have:

Pr(S = 1|X = 1) =
Pr(X = 1|S = 1)Pr(S = 1)

Pr(X = 1)

=
[1− 0.175× Pr(Z = 0)]Pr(S = 1)

1− 0.33× Pr(Z = 0)

=
[1− 0.175× 0.58]× 0.055

1− 0.33× 0.58

= 0.06111489.

(4)

Therefore, the selected participants who left school age 15 were weighted
by 34.29 and the selected participants who left school age 16 or older were
weighted by 16.36 (weights rounded to 2 decimal places).

Further comments

This applied example was for illustrative purposes only and so our analysis
has some limitations.

In practice a thorough investigation of the factors likely to affect selection
would be necessary. Fry et al [16] compared various sociodemographic, phys-
ical, lifestyle and health-related characteristics of the cohort to data sources
representative of the intended study population; thus, allowing the authors
to compare the participants (the selected sample) to the nonparticipating in-
vitees (the unselected sample). Compared with the general UK population,
UK Biobank participants were more highly educated, older, female, live in
less socioeconomically deprived areas, and less likely to be obese, to smoke
and to drink alcohol daily, and had fewer self-reported adverse health out-
comes [13, 16]. Consequently, for our analysis, selection may not only depend
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on the exposure but also on the outcome and unmeasured confounders (e.g.,
obesity). Because our weighted analysis only allowed for selection on the
exposure it may only partially account for the selection bias [22].

We do not directly observe the unselected sample and instead calculate
the weights using external nationally representative data sources. Therefore,
our weights for selection on the exposure were only approximations. Given
the large sample size of UK Biobank moderate changes in the weights had
a small impact on the results of the weighted IV analysis; for example, for
outcome current smoker, a weighted IV analysis using weights 100 and 12
(for participants who left school at age 15 and ≥ 16, respectively) gave a risk
difference of −7.29% [95% confidence interval −9.64%,−4.93%]. Typically,
an analyst does not have access to the individual level data of these external
data sources and instead relies on reported results. Generating (approxi-
mately) correct weights based on multiple factors (e.g., level of education,
smoking status, sex, obesity) using these external data sources is difficult
because they usually do not report the required conditional probabilities.
Therefore, the analyst must consider the pros and cons of calculating ap-
proximately correct weights versus including all potential selection factors.
In all cases, a weighted analysis using external data sources should be con-
sidered as a sensitivity analysis and not as the main analysis. Further work
is needed on how to conduct IPW using external data.

IPW [23] and multiple imputation (MI) [24] have been used to appro-
priately account for selection bias in an IV analysis. MI is generally more
efficient because it uses all observed data on the analysis variables, whereas
IPW discards any observed data observed on the unselected sample. For our
analysis, IPW was an appropriate choice because there was no available data
on the unselected.

As noted above, when selection depends on unmeasured data then any
MI or IPW analysis must be part of a sensitivity analysis. Sensitivity analy-
ses have been proposed to account for nonrandom selection in an IV analysis
(e.g., recovery of the local average treatment effect when selecting on treat-
ment received [7], IV analyses with nonignorable missing covariates [24, 25]).
However, the proposed methods are specific to a particular analysis, and may
not be accessible to non-technical analysts without the provision of appropri-
ate guidelines and easy to use software (although the authors did supply their
R code to implement their analyses). More general, user friendly methods
may be found in the missing data literature (e.g., NARFCS multiple imputa-
tion command [26]). Further research is needed to provide IV analysts with
easy to use methods, software and guidelines on how to conduct sensitivity
analyses when selection depends on unmeasured data.
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Simulation study based on the applied exam-

ple

Based on our applied example, we conducted a simulation study where the
outcome Y , exposure X and instrument Z were binary variables, and con-
tinuous unmeasured confounder U . We investigated the effects of 9 selection
mechanisms on the two-stage least squares estimate of the causal exposure
effect, estimated using the linear probability model. The simulated data were
generated under the following model:

zi ∼ Bernoulli(0.492), ui ∼ N(0, 1),

xi ∼ Bernoulli(expit{0.802 + 1.30zi − 0.740ui}),
yi ∼ Bernoulli(expit{−0.586− 0.200xi + 0.740ui}),

(5)

where, yi, xi, zi and ui respectively denote realizations of variables Y,X,Z and
U for participant i. Where possible, the values of the data model parameters
were based on the applied example. We set the instrument strength, in the
full sample, as partial R2

X|Z close to 0.056. The true causal exposure effect
was set to −0.045, and we set the level of confounding such that, in the full
sample, the ordinary least squares estimate of the causal exposure effect was
close to −14.1. We generated 3, 000 simulated datasets, each with 20, 000
participants for the full sample.

Similarly to our simulation study based on all continuous variables, par-
ticipants were independently selected using the following selection model

Pr(participant i selected)

= expit{η0 + ηZzi + ηUui + ηXxi + ηY yi}.

For each selection mechanism, close to 60% of the participants were selected
and the standard deviation of the selection probabilities was close to 0.2
(except for selection completely at random). eTable 15 shows the values of
the selection model’s parameters.

We used Stata command ivregress to perform two-stage least squares
estimation, and analyzed the simulation results using the Stata command
simsum [5]. We also conducted a weighted two-stage least squares analysis,
using IPW, to correct for nonrandom selection.

eTable 16 shows the results of the (unweighted) two-stage least squares
analyses. When there was no selection (full sample), selection was completely
at random or depended on Z only β̂2SLS

X was unbiased and CI coverage was

nominal. For selection mechanisms X and X+Z β̂2SLS
X was positively biased,
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and for the remaining selection mechanisms β̂2SLS
X was negatively biased.

The direction of the bias depended on the direction of the induced Z − U
association (n.b., the true Y −U association was positive and the true Y −Z
association was negative). For example, when selection depended on X the
Z − U association was positive. Therefore, U was a negative confounder of
the Y − Z association [27]; that is, the unadjusted estimate of Y given Z
was pushed closer towards the null than the truth, leading to positive bias
of coefficient Ê(Y |Z) and so positive bias of β̂2SLS

X . Whereas, when selection
depended on Y +Z the Z −U association was negative. Therefore, U was a
positive confounder of the Y −Z association; that is, the unadjusted estimate
of Y given Z was pulled further away from the null than the truth, leading
to negative bias of coefficient Ê(Y |Z) and so negative bias of β̂2SLS

X .
For selection mechanisms X+C and Y CI coverage was nominal because

the magnitude of the bias was relatively small and, due to the moderate
strength of the instrument, the standard errors were large enough to allow
for the small amount of bias. For the remaining selection mechanisms that
resulted in bias, CI undercoverage was poor (78%) to severe (0%).

As expected, the weighted two-stage least squares analyses gave unbiased
estimates of β̂2SLS

X with nominal CI coverages for all selection mechanisms
(eTable 17).
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eFigure 1: Directed acyclic graphs of an instrumental variable analysis under
seven additional selection mechanisms.
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eTable 1: Values of the data model’s parameters according to
whether the exposure−instrument (X − Z) association was linear or
nonlinear, instrument strength was moderate or strong, and true causal
exposure effect was 1 or 0. For all simulation settings, constant coeffi-
cients α0 = β0 = 0, and confounders’ coefficients αC = βU = βC = αU .

X − Z Instrument Causal
association Strength exposure effect αZ α3

Z αU

Linear Moderate 0 or 1 0.248 0 0.380
Linear Strong 0 or 1 1.00 0 0.531

Nonlinear Moderate 0 −2.34 1 1.04
Nonlinear Moderate 1 −2.35 1 1.04
Nonlinear Strong 0 or 1 −0.320 1 1.43
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eTable 2: Values of the selection model’s parameters for 9 selection mech-
anisms, including selection completely at random (SCAR), according to
whether the exposure−instrument (X−Z) association was linear or nonlin-
ear, instrument strength was moderate or strong, and true value of exposure
effect (βX) was 1 or 0.

Selection is/ X − Z
depends on association Instrument βX η0 ηZ ηC ηX ηY

SCAR Linear/nonlinear Moderate/strong 0/1 0.425 0 0 0 0

Z Linear/nonlinear Moderate/strong 0/1 0.490 1.00 0 0 0

Z + C Linear/nonlinear Moderate/strong 0/1 0.500 0.700 0.700 0 0

X Linear Moderate 0/1 0.517 0 0 0.875 0
Linear Strong 0/1 0.517 0 0 0.640 0

Nonlinear Moderate 0 0.510 0 0 0.435 0
Nonlinear Moderate 1 0.500 0 0 0.425 0
Nonlinear Strong 0 0.500 0 0 0.325 0
Nonlinear Strong 1 0.490 0 0 0.320 0

X + C Linear Moderate 0/1 0.500 0 0.575 0.575 0
Linear Strong 0/1 0.500 0 0.475 0.475 0

Nonlinear Moderate 0 0.500 0 0.340 0.340 0
Nonlinear Moderate 1 0.500 0 0.340 0.340 0
Nonlinear Strong 0 0.500 0 0.260 0.260 0
Nonlinear Strong 1 0.500 0 0.265 0.265 0

X + Z Linear Moderate 0/1 0.500 0.600 0 0.600 0
Linear Strong 0/1 0.500 0.425 0 0.425 0

Nonlinear Moderate 0 0.500 0.425 0 0.425 0
Nonlinear Strong 0 0.500 0.270 0 0.270 0
Nonlinear Moderate 1 0.500 0.425 0 0.425 0
Nonlinear Strong 1 0.500 0.275 0 0.275 0

Y Linear Moderate 0 0.500 0 0 0 0.880
Linear Moderate 1 0.500 0 0 0 0.550
Linear Strong 0 0.500 0 0 0 0.800
Linear Strong 1 0.500 0 0 0 0.435

Nonlinear Moderate 0 0.500 0 0 0 0.570
Nonlinear Moderate 1 0.500 0 0 0 0.270
Nonlinear Strong 0 0.500 0 0 0 0.450
Nonlinear Strong 1 0.500 0 0 0 0.200

X + Y Linear Moderate 0 0.500 0 0 0.550 0.550
Linear Moderate 1 0.500 0 0 0.355 0.355
Linear Strong 0 0.500 0 0 0.440 0.440
Linear Strong 1 0.500 0 0 0.265 0.265

Nonlinear Moderate 0 0.505 0 0 0.275 0.275
Nonlinear Moderate 1 0.500 0 0 0.170 0.170
Nonlinear Strong 0 0.500 0 0 0.200 0.200
Nonlinear Strong 1 0.500 0 0 0.122 0.122

Y + Z Linear Moderate 0 0.500 0.650 0 0 0.650
Linear Moderate 1 0.500 0.460 0 0 0.460
Linear Strong 0 0.500 0.625 0 0 0.625
Linear Strong 1 0.500 0.350 0 0 0.350

Nonlinear Moderate 0 0.500 0.490 0 0 0.490
Nonlinear Moderate 1 0.500 0.265 0 0 0.265
Nonlinear Strong 0 0.500 0.410 0 0 0.410
Nonlinear Strong 1 0.500 0.185 0 0 0.185
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eTable 3: Summary of the multivariate normal simulation results of the two-stage least squares estimate of
the casual exposure effect, β̂2SLS

X , for true value of 1 and linear X−Z association: Mean (standard deviation)

of the partial R2
X|Z of the X − Z association, bias of β̂2SLS

X , mean of the estimated standard errors, SE, of

β̂2SLS
X , and coverage percentage of the 95% confidence interval for β̂2SLS

X . Monte Carlo errors in brackets,
except for partial R2

X|Z .

Full sample/ Moderate Instrument Strong Instrument

Selection partial R2
X|Z Bias Mean SE Coverage partial R2

X|Z Bias Mean SE Coverage

Full sample 0.0452 0.000499 0.0326 95.4 0.390 0.000181 0.00884 95.3
(0.00285) (0.000590) (0.0000213) (0.384) (0.00535) (0.000160) (0.00000201) (0.385)

Completely at random 0.0452 0.000840 0.0420 95.4 0.390 0.000286 0.0114 95.3
(0.00370) (0.000758) (0.0000360) (0.382) (0.00695) (0.000205) (0.00000341) (0.385)

on Z 0.0384 0.000144 0.0460 95.2 0.350 0.000121 0.0125 94.8
(0.00338) (0.000832) (0.0000419) (0.390) (0.00693) (0.000226) (0.00000393) (0.404)

on Z + C 0.0322 −0.153 0.0525 15.2 0.353 −0.0470 0.0125 3.33
(0.00317) (0.000951) (0.0000591) (0.655) (0.00698) (0.000227) (0.00000406) (0.328)

on X 0.0382 −0.0423 0.0502 87.4 0.348 −0.0429 0.0133 9.67
(0.00345) (0.000915) (0.0000483) (0.606) (0.00691) (0.000243) (0.00000426) (0.540)

on X + C 0.0425 −0.0384 0.0461 87.7 0.370 −0.0432 0.0126 6.90
(0.00364) (0.000854) (0.0000422) (0.600) (0.00690) (0.000229) (0.00000391) (0.463)

on X + Z 0.0163 −0.159 0.0781 46.1 0.325 −0.0404 0.0136 15.9
(0.00229) (0.00142) (0.000125) (0.910) (0.00696) (0.000249) (0.00000458) (0.668)

on Y 0.0425 −0.0833 0.0441 52.7 0.373 −0.0704 0.0121 0.00
(0.00366) (0.000812) (0.0000397) (0.912) (0.00693) (0.000223) (0.00000374) (0.00)

on X + Y 0.0406 −0.0857 0.0472 55.1 0.362 −0.0688 0.0127 0.00
(0.00355) (0.000866) (0.0000436) (0.908) (0.00692) (0.000231) (0.00000398) (0.00)

on Y + Z 0.0241 −0.399 0.0667 0.00 0.342 −0.0980 0.0131 0.00
(0.00275) (0.00122) (0.0000969) (0.00) (0.00699) (0.000240) (0.00000429) (0.00)
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eTable 4: Summary of the multivariate normal simulation results of the two-stage least squares estimate
of the casual exposure effect, β̂2SLS

X , for true value of 1, and nonlinear X − Z association: Mean (standard

deviation) of the partial R2
X|Z of the X − Z association, bias of β̂2SLS

X , mean of the estimated standard

errors, SE, of β̂2SLS
X , and coverage percentage of the 95% confidence interval for β̂2SLS

X . Monte Carlo errors
in brackets, except for partial R2

X|Z .

Full sample/ Moderate Instrument Strong Instrument

Selection partial R2
X|Z Bias Mean SE Coverage partial R2

X|Z Bias Mean SE Coverage

Full sample 0.0448 0.000196 0.0193 95.3 0.393 0.000110 0.00596 95.3
(0.00498) (0.000348) (0.0000286) (0.388) (0.00663) (0.000107) (0.00000254) (0.386)

Completely at random 0.0449 0.000179 0.0250 95.0 0.393 0.000130 0.00766 95.1
(0.00652) (0.000451) (0.0000486) (0.398) (0.00866) (0.000138) (0.00000426) (0.394)

on Z 0.0314 −0.000305 0.0314 95.1 0.350 0.0000716 0.00865 95.1
(0.00552) (0.000567) (0.0000736) (0.395) (0.00829) (0.000157) (0.00000506) (0.394)

on Z + C 0.0267 −0.176 0.0388 0.00 0.352 −0.0485 0.00877 0.00
(0.00520) (0.000794) (0.000118) (0.00) (0.00840) (0.000162) (0.00000529) (0.00)

on X 0.0330 0.00117 0.0319 94.9 0.339 −0.0519 0.00936 0.00
(0.00571) (0.000574) (0.0000732) (0.400) (0.00826) (0.000173) (0.00000574) (0.00)

on X + C 0.0335 −0.00919 0.0315 94.6 0.350 −0.0501 0.00908 0.00
(0.00569) (0.000569) (0.0000709) (0.414) (0.00833) (0.000168) (0.00000545) (0.00)

on X + Z 0.0177 −0.132 0.0492 18.4 0.322 −0.0599 0.00974 0.00
(0.00442) (0.000959) (0.000189) (0.708) (0.00822) (0.000181) (0.00000622) (0.00)

on Y 0.0343 −0.0195 0.0302 90.7 0.365 −0.0503 0.00862 0.00
(0.00571) (0.000555) (0.0000666) (0.531) (0.00840) (0.000159) (0.00000499) (0.00)

on X + Y 0.0334 −0.0107 0.0312 94.5 0.354 −0.0526 0.00894 0.00
(0.00568) (0.000569) (0.0000696) (0.417) (0.00836) (0.000165) (0.00000531) (0.00)

on Y + Z 0.0233 −0.142 0.0409 3.50 0.348 −0.0644 0.00904 0.00
(0.00492) (0.000797) (0.000127) (0.336) (0.00838) (0.000169) (0.00000547) (0.00)
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eTable 5: Summary of the multivariate normal simulation results of the two-stage least squares estimate of
the casual exposure effect, β̂2SLS

X , for true value of 0, and linear X−Z association: Mean (standard deviation)

of the partial R2
X|Z of the X − Z association, bias of β̂2SLS

X , mean of the estimated standard errors, SE, of

β̂2SLS
X , and coverage percentage of the 95% confidence interval for β̂2SLS

X . Monte Carlo errors in brackets,
except for partial R2

X|Z .

Full sample/ Moderate Instrument Strong Instrument

Selection partial R2
X|Z Bias Mean SE Coverage partial R2

X|Z Bias Mean SE Coverage

Full sample 0.0452 0.000499 0.0326 95.4 0.390 0.000181 0.00884 95.3
(0.00285) (0.000590) (0.0000213) (0.384) (0.00535) (0.000160) (0.00000201) (0.385)

Completely at random 0.0452 0.000840 0.0420 95.4 0.390 0.000286 0.0114 95.3
(0.00370) (0.000758) (0.0000360) (0.382) (0.00695) (0.000205) (0.00000341) (0.385)

on Z 0.0384 0.000144 0.0460 95.2 0.350 0.000121 0.0125 94.8
(0.00338) (0.000832) (0.0000419) (0.390) (0.00693) (0.000226) (0.00000393) (0.404)

on Z + C 0.0322 −0.153 0.0525 15.2 0.353 −0.0470 0.0125 3.33
(0.00317) (0.000951) (0.0000591) (0.655) (0.00698) (0.000227) (0.00000406) (0.328)

on X 0.0382 −0.0423 0.0502 87.4 0.348 −0.0429 0.0133 9.67
(0.00345) (0.000915) (0.0000483) (0.606) (0.00691) (0.000243) (0.00000426) (0.540)

on X + C 0.0425 −0.0384 0.0461 87.7 0.370 −0.0432 0.0126 6.90
(0.00364) (0.000854) (0.0000422) (0.600) (0.00690) (0.000229) (0.00000391) (0.463)

on X + Z 0.0163 −0.159 0.0781 46.1 0.325 −0.0404 0.0136 15.9
(0.00229) (0.00142) (0.000125) (0.910) (0.00696) (0.000249) (0.00000458) (0.668)

on Y 0.0457 0.00108 0.0385 95.6 0.395 0.000284 0.0105 95.7
(0.00370) (0.000693) (0.0000323) (0.373) (0.00695) (0.000189) (0.00000309) (0.369)

on X + Y 0.0425 −0.0833 0.0441 52.7 0.373 −0.0716 0.0121 0.00
(0.00366) (0.000812) (0.0000397) (0.912) (0.00693) (0.000224) (0.00000374) (0.00)

on Y + Z 0.0357 −0.417 0.0535 0.00 0.360 −0.107 0.0121 0.00
(0.00329) (0.000972) (0.0000657) (0.00) (0.00693) (0.000221) (0.00000396) (0.00)

23



eTable 6: Summary of the multivariate normal simulation results of the two-stage least squares estimate
of the casual exposure effect, β̂2SLS

X , for true value of 0 and nonlinear X − Z association: Mean (standard

deviation) of the partial R2
X|Z of the X − Z association, bias of β̂2SLS

X , mean of the estimated standard

errors, SE, of β̂2SLS
X , and coverage percentage of the 95% confidence interval for β̂2SLS

X . Monte Carlo errors
in brackets, except for partial R2

X|Z .

Full sample/ Moderate Instrument Strong Instrument

Selection partial R2
X|Z Bias Mean SE Coverage partial R2

X|Z Bias Mean SE Coverage

Full sample 0.0454 0.000196 0.0192 95.3 0.393 0.000110 0.00596 95.3
(0.00500) (0.000346) (0.0000282) (0.388) (0.00663) (0.000107) (0.00000254) (0.386)

Completely at random 0.0455 0.000180 0.0249 95.0 0.393 0.000130 0.00766 95.1
(0.00655) (0.000448) (0.0000479) (0.397) (0.00866) (0.000138) (0.00000426) (0.394)

on Z 0.0319 −0.000298 0.0312 95.1 0.350 0.0000716 0.00865 95.1
(0.00555) (0.000563) (0.0000724) (0.395) (0.00829) (0.000157) (0.00000506) (0.394)

on Z + C 0.0272 −0.174 0.0384 0.00 0.352 −0.0485 0.00877 0.00
(0.00523) (0.000785) (0.000115) (0.00) (0.00840) (0.000162) (0.00000529) (0.00)

on X 0.0335 0.00156 0.0317 95.0 0.339 −0.0528 0.00938 0.00
(0.00573) (0.000570) (0.0000719) (0.397) (0.00824) (0.000174) (0.00000575) (0.00)

on X + C 0.0340 −0.00962 0.0312 94.4 0.351 −0.0488 0.00906 0.0333
(0.00572) (0.000565) (0.0000698) (0.421) (0.00832) (0.000168) (0.00000541) (0.0333)

on X + Z 0.0180 −0.132 0.0486 17.9 0.323 −0.0583 0.00970 0.00
(0.00445) (0.000947) (0.000184) (0.699) (0.00822) (0.000180) (0.00000618) (0.00)

on Y 0.0466 0.000692 0.0228 95.2 0.405 0.000225 0.00703 94.7
(0.00643) (0.000419) (0.0000424) (0.392) (0.00855) (0.000129) (0.00000381) (0.409)

on X + Y 0.0347 −0.0200 0.0301 90.4 0.365 −0.0503 0.00862 0.00
(0.00574) (0.000550) (0.0000657) (0.537) (0.00840) (0.000159) (0.00000499) (0.00)

on Y + Z 0.0313 −0.234 0.0358 0.00 0.375 −0.0542 0.00796 0.00
(0.00563) (0.000790) (0.000105) (0.00) (0.00847) (0.000146) (0.00000472) (0.00)
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eTable 7: Summary of the multivariate normal simulation results of the two-stage least squares estimate of
the casual exposure effect, β̂2SLS

X , for true value of 1 and linear X−Z association: Mean (standard deviation)

of the partial R2
X|Z of the X − Z association, bias of β̂2SLS

X , mean of the estimated standard errors, SE, of

β̂2SLS
X , and coverage percentage of the 95% confidence interval for β̂2SLS

X . Monte Carlo errors in brackets,
except for partial R2

X|Z .

Full sample/ partial R2
X|Z = 0.15 Strong Instrument

Selection partial R2
X|Z Bias Mean SE Coverage partial R2

X|Z Bias Mean SE Coverage

Full sample 0.151 0.000313 0.0168 95.4 0.390 0.000181 0.00884 95.3
(0.00463) (0.000304) (0.00000603) (0.382) (0.00535) (0.000160) (0.00000201) (0.385)

Completely at random 0.151 0.000519 0.0216 95.4 0.390 0.000286 0.0114 95.3
(0.00602) (0.000390) (0.0000101) (0.382) (0.00695) (0.000205) (0.00000341) (0.385)

on Z 0.130 0.000175 0.0237 94.9 0.350 0.000121 0.0125 94.8
(0.00564) (0.000428) (0.0000118) (0.400) (0.00693) (0.000226) (0.00000393) (0.404)

on Z + C 0.125 −0.0782 0.0247 10.9 0.353 −0.0470 0.0125 3.33
(0.00564) (0.000447) (0.0000134) (0.568) (0.00698) (0.000227) (0.00000406) (0.328)

on X 0.130 −0.0421 0.0256 61.3 0.348 −0.0429 0.0133 9.67
(0.00558) (0.000464) (0.0000130) (0.889) (0.00691) (0.000243) (0.00000426) (0.540)

on X + C 0.142 −0.0382 0.0237 63.5 0.370 −0.0432 0.0126 6.90
(0.00591) (0.000436) (0.0000117) (0.879) (0.00690) (0.000229) (0.00000391) (0.463)

on X + Z 0.0989 −0.0651 0.0289 38.3 0.325 −0.0404 0.0136 15.9
(0.00515) (0.000529) (0.0000174) (0.888) (0.00696) (0.000249) (0.00000458) (0.668)

on Y 0.142 −0.0811 0.0228 5.20 0.373 −0.0704 0.0121 0.00
(0.00593) (0.000423) (0.0000112) (0.405) (0.00693) (0.000223) (0.00000374) (0.00)

on X + Y 0.137 −0.0808 0.0242 8.90 0.362 −0.0688 0.0127 0.00
(0.00580) (0.000450) (0.0000121) (0.520) (0.00692) (0.000231) (0.00000398) (0.00)

on Y + Z 0.113 −0.184 0.0270 0.00 0.342 −0.0980 0.0131 0.00
(0.00538) (0.000496) (0.0000157) (0.00) (0.00699) (0.000240) (0.00000429) (0.00)
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eTable 8: Summary of the multivariate normal simulation results of the two-stage least squares estimator
of the casual exposure effect conditional on C, β̂2SLS

X|C , for a linear X − Z association and a causal exposure

effect of 1: Mean (standard deviation) of the partial R2
X|Z of the X − Z association, bias of β̂2SLS

X|C , mean

of the estimated standard errors, SE, of β̂2SLS
X|C , and coverage percentage of the 95% confidence interval for

β̂2SLS
X|C . Monte Carlo errors in brackets, except for partial R2

X|Z .

Full sample/ Moderate Instrument Strong Instrument

Selection partial R2
X|Z Bias Mean SE Coverage partial R2

X|Z Bias Mean SE Coverage

Full sample 0.0508 0.000406 0.0306 95.3 0.438 0.000123 0.00801 95.3
(0.00301) (0.000557) (0.0000181) (0.386) (0.00521) (0.000145) (0.00000162) (0.385)

Completely at random 0.0508 0.000937 0.0394 95.1 0.438 0.000274 0.0103 94.8
(0.00390) (0.000714) (0.0000304) (0.393) (0.00678) (0.000186) (0.00000274) (0.405)

on Z 0.0431 0.0000655 0.0432 95.2 0.396 0.0000484 0.0113 95.2
(0.00356) (0.000791) (0.0000357) (0.392) (0.00679) (0.000207) (0.00000315) (0.390)

on Z + C 0.0468 0.000468 0.0413 95.5 0.417 0.000156 0.0108 95.4
(0.00376) (0.000745) (0.0000333) (0.378) (0.00678) (0.000195) (0.00000296) (0.382)

on X 0.0437 −0.0208 0.0462 93.3 0.399 −0.0215 0.0117 54.6
(0.00368) (0.000846) (0.0000395) (0.456) (0.00681) (0.000213) (0.00000326) (0.909)

on X + C 0.0474 −0.00859 0.0425 94.8 0.416 −0.0118 0.0111 82.7
(0.00382) (0.000778) (0.0000347) (0.407) (0.00677) (0.000202) (0.00000307) (0.691)

on X + Z 0.0209 −0.0743 0.0662 80.3 0.377 −0.0200 0.0120 60.7
(0.00259) (0.00120) (0.0000829) (0.727) (0.00693) (0.000221) (0.00000347) (0.892)

on Y 0.0479 −0.0687 0.0411 60.9 0.421 −0.0527 0.0108 0.333
(0.00384) (0.000760) (0.0000332) (0.891) (0.00677) (0.000199) (0.00000297) (0.105)

on X + Y 0.0460 −0.0659 0.0436 67.8 0.411 −0.0477 0.0113 1.20
(0.00374) (0.000801) (0.0000358) (0.853) (0.00680) (0.000205) (0.00000311) (0.199)

on Y + Z 0.0303 −0.310 0.0556 0.0333 0.394 −0.0720 0.0115 0.00
(0.00306) (0.00102) (0.0000640) (0.0333) (0.00686) (0.000210) (0.00000324) (0.00)
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eTable 9: Summary of the multivariate normal simulation results of the two-stage least squares estimator of
the casual exposure effect conditional on C, β̂2SLS

X|C , for a nonlinear X − Z association and a causal exposure

effect of 1: Mean (standard deviation) of the partial R2
X|Z of the X − Z association, bias of β̂2SLS

X|C , mean

of the estimated standard errors, SE, of β̂2SLS
X|C , and coverage percentage of the 95% confidence interval for

β̂2SLS
X|C . Monte Carlo errors in brackets, except for partial R2

X|Z .

Full sample/ Moderate Instrument Strong Instrument

Selection partial R2
X|Z Bias Mean SE Coverage partial R2

X|Z Bias Mean SE Coverage

Full sample 0.0505 0.000105 0.0157 95.3 0.443 0.0000527 0.00461 95.0
(0.00528) (0.000285) (0.0000224) (0.386) (0.00707) (0.0000834) (0.00000187) (0.398)

Completely at random 0.0505 0.000300 0.0203 95.0 0.443 0.000119 0.00593 95.0
(0.00691) (0.000367) (0.0000377) (0.399) (0.00914) (0.000108) (0.00000313) (0.397)

on Z 0.0357 −0.000303 0.0255 94.9 0.401 0.00000144 0.00669 94.8
(0.00591) (0.000468) (0.0000572) (0.402) (0.00873) (0.000123) (0.00000370) (0.405)

on Z + C 0.0407 0.0000338 0.0234 95.1 0.420 0.0000624 0.00634 95.0
(0.00615) (0.000424) (0.0000478) (0.394) (0.00887) (0.000116) (0.00000338) (0.397)

on X 0.0365 0.000362 0.0263 95.5 0.394 −0.0263 0.00704 3.23
(0.00605) (0.000476) (0.0000590) (0.377) (0.00882) (0.000130) (0.00000395) (0.323)

on X + C 0.0368 −0.00329 0.0260 95.2 0.403 −0.0195 0.00685 18.9
(0.00603) (0.000467) (0.0000574) (0.390) (0.00888) (0.000127) (0.00000379) (0.715)

on X + Z 0.0218 −0.0651 0.0358 55.2 0.379 −0.0300 0.00723 1.23
(0.00493) (0.000680) (0.000116) (0.908) (0.00869) (0.000133) (0.00000418) (0.202)

on Y 0.0381 −0.0122 0.0248 92.2 0.416 −0.0289 0.00659 0.667
(0.00608) (0.000458) (0.0000534) (0.491) (0.00899) (0.000121) (0.00000355) (0.149)

on X + Y 0.0371 −0.00649 0.0256 94.3 0.407 −0.0291 0.00678 1.10
(0.00602) (0.000471) (0.0000561) (0.424) (0.00891) (0.000126) (0.00000372) (0.190)

on Y + Z 0.0281 −0.0844 0.0305 18.7 0.402 −0.0365 0.00680 0.00
(0.00541) (0.000586) (0.0000829) (0.712) (0.00888) (0.000127) (0.00000377) (0.00)
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eTable 10: Summary of the multivariate normal simulation results of the two-stage least squares estimator of
the casual exposure effect conditional on C, β̂2SLS

X|C , for a linear X −Z association and a null causal exposure

effect: Mean (standard deviation) of the partial R2
X|Z of the X − Z association, bias of β̂2SLS

X|C , mean of the

estimated standard errors, SE, of β̂2SLS
X|C , and coverage percentage of the 95% confidence interval for β̂2SLS

X|C .

Monte Carlo errors in brackets, except for partial R2
X|Z .

Full sample/ Moderate Instrument Strong Instrument

Selection partial R2
X|Z Bias Mean SE Coverage partial R2

X|Z Bias Mean SE Coverage

Full sample 0.0508 0.000406 0.0306 95.3 0.438 0.000123 0.00801 95.3
(0.00301) (0.000557) (0.0000181) (0.386) (0.00521) (0.000145) (0.00000162) (0.385)

Completely at random 0.0508 0.000937 0.0394 95.1 0.438 0.000274 0.0103 94.8
(0.00390) (0.000714) (0.0000304) (0.393) (0.00678) (0.000186) (0.00000274) (0.405)

on Z 0.0431 0.0000655 0.0432 95.2 0.396 0.0000484 0.0113 95.2
(0.00356) (0.000791) (0.0000357) (0.392) (0.00679) (0.000207) (0.00000315) (0.390)

on Z + C 0.0468 0.000468 0.0413 95.5 0.417 0.000156 0.0108 95.4
(0.00376) (0.000745) (0.0000333) (0.378) (0.00678) (0.000195) (0.00000296) (0.382)

on X 0.0437 −0.0208 0.0462 93.3 0.399 −0.0215 0.0117 54.6
(0.00368) (0.000846) (0.0000395) (0.456) (0.00681) (0.000213) (0.00000326) (0.909)

on X + C 0.0474 −0.00859 0.0425 94.8 0.416 −0.0118 0.0111 82.7
(0.00382) (0.000778) (0.0000347) (0.407) (0.00677) (0.000202) (0.00000307) (0.691)

on X + Z 0.0209 −0.0743 0.0662 80.3 0.377 −0.0200 0.0120 60.7
(0.00259) (0.00120) (0.0000829) (0.727) (0.00693) (0.000221) (0.00000347) (0.892)

on Y 0.0510 0.00101 0.0366 95.6 0.440 0.000235 0.00961 95.0
(0.00388) (0.000659) (0.0000279) (0.376) (0.00675) (0.000174) (0.00000256) (0.397)

on X + Y 0.0479 −0.0687 0.0411 60.9 0.420 −0.0537 0.0108 0.267
(0.00384) (0.000760) (0.0000332) (0.891) (0.00677) (0.000199) (0.00000297) (0.0942)

on Y + Z 0.0437 −0.356 0.0455 0.00 0.414 −0.0879 0.0106 0.00
(0.00357) (0.000836) (0.0000458) (0.00) (0.00670) (0.000196) (0.00000301) (0.00)
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eTable 11: Summary of the multivariate normal simulation results of the two-stage least squares estimator
of the casual exposure effect conditional on C, β̂2SLS

X|C , for a nonlinear X − Z association and a null causal

exposure effect: Mean (standard deviation) of the partial R2
X|Z of the X−Z association, bias of β̂2SLS

X|C , mean

of the estimated standard errors, SE, of β̂2SLS
X|C , and coverage percentage of the 95% confidence interval for

β̂2SLS
X|C . Monte Carlo errors in brackets, except for partial R2

X|Z .

Full sample/ Moderate Instrument Strong Instrument

Selection partial R2
X|Z Bias Mean SE Coverage partial R2

X|Z Bias Mean SE Coverage

Full sample 0.0512 0.000105 0.0156 95.3 0.443 0.0000527 0.00461 95.0
(0.00530) (0.000283) (0.0000221) (0.386) (0.00707) (0.0000834) (0.00000187) (0.398)

Completely at random 0.0512 0.000299 0.0202 95.0 0.443 0.000119 0.00593 95.0
(0.00694) (0.000365) (0.0000372) (0.399) (0.00914) (0.000108) (0.00000313) (0.397)

on Z 0.0363 −0.000298 0.0253 94.9 0.401 0.00000144 0.00669 94.8
(0.00594) (0.000464) (0.0000562) (0.403) (0.00873) (0.000123) (0.00000370) (0.405)

on Z + C 0.0413 0.0000353 0.0232 95.1 0.420 0.0000624 0.00634 95.0
(0.00618) (0.000421) (0.0000470) (0.394) (0.00887) (0.000116) (0.00000338) (0.397)

on X 0.0370 0.000546 0.0262 95.5 0.393 −0.0268 0.00705 3.03
(0.00607) (0.000473) (0.0000581) (0.378) (0.00881) (0.000130) (0.00000396) (0.313)

on X + C 0.0373 −0.00344 0.0258 95.0 0.404 −0.0189 0.00684 20.5
(0.00606) (0.000463) (0.0000565) (0.397) (0.00887) (0.000127) (0.00000377) (0.737)

on X + Z 0.0223 −0.0649 0.0355 54.7 0.380 −0.0292 0.00720 1.60
(0.00496) (0.000672) (0.000113) (0.909) (0.00871) (0.000133) (0.00000415) (0.229)

on Y 0.0515 0.000532 0.0191 95.6 0.447 0.000113 0.00563 94.7
(0.00674) (0.000348) (0.0000341) (0.374) (0.00901) (0.000103) (0.00000291) (0.409)

on X + Y 0.0386 −0.0125 0.0247 92.0 0.416 −0.0289 0.00659 0.667
(0.00611) (0.000454) (0.0000526) (0.494) (0.00899) (0.000121) (0.00000355) (0.149)

on Y + Z 0.0401 −0.149 0.0251 0.00 0.428 −0.0336 0.00608 0.0333
(0.00626) (0.000533) (0.0000607) (0.00) (0.00897) (0.000111) (0.00000335) (0.0333)
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eTable 12: Summary of the multivariate normal simulation results of the inverse probability
weighted two-stage least squares estimate of the casual exposure effect, β̂IPW,2SLSX , for a true
value of 1 and linear X − Z association: Mean (standard deviation) of the partial R2

X|Z of the

X−Z association, bias of β̂IPW,2SLSX , mean of the estimated standard errors, SE, of β̂IPW,2SLSX , and

coverage percentage of the 95% confidence interval for β̂IPW,2SLSX . Monte Carlo errors in brackets,
except for partial R2

X|Z .

Moderate Instrument Strong Instrument

Selection partial R2
X|Z Bias Mean SE Coverage partial R2

X|Z Bias Mean SE Coverage

Z 0.0384 −0.000238 0.0569 96.1 0.350 0.00000311 0.0154 95.6
(0.00338) (0.00102) (0.000257) (0.355) (0.00693) (0.000276) (0.0000513) (0.373)

Z + C 0.0322 0.000201 0.0521 95.6 0.353 0.000122 0.0142 95.8
(0.00317) (0.000938) (0.0000924) (0.374) (0.00698) (0.000257) (0.0000260) (0.366)

X 0.0382 0.000426 0.0474 95.1 0.348 −0.0000183 0.0140 95.1
(0.00345) (0.000864) (0.0000608) (0.394) (0.00691) (0.000254) (0.0000212) (0.394)

X + C 0.0425 0.000245 0.0480 94.9 0.370 0.0000462 0.0138 95.4
(0.00364) (0.000883) (0.0000650) (0.402) (0.00690) (0.000249) (0.0000199) (0.384)

X + Z 0.0163 −0.000217 0.0527 95.3 0.325 0.0000371 0.0147 95.3
(0.00229) (0.000960) (0.0000786) (0.386) (0.00696) (0.000269) (0.0000227) (0.388)

Y 0.0425 0.0000387 0.0528 94.9 0.373 0.0000751 0.0148 95.0
(0.00366) (0.000966) (0.0000921) (0.402) (0.00693) (0.000269) (0.0000312) (0.398)

X + Y 0.0406 0.000115 0.0505 94.6 0.362 −0.0000451 0.0144 95.5
(0.00355) (0.000928) (0.0000796) (0.411) (0.00692) (0.000257) (0.0000266) (0.378)

Y + Z 0.0241 0.0000617 0.0552 94.8 0.343 −0.000502 0.0153 94.9
(0.00278) (0.00132) (0.000162) (0.532) (0.00742) (0.00122) (0.000113) (1.74)
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eTable 13: Summary of the multivariate normal simulation results of the inverse probability
weighted two-stage least squares estimate of the casual exposure effect, β̂IPW,2SLSX , for true value
of 1 and nonlinear X − Z association: Mean (standard deviation) of the partial R2

X|Z of the

X − Z association, bias of β̂IPW,2SLSX , mean of the estimated standard errors, SE, of β̂IPW,2SLSX ,

and coverage percentage of the 95% confidence interval for β̂IPW,2SLSX . Monte Carlo errors in
brackets, except for partial R2

X|Z .

Moderate Instrument Strong Instrument

Selection partial R2
X|Z Bias Mean SE Coverage partial R2

X|Z Bias Mean SE Coverage

Z 0.0314 −0.000852 0.0352 95.5 0.350 −0.000101 0.0103 94.9
(0.00552) (0.000638) (0.000126) (0.377) (0.00829) (0.000188) (0.0000138) (0.400)

Z + C 0.0267 −0.00101 0.0326 95.8 0.352 −0.0000797 0.00984 95.4
(0.00520) (0.000583) (0.0000965) (0.366) (0.00840) (0.000177) (0.0000177) (0.382)

X 0.0330 −0.0110 0.0589 90.5 0.339 −0.00187 0.0171 91.1
(0.00571) (0.00116) (0.000353) (0.535) (0.00826) (0.000373) (0.000200) (0.521)

X + C 0.0335 −0.00805 0.0509 90.6 0.350 −0.00152 0.0151 91.6
(0.00569) (0.00100) (0.000254) (0.532) (0.00833) (0.000327) (0.000138) (0.506)

X + Z 0.0177 −0.0134 0.0752 89.2 0.322 −0.00167 0.0173 91.4
(0.00442) (0.00154) (0.000523) (0.566) (0.00822) (0.000378) (0.000187) (0.511)

Y 0.0343 −0.00692 0.0470 91.7 0.365 −0.000946 0.0137 92.8
(0.00571) (0.000927) (0.000222) (0.504) (0.00840) (0.000283) (0.000122) (0.471)

X + Y 0.0334 −0.00894 0.0521 90.7 0.354 −0.00138 0.0147 92.2
(0.00568) (0.00102) (0.000265) (0.530) (0.00836) (0.000319) (0.000139) (0.490)

Y + Z 0.0233 −0.00876 0.0526 91.3 0.348 −0.00112 0.0141 92.7
(0.00492) (0.00103) (0.000273) (0.515) (0.00838) (0.000292) (0.000121) (0.475)

31



eTable 14: Distribution of the instrument, exposure and two outcomes in the applied
example dataset from the UK Biobank study.

No. participants Turned 15 years Left school aged Percentage of Percentage of
after policy introduced 16 years or older ever smokers current smokers

1967 No No 57.4% 23.5%

9273 No Yes 37.1% 9.14%

328 Yes No 65.3% 29.4%

10570 Yes Yes 39.2% 11.4%
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eTable 15: Values of the selection model’s pa-
rameters for 9 selection mechanisms, including
selection completely at random (SCAR), used
in the applied example simulation study.

Selection is/
depends on η0 ηZ ηU ηX ηY

SCAR 0.425 0 0 0 0

Z −0.390 1.81 0 0 0

Z + U 0.0500 0.900 0.900 0 0

X −1.20 0 0 2.10 0

X + U −0.270 0 1.00 1.00 0

X + Z −1.12 1.27 0 1.27 0

Y −0.170 0 0 0 2.16

X + Y −1.440 0 0 1.75 1.75

Y + Z −0.680 1.42 0 0 1.42
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eTable 16: Summary of the applied example simulation results
of the two-stage least squares estimate of the casual exposure
effect, β̂2SLS

X : Mean (standard deviation) of the partial R2
X|Z of

the X − Z association, bias of β̂2SLS
X , mean of the estimated

standard errors, SE, of β̂2SLS
X , coverage percentage of the 95%

confidence interval for β̂2SLS
X , mean (standard deviation) of the

coefficients for the linear regressions of Z given U Monte Carlo
errors in brackets, except for partial R2

X|Z .

Full sample/ partial R2
X|Z = 0.056

Selection partial R2
X|Z Bias Mean SE Coverage

Full sample 0.0560 0.000763 0.0336 95.5
(0.00309) (0.000610) (0.0000180) (0.378)

Completely at random 0.0560 0.00127 0.0432 95.4
(0.00397) (0.000791) (0.0000299) (0.384)

on Z 0.0565 0.000244 0.0457 95.3
(0.00458) (0.000834) (0.0000364) (0.386)

on Z + U 0.0739 −0.0905 0.0376 32.5
(0.00482) (0.000688) (0.0000235) (0.855)

on X 0.0258 0.113 0.0946 78.1
(0.00276) (0.00172) (0.000106) (0.755)

on X + U 0.0515 −0.00681 0.0480 95.1
(0.00384) (0.000871) (0.0000353) (0.393)

on X + Z 0.0185 0.115 0.0969 78.4
(0.00259) (0.00177) (0.000138) (0.751)

on Y 0.0590 −0.00171 0.0434 95.1
(0.00412) (0.000782) (0.0000295) (0.395)

on X + Y 0.0371 −0.103 0.0671 64.8
(0.00330) (0.00124) (0.0000603) (0.872)

on Y + Z 0.0662 −0.475 0.0441 0.00
(0.00468) (0.000810) (0.0000336) (0.00)
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eTable 17: Summary of the applied example simula-
tion results of the of the inverse probability weighted
two-stage least squares estimate of the casual expo-
sure effect, β̂IPW,2SLSX : Mean (standard deviation) of
the partial R2

X|Z of the X − Z association, bias of

β̂IPW,2SLSX , mean of the estimated standard errors, SE,

of β̂IPW,2SLSX , coverage percentage of the 95% confi-

dence interval for β̂IPW,2SLSX , mean (standard devia-
tion) of the coefficients for the linear regressions of Z
given U Monte Carlo errors in brackets, except for par-
tial R2

X|Z .

partial R2
X|Z = 0.056

Selection partial R2
X|Z Bias Mean SE Coverage

on Z 0.0561 0.000244 0.0458 95.4
(0.00434) (0.000834) (0.0000363) (0.381)

on Z + U 0.0560 0.000427 0.0454 95.5
(0.00416) (0.000818) (0.0000344) (0.378)

on X 0.0562 0.000314 0.0495 94.6
(0.00581) (0.000913) (0.0000505) (0.413)

on X + U 0.0561 0.00105 0.0453 95.5
(0.00448) (0.000821) (0.0000355) (0.378)

on X + Z 0.0560 0.00101 0.0476 94.9
(0.00465) (0.000879) (0.0000389) (0.400)

on Y 0.0561 0.000786 0.0411 95.4
(0.00410) (0.000740) (0.0000296) (0.382)

on X + Y 0.0561 0.000921 0.0442 95.0
(0.00543) (0.000819) (0.0000429) (0.399)

on Y + Z 0.0561 0.00106 0.0427 96.9
(0.00424) (0.000725) (0.0000328) (0.316)
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