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Online Supplement  

This online Supplement Includes   

I. eAppendix 2, with 1) Sketch of proof for main result; 2) Notation and Definitions; 3) The 

Main Theorem and proof; 4) Other Standard Populations; 5) Lower Bound; 6) Supporting 

theorems (statement only).   

II. eAppendix 3, with statement and proofs of all supporting Theorems, Propositions and 

Lemmas. 

III. eAppendix 4. Simulation Experiment to Evaluate Bias, compare Bounds and the R code for 

simulations 

IV. eAppendix 5. Comparison of    with a bound assuming homogeneity. 

V. eAppendix 6. R code to calculate bias (implements Equation 3), and bounds. 

 

I. eAppendix 2:  

eAppendix 2 contains: 1) a sketch of the main ideas of our proof that    in expression (3) bounds the 

bias; 2) key definitions and notation; 3) the main Theorem and its proof; and 4) a statement of Theorems 

1-3 used to prove it. Proofs of Theorems 1-3 and the Propositions are in eAppendix 3. 

1) Sketch of proof for main result:  

The main ideas of our proof that    (expression 3, main text) bounds the bias are as follows.  We 

characterize the strength of association between the variables           whose effects create the 

collider bias using three limits       and   . Using      to denote the maximum bias for all situations 

wherein the strengths of association don’t exceed these limits, we argue (main Theorem) that: regularity 

conditions assure that we can approximate continuous or mixtures of continuous and categorical variables 

by their categorical counterparts so that the maximum bias for categorical variables is within   of     . 

More precisely,           where    is the bias for some set of categorical variables 

              .  We then show by construction (Theorems 1 and 2 and supporting propositions) that we 

can modify the probability distributions for these categorical variables to obtain new categorical variables 

               with bias    such that: i)           ; and ii) the contribution to    is negligible 

from all sets, other than two specific sets we explicitly define. This simplifies the bias expression, since 

we only have to consider   in one of these two sets. We next collect the approximation errors (Theorem 

3) and show by construction that we can replace                with variables                such 

that i) all variables are dichotomous; and, ii)           .  The resulting bias expression is further 

simplified and now involves only five parameters.  We then use optimization techniques to find the 

maximum bias         for such dichotomous variables. These steps establish that              
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          Since   is arbitrary,         must equal      justifying use of         as the bound: 

          .  

2) Notation and Definitions:  

We only consider values of           .  

  is the empty set; 

    has two meanings: if   is a number,     is its absolute value; if   is a set,     is its cardinality. 

       is the set of variables               and their associated probability functions; that is        

                                               where       are dichotomous,   is categorical, but 

otherwise unrestricted, and the causal relationships of Figure 1C hold.  Here,                  

      for      ,                        for       where   is the value of   that is 

selected or conditioned on in Figure 1C,                   and              with 

   
       

       
 for      .  If      , we can parameterize these functions as:              

              ,            and            for                        .  

       “satisfies constraint             ” if and only if:       
     

       
    

             

             
     

    
     

       
     

       “satisfies constraint                     ” if and only if: 

                                                                   
       

       
     

          is the bias   for                                                       

                                   denotes the collection of all sets 

                                                      such that:      ;        satisfies 

constraints              and                     ; and, the bias           satisfies           

      . 

Let      be the (overall) maximum of the bias           defined in Equation (2) of the main text, for all 

probability functions that satisfy constraint             .  Our goal is to prove that        . 

Define the four sums by: 
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With this notation,           can be written as           
    

    
.   

It is useful to note that we can write    to    in several different forms, yet still have           
    

    
. 

For example, since   is dichotomous, we can multiply    to    by 
       

                  
 and write 

              

              
   ,         and re-express    to    as:  

                                          ;                                           

                                          ;                                          

The derivative with respect to    is: 
       

   
    

              

  
 
              

  
 .  If this derivative is 

negative, we can relabel the levels of   so that the bias is increasing as a function of   . Thus, we still 

have           
    

    
, if we take    to be the maximum   , with      and write:  

                                     and                                . 

Define the collections of subsets of  :                                      

                      .  The collection of subsets,            for       is mutually exclusive 

and collectively exhaustive for  . Note that          depend on           , but for notational 

simplicity, we suppress that dependency here and elsewhere. There are 9 combinations of subsets 

                     . 

3) Theorem (Main).  Fix            and let    . Assume that inequalities (5) of the main text hold 

for         and   and that structural selection bias is present (Figure 1C). Then the bias (Equation 3, 

main text) in the conditional RR doesn’t exceed    
                    

                    
 
                    

                    
. 

Proof:   Under mild regularity conditions (e.g., similar to those used by Ding and VanderWeele [1], 

      and    are defined for continuous variables, categorical variables or a mixture of continuous and 

categorical variables.  Furthermore, we need consider only categorical variables. This restriction is 

justified since, if the bias exceeds a particular number   for some         , and continuous variables 

        and   with distributions satisfying the inequalities in (5), mild regularity assumptions imply 

that the continuous variables and distributions can be approximated by categorical variables and 

distributions also satisfying the inequalities (5) so that the bias also exceeds   for the approximating 

categorical variables and distributions. Therefore, establishing the bound    in the categorical case also 

establishes it in the continuous case and justifies subsequent restriction of the proof to categorical 

variables.  



                                                                              4 
 

By Theorem 3 (stated below), given fixed                           and    , there exists 

                                           such that            can be written as: 

                              
                     

   

                 
   

 
                 

   

                     
   

       

          implies       
     

       
    

             

             
         

     

       
    so that         and 

  satisfy inequalities 5 (main text) and                   ;  all terms are defined in Theorem 3. 

Subject to the constraints:             
      and       ,            attains its maximum at 

        
              .  We found the maximum using the optimization method of Byrd et al. 

[2], an approach designed to solve non-linear problems using a gradient projection method and 

implemented in the optimr package in R (version 3.3.1).  We used a grid of 100 starting values to provide 

reassurance that the maximum was identified and also verified the solution using the Maximize function 

in Wolfram Mathematica 11 [3]. 

Substituting these values of       
   and    into Equations (10), yields the bound: 

                 
                    

                    
 
                    

                    
 

Since                       by definition and   is arbitrary, we must have        ,  proving 

the main Theorem.   

Note:  the solution above uses       and   
     . However, if strong substantive knowledge indicates 

that       and   
     

  , with      
  , a tighter bound may be obtained by optimizing            

subject to these alternative constraints. 

 

4) Other Standard Populations.  

In the main text we considered the exposed, selected population as the standard, but it is straightforward 

to also consider the unexposed or the entire selected population as the standard. Let   be the bias and 

    be the (causal) standardized risk ratio, with the exposed as the standard (Equation 2, main text), i.e. 

the effect of treatment on the treated. Denote the bias and the (causal) standardized risk ratio, if the 

unexposed were the standard as, say    and     , where    is the ratio of the     divided by     .  In 

direct analogy to the case with the exposed as the standard (main text, Equation 3),    is given by:   
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This Equation shows that    has just the same structure as  , except that                in 

Equation (2) is replaced by               .  Thus, our arguments justifying bound    for   also 

hold for   , provided   
  

                  

                  
 replaces    in Equation (4) of the main text.   

If the distribution of   among all those selected is the standard, much as in Ding and VanderWeele{Ding, 

2016 #326} , we have:  

                                ,     where 

               
                                            

                                                                                          
,   and     

is the standardized risk ratio with all in the selected population as the standard (the average causal effect 

for this population).  If we define   
   as           

 ) and calculate       using      
   and    in 

Equation (4, main text), we obtain a bound for the bias in the average causal effect     : 

                 = (oRR/          . 

5) Lower Bound. 

Here we use our main results to derive a lower bound, say   , for the bias (Equation 3, main text) when 

oRR is used to estimate effects of exposure  . We establish that:      
 

  
.  To derive this result, we 

define a new variable          With those “unexposed” to     as the standard        in the definition 

of the effect of   , the bias is: 

                  
                                                  

                                                  
 
                                   

                                   
 

                      
                                                

                                                
 
                                  

                                  
 

Then        
 

 
, where   is given by Equation (2), main text.   Applying our result for the upper bound 

on the bias in estimating the effects of   , with those “unexposed” to    as the standard       , gives: 

  
 

 
        

      
              

  

     
                

  

 

 

, where   
  

                   

                   
 

                  

                   
 

  . 

Combining results:  
 

  
          . 

Simulations like those described in eAppendix 4 where the exposed, selected population was the standard, 

yield similar results with the bias approaching but never exceeding the bound when the unexposed, 

selected population is the standard and also for the lower bound (data not shown). 
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5) Supporting Theorems:  

We now state Theorems 1-3. Their proofs and supporting Propositions and Lemmas are in eAppendix 3.   

Theorem 1.  Let          and     be given. Set    
    

     
  and let      be the maximum of the 

bias   defined in Equation (3; main text) for all probability functions that satisfy constraint 

             and the causal relationships of Figure 1C.  Then   numbers               and    

and     and variables with associated probability functions 

                                          such that: (i)                     , for 

     . Proof. eAppendix 3. 

Theorem 2 Fix    ,           ,                with 
  

  
    and    

    

     
 . If 

                                 , then   a number     and 

                                          such that conclusions of Proposition 3 hold 

(including those of Theorem 1); and,                    , for      . Proof: eAppendix 3. 

Theorem 3:  Fix                          , For every      there exists 

                                          with            
    

    
 such that:            

       , where:                           
   ;                               

    

                                       
   ;                              

    

Proof: eAppendix 3.  
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II. eAppendix 3:    

eAppendix 3 contains proofs of Theorems, Propositions, and Lemmas used to prove the main Theorem, 

assumptions of which are used throughout. We first prove three Lemmas that will be used in subsequent 

proofs of Theorems 1-3 and Propositions. 

Note: Theorems 1 and 2 have analogous proofs, with similar construction steps; this is also true of 

Propositions 1, 2, 4 and 5. 

 

Lemma 1. Fix                           and  . Consider 

                                  . If    , then for some     ,   variables and 

functions                                              such that:       ,        has 

bounds     and     such that:              ’ and 
   

   
   .   

Proof: Let         , with                  . Under mild regularity,             can be 

approximated by                with range   (rational numbers) so that                       . For 

simplicity, relabel    as  . Use the following algorithm to recursively define a new variable and functions 

        with the following Steps: 

             0. Let               . Define                          If   is empty, stop.  

Otherwise, 

1. Pick      such that                         .  Let                .  If 

                   , stop.  Otherwise:   integers       such that              

         .  Label the categories of            .  

2. Create a new variable    with                  labeled as        for             

                where       if                 and        otherwise. 

3. Variables         and the probability functions       and       are unchanged. 

4. Define new probability functions   
             

         and   
           as:  

     
         

      

  
;    

                   , for                               . 

   Define:       
  

  
                    

  .  

6. Relabel:         ,         , drop the primes from    and the probability functions 

         .   Return to Step 0. 

Each iteration reduces the number of unique values of       outside the interval               , 

assuring that the algorithm eventually stops. With each iteration, the values of         and, because of 

duplication,                don’t change. Therefore at completion, the final variables and functions         

still satisfy constraint             , and the construction assures         . 
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Lemma 2: If               and     , then 
       

       
 

     

     
.   

Proof: by contradiction. If the conclusion is false, then we would have 
       

       
 

     

     
.  Dividing both 

sides by       and multiplying both sides by         would give: 

       
       

     
 

       

     
.  Dividing numerator and denominator on the left (right) by    (  ) would imply 

       
  

  
  
  

  
  
  

 
  

  
  
  

  
  
  

   Cross multiplying by   
  

  
 and   

  

  
 then would imply: 

         
  

  
     

  

  

  

  
 
  

  
   

  

  
     

  

  

  

  
 
  

  
.  Canceling common terms gives: 

        
  

  
       

  

  
      , which would imply     if     ,  a contradiction, completing the 

proof. 

Lemma 3.  For fixed    ,                           and  , let 

                                   where 
  

  
   .  If                    such that: 

        has the same value for       and all        , and similarly for   in each combinations of 

sets                 . 

Proof: Define        . Create           from         , where                except that: 

                        . Then:                      since       is constant for all     in each 

of the defining sums; also          , 
  

  
    holds if true for        and          has the same value 

for all     for      . The corresponding result holds for the other combinations                , 

concluding the proof.  

Theorem 1.  Let          and        be given and let      be the maximum of the bias   defined in 

Equation (3; main text) for all probability functions that satisfy constraint              and the causal 

relationships of Figure 1C.  Then   numbers               and    and     and variables with 

associated probability functions                                           such that 

                   , for      . 

Proof :  Recall                 .  By the first part of the proof of the main Theorem,   categorical 

variables      and associated probability functions         with          that satisfy constraint 

             and                            Taking 

                                                                   and    

       

       
,         satisfies constraint                      and thus 

                                        . By Lemma 1, for some     ,   variables and 
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functions        
                                        such that:    

     ,        has 

bounds              ’ with 
   

   
   . By Lemma 3, we assume         and         each has the 

same value for all   in each combination                , 

For each value   of  , consider the partial derivatives 
      

        
 and 

      

        
. If both were nonnegative, we 

would have:   

                
      

        
     

    

  
 
  

  
  

    

  
 
  

  
       so    

    

    

       

       
 ; and,             

                
      

        
  

  

  
 
  

  
  

  

  
 
  

  
       so    

    

    

     

     
 .    

This would imply: 
    

    

       

       
 

    

    

     

     
, a contradiction if             and      by Lemma 2. 

Thus, we must have either case (i) or (ii): 

        (i)    
      

        
   and 

      

        
  .  In this case, we can decrease         until            , 

without decreasing          ; or we have: 

        (ii)    
      

        
  .  In this case, we can decrease         until            , without decreasing 

         .  Thus, we can assume either (i)            ; or (ii)            .  

(i) Proposition 1 (below) shows that we can find     and variables with associated probability 

functions                                           such that:               

                 for      .  

(ii) Proposition 2 (below) shows that there exists     and variables      with associated probability  

functions                                              such that: conclusions of proposition 2 

continue to hold; and                                for        

Parts (i-ii) cover both possible combination of values for         and          with        , and 

together show that                  , for      , completing the proof of Theorem 1. 

 

Proposition 1.  Fix       ,           , and                   with 
  

  
   . If            

                                  , then   a number     and 

                                          such that                             

   for      . 

Proof.  Recall that                   for      .  
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1) By the first part of Theorem 1,                                              with 
   

   
 

  , and                      

2) With error at most   in             we can approximate      , so that    and    are rational, and in 

particular   integers                  and even after approximation,                   .  

3)  If                                  for      , we are done. If not, then we show how to 

construct         with the desired properties without decreasing           .  Choose an integer   
   

  
  

4) Label the categories of    by    for               . For each category    of   , define categories of 

a variable       by:                          and associated probability functions:            

                                                                                          

        }.  By construction   cancels from the bias expressions, so               is unchanged, 
   

   
 

   and                                                 .  

5)  If                                ’ for      , we are done. If not then we construct 

other variables and probability functions                                                , 

with: 
   

   
   , an equal or larger value of             and a smaller value of                  

             .   

6) Let                                .  Then       must be greater than    . Otherwise: 

                                      
  

 
      

  

     
    ’,  by choice of   

and since     .     

7)  Thus, choose     points in    . To simplify notation, we drop   and primes ( ) from variables and 

functions in           and the limits: e.g.,                for       and       .   

We now show that we could decrease                                 without decreasing 

             by assigning new values of       and          for sets of     points. The construction will 

assure, that with these new variables and functions        , we have:                   ,  

              and                                          .     

For each set of       points in       with            ,  the current (“old”) values and 

proposed, new (to be assigned) values are shown in eTable A1.  In general,         can vary, but we can 

replace         with the average              
            by Lemma eTable A1: Old and 
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reassigned (“new”) values of             ,         and          for each of        points in       

with              
eTable A1 

          is replaced with the average (see text above). 

Recall that            
    

    
.   The contributions of the   points to each of the sums             before 

(old) and after using the new values are shown in eAppendix Table A2.  

eTable A2: Old and “New” contribution of the       points to              

Sum Old Value New Value:   Type 1   +                   Type2 

    (                                                       
    (                                                          
    (                                                       
    (                                                           

 

By subtracting the old contribution from the new contribution, we get the change in each of the sums – 

the difference that will occur by reassigning         and          as proposed: eAppendix Table A3. 

eAppendix Table A3.  The changes in the sums             due to changing          and         . 

   Difference:       Newi – Oldi          

                                                            
                                                         

                                                          
                                                   

    

                      +                                     
                                                           

                                                              

                                                  
 

The second line in each cell of the right column of Table A3 follows by rearranging and then using 

                and cancelling   and   . (Cancelation simplifies the expression but does not 

affect the value of                ). Setting                  and     , doesn’t change 

Type, number of points                                   
     Old       Old values of probability functions for the   selected points 

                                        

 Total:                                

     

      New      New values of probability functions for the   selected points 

Type 1,                      

Type 2,                     

Total,                               
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  (all     are 0) and the constraints are still satisfied. [Many other possible substitutions would increase 

 .] 

This construction decreases       by    : after redefining the distribution functions       in         as 

in Table A1,                so that none of the     selected points remain in      .  We can 

repeat the process of reassigning probabilities, starting at step 6 and as reflected in eAppendix Tables A1-

A3, until                                so that                                

for      , completing proof of Proposition 1. 

Proposition 2: Fix    ,           , and                with 
  

  
   . If            

                                   satisfying conclusions of Proposition 1, then   a number 

    and                                           such that conclusions of Proposition 1 

hold; and                                for      . 

Proof.  Proposition 2 follows by showing it would be possible to redefine the functions in       so that 

                              , without increasing             so that          
    

                                      for      }. 

Let                                             denote the variables and functions whose 

existence is proven in Proposition 1.   Suppose, for the functions in        , that               

                 for     or  . Paralleling the proof of Proposition 1, if               

                , modify         to increase the number of points if needed and approximate       

by rational numbers so that                    and   
   

 
, where       and     are integers 

with          . Select     points in       such that            . Replace         by the 

average   , without affecting            or the constraints (              
              . 

We now sketch how to modify        , analogous to Proposition 1, with the values for       and         

in Table A4, so that            won’t decrease, but                                ’. 

eAppendix Table A4: Old and reassigned (“new”) values of             ,         and          for each 

set of        points in       with               

Type, number of points                                   
     Old       Old values of probability functions for the selected points 

                                          
 Total:                                

     

      New      New values of probability functions for the selected points 

Type 1,                     
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         can vary, but is replaced by the average by Lemma 3. 

The contributions of these points to each of the sums             before (old) and after (using new 

values) are shown in eTable A5.   

eTable A5: Old and “New” contribution of the       points to              

Sum Old Value New Value:   Type 1   +                   Type2 

    (                                                       
    (                                                          
    (                                                       
    (                                                           

 

By subtracting the old contribution from the new contribution, we get the change      in each of the sums 

(difference that will occur by reassigning         as proposed), as summarized in eTable A6. 

eTable A6.  Changes in the sums             due to changing          and         . 

   Difference:       Newi – Oldi          

                                                            
                                                         

                                                          
                                                     

    

                      +                                     
                                                           

                                                              

                                                  
 

If we set     ;      ;      and      , then         ,    do not change (         

    ), the constraints are still satisfied,            does not decrease, conclusions of Proposition 1, 

continue to hold except                   .  However, with the changes       no longer equals    

for the     selected points so that            | is reduced by    .  We can repeat the process of 

reassigning probability functions (Tables A4-A6) until                                  

implying that                                 for      , concluding the proof of 

Proposition 2. 

Proposition 3: Fix       ,           , and                with 
  

  
   . If              

                                   satisfying conclusions of Theorem 1, then   a number 

Type 2,                     

Total,                               
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    and                                           such that conclusions of Theorem 1 

hold;  and             for      . 

Proof.  Recall                     for      . First, consider    . Let            be the 

variables and functions whose existence is proven in Theorem 1. By the construction in Propositions 1 

and 2,             such that                          .  If             ,    must 

include at least two points, say    and    labeled so              . Let                 represent the 

bias, after changing        by a small amount     and        by    :                    
    

          .  We show we can increase        by   and decrease           without changing 

            if so, the proportional change,    
                                 

                
 must be 0. Direct evaluation of 

   leads to:  

             
                                                        

                                                    
       which has the solution      

             
                                                 

                                                 
.  Set                 

 

 
        

     .  If the denominator is 0, set up the problem to change                    
         . 

Reasoning as before identifies the solution: 

             
                                                 

                                                 
.          

 

 
                         

If this denominator is also 0, then choose       so that             and             . 

After the changes,    or                          as the offsetting changes don’t affect 

          , constraints or the conclusions of Theorem 1 or Proposition 1 or 2. Repeat the process until 

        The analogous construction applies for    , proving Proposition 3.   

Theorem 2. Fix       ,           , and                with 
  

  
   . If            

                                satisfying conclusion of Proposition 3, then   a number     

and                                           such that conclusions of Proposition 3 hold 

(including those of Theorem 1); and,                    , for      .  

Proof :  Recall                  for      .The proof parallels that of Theorem 1. Let         be 

the categorical variables and functions satisfying conclusions of Proposition 3, under assumptions stated 

in the main Theorem.  Denote the probability functions in         by:                            

         } and the associated limits by        .  To simplify notation, we drop the subscript   for 

           and the probability functions. 
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For each value   of  , consider  
      

        
 and 

      

        
.   If both were non-negative, then we would have:   

                
      

        
     

    

  
 
  

  
  

    

  
 
  

  
       so    

    

    

       

       
 ; and,             

                
      

        
  

  

  
 
  

  
  

  

  
 
  

  
       so    

    

    

     

     
 .    

This would imply: 
    

    

       

       
 

    

    

     

     
, a contradiction if             by Lemma 2. Thus, we 

must have either case (i) or (ii): 

        (i)    
      

        
   and 

      

        
  .  In this case, we can decrease         until            , 

without decreasing          ; or we have: 

        (ii)    
      

        
  .  In this case, we can decrease         until            , without decreasing 

         .  Thus, we can assume either (i)            ; or (ii)            . 

i). We prove in Proposition 4 (below) that, if                                  , then   a 

number     and                                        such that: conclusions of 

Proposition 3 continue to hold; and                                 for      ;.  

ii). We prove in Proposition 5 (below) that if                                  , then   a 

number     and                                           such that: conclusions of 

Proposition 4 continue to hold; (ii)                                 for      . 

Cases (i-ii) cover the possible combination of values for         and          with        , and 

together show that                  , for      , completing the proof of Theorem 2. 

Proposition 4. Fix       ,           , and                with 
  

  
   . If          

                                satisfying conclusion of Proposition 3, then   a number     

and                                        such that: conclusions of Proposition 3 continue to 

hold; and                              . 

Proof.  Recall                  for      . 

1) By assumptions of the main Theorem including mild regularity conditions,   a categorical variable    

and probability functions                                            

2) With error at most   in              we can approximate       so that    and    are rational, and in 

particular   integers                  and                      .. 
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3)  If                                  for      , we are done. If not, we show how to 

construct         with the desired properties without decreasing           . Choose an integer   
   

  
  

4) For each value    of                   , define   new points                          and 

associated probability functions:            
 
                    

 
                 

                            
 
                      }.   By construction   cancels from the bias 

expression, so               is unchanged,                                                   

and 
   

   
   . 

5) If                                  for      , stop. If not we show how to construct 

other variables and probability functions                                             , with 

   

   
    but with            equal or larger, and                                  .  

6)          ,  where                               since:                 

                     
  

     
       and     . 

7)  Choose     points in    . To simplify notation, we drop   from the subscripts of functions in 

          and from the limits: e.g.,         and               for      .   

We now show that we could decrease       without decreasing              by assigning new values of 

      and          for sets of     points. The construction will assure, that with these new variables 

and functions         we have:                                ’; 

                                       . The old values and the new assignment are shown 

in eTable A7 for the       points in       with                       . 

eTable A7: Old and reassigned (“new”) values of             ,         and          for each set of  

      points in       with              

  In general,         will vary for        , but can be replaced by the average by Lemma 3. 

Type, number of points                                   
     Old       Old values of probability functions for the selected points 

                                        

 Total:                                

     

      New      New values of probability functions for the selected points 

Type 1,                      

Type 2,                     

Total,                               



                                                                              17 
 

The contributions of these   points to each of the sums             before (old) and after (using new 

values) are shown in eTable A8.  

eTable A8: Old and “New” contribution of the       points to              

Sum Old Value New Value:   Type 1   +                   Type2 

    (                                                       
    (                                                          
    (                                                       
    (                                                         

 

By subtracting the old from the new contribution, we get the change in each of the sums – the difference 

that will occur by reassigning         and          as proposed: eTable A9. 

eTable A9.  Changes in the sums             due to changing          and         . 

   Difference:       Newi – Oldi          

                                                            
                                             

                                                          
                                          

    

                      +                                     
                                                

                                                              

                                        
 

If we set                  and     , then         ,    don’t change, the constraints are 

still satisfied, and conclusions of Propositions 1-3 still hold.  However, with the changes          so 

that            | is reduced by    .  Many other possible substitutions would increase  . 

We can continue the construction until                                  implying that 

                               for      ., concluding the proof of Proposition 4. 

Proposition 5: Fix       ,           , and                with 
  

  
   . If 

                                     then   a number     and 

                                             such that conclusions of Propositions 1-4 continue 

to hold; and,                                for        

Proof.  Proposition 5 follows by showing it would be possible to redefine the functions in       so that  

                               without increasing          and so that          

        for the new functions.  
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Let         be the variables and functions whose existence is proven in Proposition 4. As in the proofs of 

Propositions 1, 2 and 4, increase the number of points if needed so that   
   

  
, select     points in 

      such that           .  If                               , as in the proof of 

Propositions 1 and 4, we can modify          as indicated in eTable A10.  

eTable A10: Old and reassigned (“new”) values of             ,         and          for each set of  

      points in       with              

   In general,         will vary for        , but can be replaced with the average by Lemma 3. 

The contributions of these points to each of the sums             before (old) and after (using new 

values) are shown in eTable 11.  

eTable A11: Old and “New” contribution of the       points to              

Sum Old Value New Value:   Type 1   +                   Type2 

    (                                                       
    (                                                          
    (                                                       
    (                                                         

 

By subtracting old contributions from the new ones, we get the change in each of the sums – the 

difference that will occur by reassigning         and          as proposed: eTable A12, where    

denotes the change in    for i=1,2,3,4 due to modifications of the functions in        . 

eTable A12.  The change in each of the sums             due to changing         . 

   Difference:       Newi – Oldi          

                                                            
                                             

                                                          
                                          

    

                      +                                     
                                                

                                                              

                                        
 

Type, number of points                                   
     Old       Old values of probability functions for the selected points 

                                               
 Total:                                

     

      New      New values of probability functions for the selected points 

Type 1,                      

Type 2,                     

Total,                               
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If we set     ;      ;      and      , then         ,    and   do not change since 

             , and the constraints are still satisfied.  However, after the changes          

so that            | is reduced by    .  Many other possible substitutions would increase  . 

We repeat the construction until                           .  The construction does not affect 

the conclusions of Propositions 1-4, concluding the proof.     

Theorem 3: Fix                          , For every      there exists a dichotomous variable 

  and                                           with            
    

    
,            

        where: (1)                             
   ;                               

    

                                                    
   ;                              

    

Proof:  Given         ,     and     , set    
       

      
                         

  .Theorems 1 and 2 

imply there exists                                           such that                 

   and           where                        . Using      to      to denote the four sums 

in            
        

        
, we have 

        

        
          We can write      to      as: 

(2)                                                                            

                    
 
                                                   

                                                                               

                                                                       

where:                                        with corresponding definitions for 

           ;                                                 

      ; and where   
  and   

   are sums over         and        . The factor    that 

appears in      represents      , since          for all          justification of other factors is 

similar. We have: 

                                                                           

the same bound holds for         and    .  

By Lemma 3, we can assume                 , for all            and similarly for      . Thus, 

letting          be the number of points in       (     ), we can write Equations (2) as:  

(3)                                                                           
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         , for      , implying:                 and                , where 

            .  Lemma 4 quantifies           and provides a bound for the error if    replaces 

   : 

(4)                                                                           

                                                                        

                                                                               

                                                                        

where    
         and    is the additional error due to replacing     with   .    is defined in Lemma 4 

which shows      
    

      
                 . Thus,     

        
    

    
         

         .  

Define             .  Lemma 5 shows that we can replace      with    (dropping     ) to write 

           with error bounded by  
    

    
 
        

        
    . Thus 

    

    
            

We now re-express    to   . Divide    and    by             and divide    and    by           

without changing 
    

    
. Replace 

  

  
 
  

  
  and 

   

   
 with       and    (defined previously). Replace 

       

   
 

and 
       

   
 with    and   for         and 

       

   
 and 

       

   
 with   

  and   
   for         .  By the 

construction in Theorems 1-2 and Propositions 1-5,          
    

   
   

   
   . By Lemma 6, one of 

     and one of   
    

   must be at its boundary (  or   ). We take     and   
   , but each of the other 

choices is handled similarly.  These changes don’t affect the value of 
    

    
 (or           ). After the 

divisions and substitutions, taking     and   
   , we can express    to    as:  

                           
   ;                                 

    

                             
   ;                           
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Now  
        

        
  is an approximation (within 7ε) to           , and 

    

    
 approximates 

        

        
. However, 

    

    
  

has exactly the structure of the bias for        , where                with all variables dichotomous;  

           
  

    
              

 

    
     

          

          
     

      

      
   and,         

              . Reflecting the definitions and construction, 

                                         , with            
    

    
         , proving 

Theorem 3. 

Lemma 4: Define      as in Theorem 3, and let     
      , but with     replaced by   ; e.g., 

    
                                                                 . 

If both:                     ; and, ii                    hold with           

         , then:          
    

       
 and         

        
    

     
                    

Proof:  Multiplying both sides of Equation (ii) by    gives  

(1)              
              .    Subtracting Equation (i) from (1) and solving gives: 

(2)        
 

        
 

       

   
      

  and    
 

        
 

       

   
      

. Subtracting    from      

(3)          
     

   
      

 ; since         :          
    

        
, and      

 

    
 

   

    
. 

We now prove    
    

      
                 . Proof for         is similar. By definition 

          
                                                                     

                                                                                          

                                                                

                                                                

                           
    

      
                 , as claimed.  The last inequality follows from (3) and 

because                          . The same bound holds for        and   . 

Lemma 5: Let            
  and   be as defined in Theorem 3. If     

        
    

    
         

          , then |
    

    
 
      

      

      

      
       To simplify notation, set         .  

Proof: The following equalities and inequalities follow from the definitions and algebraic manipulation, 

and inequalities proven at the end of Lemma 5: 
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 .        Therefore: 

       

   
  
    

  
    

 

  
   
  
  

  
                

  

    

  
     

  
  
            

     

  
 
     

  
         

     

  
 
     

  
   

                             
       

       
    

 

       
   

 

    
, provided 

 

       
  

 

 
. The penultimate inequality 

follows from     
     

  
 
     

  
  

         
     

             
  shown below and choice of    so that 

         
     

             
  

 

       
 . Similarly,  

         
      

     
 
    

  
 

      

      
 
  

  
 

                      

               
 

       
  
  

           
 

   
  
   

     
    

 

   
   
  
    

  so that 

         

   
  
   

   
    

 

   
   
  

  
                

  

    

  
     

  
  
 

 

    
,   since     

     

  
 
     

  
  

         
     

             
  

,  , the same bound as for      
     

  
 
     

  
 .  Finally: 

      | 
     

    

    

    
 
   

  

  

  
    

     

    

    

    
 
  

  

    

    
   

  

  

    

    
 
   

  

  

  
   

                      
     

    
 
    

    
 
    

    
 
  

  
 
    

    
 
  

  
 |   

 

    
   

 

    
   , proving Lemma 5. 

Inequalities used in proof of Lemma 5:     

0)           
  

    

   
                  ,  proven in Theorem 3 

1)                                                          

                                    
 

    
 

   

    
                      

2)  
     

  
 

        

     
 

     
    

    
                  

 
 

    
 

   

    
                  

 
     

    

    
     

 
 

    
 

   

    
       

 
         

     

             
  

 

       
   by 

choice of    and          
  

    

   
                  ;  

     

  
 
     

  
 
     

  
  are also bounded by 

 

    
.   

3)   
  

  
   :  

  

  
 

                     
   

                  
   

  is a weighted average of 1 and         over   

         :                             ,  and weights:        
  

    
            

 

    
          

  

    
        

 

    
    .   The same reasoning shows   

  

  
   . 

Lemma 6: Consider                                            such that conclusions of 

Theorem 2 hold.  Then                                             such that for         

either             or             for all   and     or 1. The same claim holds for        .  
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Proof. This result was proven in the first part of the proofs of Theorems 1 and 2 by considering the partial 

derivatives 
      

        
 and 

      

        
; it is summarized and repeated here for convenience.  
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III.  eAppendix 4. Simulation Experiment to evaluate bound and R program for simulations 

We also illustrate empirically that bound    is valid. Thus, we conduct a series of simulations, each with 

its own set of randomly generated parameters.  The purpose is to empirically illustrate that the actual bias 

approaches, but doesn’t exceed   . We assess bound   ’s performance and “tightness”, measured as the 

difference  between the expected bias and   , under our simulation conditions.  We consider scenarios in 

which   and   has either 2, 3, 4 or 5 categories;    and   are dichotomous; and, we select or condition on 

   , consistent with the causal structure in Figure 1C.  We randomly generate parameters for the 

probability functions in bias expression (3) (eTable A13; R program just below).  For each set of 

parameters generated, we calculate the bias according to Equation 3 (main text), the values of       and 

  , the bound    (Equation 4), and compare the ratio of the bias  to the bound. The purpose isn’t to 

assess the magnitude of bias for plausible parameters (some combinations are extreme), but rather to 

empirically demonstrate validity – for any parameter combination.  Examples 1-8 of the main text utilize 

only a restricted range of parameters. 

eTable A13.  Summary of random Parameter generation for simulation study 

Distribution Model for generating Parameters 

           ;        ;       ;        
 
      Dirichlet (N,         ;    

 

 
 

                     ;                  ;   
         

                          
where                

                   ;                                   ,  where 

              
    

               ;                      ;      
 
      Dirichlet(V,             

 ;      
 

 
 

 bias in the standardized RR, with the exposed as the standard does not depend on               , see Equation (3); 

main text.   absent further constraints,          
    

      
 was often exceedingly large (e.g., > 1020), so we used constraints so 

that       
    

      
 was less than 100.  

As summarized in eTable A14, we simulate bias over a wide range of bound parameters (      and   ).  

In ten scenarios collectively including over 1,000,000 simulations, the actual bias never exceeded   . 

Furthermore, the bias was close to the bound in each scenario for at least some parameter values. The 

maximum simulated bias was slightly less than    in scenarios seven and ten, perhaps because the 

parameter-space dimensions were larger than for other scenarios and our simulations may have left some 

parts incompletely explored. By design, large parameter combinations aren’t excluded to evaluate empiric 

validity for a wide range of situations.   
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eTable A14 Description of Simulation Results, and Ratio  of Largest Bias to Bound Observed in each 

simulation Scenario (         as defined in Equations 5) ⁋.  

⁋
R program for simulations in this online Supplement below. *Each Scenario included 100,000 simulations.   Max    ~100 in each Scenario, due 

to constraints.    Maximum ratio of bias to upper bound (Bd),. 

 

#Supplemental Material,   R program to simulate performance of Bound Bd. 

#M Bias:   E<--- V --->C<--- N --->D             #in equations use P(M=m|E=e) 

 

#   Evaluate lower Bound as well (RatioL should be >= 1) 

# Non-Null  

library (MASS)  #for mvn 

library (MCMCpack)   #Dirichlet density: rdirichlet(n, alpha) 

expit=function(x){exp(x)/(1+exp(x))}  #expit(0) 

 

set.seed(77373)         #<---Set the seed, if desired for repeatability 

########## set the input parameters for scenarios 1-10  ############# 

 NSim = 100000               #<---Set Number of simulations (100,000 for Tables) 

 W = 0                       #<---Set the standard: W=1 for E+,  W=0 for E-, or e.g. 0.5 for P(E)=0.5 

 DimM=2                     #<---Set dimiensions of M, N 

Scenario*  

    

Dim Covariance 

(muCov in 

program) 

    
median, 

max 

   
median, 

max 

   
median, 

max 

Bd 

median, 

max 

Ratio    

max(bias/Bd) 

1 2, 2 4 7.204, 

100.000 

1.554, 

58.469 

1.045, 

10.073 

1.005, 

2.582 

1 

2 2, 2 2 7.204, 

100.000 

1.554, 

58.469 

1.314, 

53.854 

1.028, 

6.765 

1 

3 2, 2 1 7.204, 

100.000 

1.554, 

58.469 

1.766, 

120.019 

1.057, 

9.412 

0.9999999 

4 2, 2 0 7.204, 

100.000 

1.554, 

58.469 

2.667, 

227.381 

1.095, 

10.998 

0.9999998 

5 2, 2 -1 7.204, 

100.000 

1.554, 

58.469 

4.043, 

457.327 

1.130, 

12.452 

0.9999997 

6 2, 2 -2 7.204, 

100.000 

1.554, 

58.469 

5.605, 

841.442 

1.154, 

14.166 

0.9999997 

7 3, 3 0 13.111, 

100.000 

2.132, 

57.857 

4.861, 

1172.693 

1.438, 

15.467 

0.9993791 

8 4, 2 0 15.594, 

100.000 

1.560, 

56.406 

4.403, 

719.145 

1.239, 

14.439 

0.9999902 

9 2, 4 0 7.230, 

100.000 

2.600, 

57.647 

4.380, 

1071.381 

1.370, 

18.981 

0.9999985 

10 5, 5 0 17.358, 

100.000 

2.987, 

74.171 

9.478, 

809.786 

2.084, 

36.008 

0.9707631 
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 DimN=2 

 DimMx =max(DimM, DimN)      #<---used to create covariance matrix 

 muCov =rep( 4, DimMx)       #<-- the Covariance for interaction parms,  M x N --> C  

# Include Above: DimM, DimN,  muCov in Table  (muCov sets the average covariance of the M-effect 

and N-effect on C, logit scale) 

 

# Other parameters, no need to change for different scenarios 

Cov1  =matrix(rep( 0, DimMx^2), nrow=DimMx) # CovarMatrix for interzction parms 

muC1  =       rep( 0, DimM )   # Mean, parms for efffect of each M-category on C 

muC2  =       rep( 0, DimN )   # Mean, parms for efffect of each N-category on E 

muD   =       rep( 0, DimN )   # Mean, parms for efffect of each N-category  on D 

L1 = sqrt(100)   #< -- Set Approx limit on simulated max P(M=m|E=1)/P(M=m|E=0). Can increase to 

L1^2    

                            #       after normalize. 

SigC1= diag(DimM ) 

SigC2= diag(DimN ) 

SigD = diag(DimN )          #used w/ muD in mvrnorm to get D parms 

                     

alphM0 = rep(1/DimM, DimM)    #<-- use to generate M-parms for E=0,  M=V in m/s 

alphM1 = rep(1/DimM, DimM)    #<-- use to generate M-parms for E=1,  M=V in m/s 

alphN  = rep(1/DimN, DimN) 

 

Save  =NULL                 #Initialize 

SaveM =NULL 

ratio =NULL  

ratioL=NULL            #use for lower bound  

 

# use following to describe simulation conditions 

mxRe =0 

mxRd=0 

mxRc=0 

mxOn=0         

mxBd=0 

for (k in 1:NSim){                               #simulation loop:  each simulation in Table = 100,000 
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 # -- get parms for P(M=m|E=e) -- 

  parmM1=rdirichlet(1, alphM1)         #<-- parms for P(M=m|E=1),  M=V in m/s 

  parmM0=rdirichlet(1, alphM0)         #<-- parms for P(M=m|E=0),  M=V in m/s 

  for (kk in 1:length(parmM1)) {          # 

    if (parmM1[kk] >= L1*parmM0[kk]) {parmM1[kk]=L1*parmM0[kk]} 

    if (parmM0[kk] >= L1*parmM1[kk]) {parmM0[kk]=L1*parmM1[kk]}  # limit to ratio of 1000   

   }   # rbind(parmM1[1:8], pM1[1:8], pM0[1:8], pM1[1:8]/pM0[1:8]) 

 

  parmM1=parmM1/sum(parmM1)            #normalize parmM1, parmM0 

  parmM0=parmM0/sum(parmM0) 

  

 # -- get parms for P(N=n) -- # 

  parmN=rdirichlet(1, alphN)                       #N parameters 

 

 # -- get parms for M-->C 

  parmC1=mvrnorm(n = 1, muC1, SigC1, tol = 1e-5, empirical = FALSE, EISPACK = FALSE) 

 

 # -- get parms for N-->C    

  parmC2=mvrnorm(n = 1, muC2, SigC2, tol = 1e-5, empirical = FALSE, EISPACK = FALSE) 

 # - COV 

  parmC12=mvrnorm(n=DimMx, muCov, Cov1, tol = 1e-5, empirical = FALSE, EISPACK = FALSE) 

 

 # -- get parms for N-->D 

  parmDN =mvrnorm(n = 1, muD, SigD, tol = 1e-5, empirical = FALSE, EISPACK = FALSE) 

  parmDNI=mvrnorm(n = 1, muD, SigD, tol = 1e-5, empirical = FALSE, EISPACK = FALSE)  

#interaction w/E 

  parmDE=rnorm(n = 1, 1, 1)  # main effect of E 

  S1 =0             #initialize sums 

  S2 =0 

  S3 =0 

  S4 =0 

  S5 =0             #used for SRR, E+ is std 

  S6 =0             #used for SRR, E- is std 

  mxM =0            #initialize max, min 
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  mnC =1 

  mxC =0 

  mxD1=0 

  mnD1=1 

  mxD0=0 

  mnD0=1          

 for (i in 1:DimM){               ## i=1 

  for (j in 1:DimN){ 

   M1=c(rep(0,max(0,i-1)), 1, rep(0, max(0,DimM-i)) )   #value M1, or =rmultinom(1, 1, alphM) 

   pM0=M1 %*% t(parmM0)                                              #Prob (M=i|E=0)  

   pM1=M1 %*% t(parmM1)                                              #Prob (M=i|E=1)   

 

   N=c(rep(0,max(0,j-1)), 1, rep(0, max(0,DimN-j)) )     #value N;  or =rmultinom(1, 1, alphN) 

   pN=dmultinom(N, size = 1, parmN)    #Prob (N=j) 

     

 # -- get probs for M,N-->C,  includes  interaction terms for M,N-->C  (parmC12) 

   pC1 = dbinom(1, 1, expit(0+ M1%*%parmC1 + N%*%parmC2 + parmC12[i,j]))   #p(C=1| M=i, N=j) 

    

   pD0 = dbinom(1, 1, expit(0 + t(N)%*%parmDN ) )                                                      #p(D=1| N=j,E=0) 

   pD1 = dbinom(1, 1, expit(0 + t(N)%*%parmDN + parmDE + t(N)%*%parmDNI))  #p(D=1| N=j,E=1) 

 

  S1 = S1+ pM1*pN*pC1*pD1 

  S2=  S2+ pM1*pN*pC1 

  S3 = S3+ pM0*pN*pC1*pD0 

  S4=  S4+ pM0*pN*pC1 

  S5 = S5+ pM1*pN*pC1*pD0 

  S6 = S6+ pM0*pN*pC1*pD1 

 

  #Use Equation 5:  Re   = max(m,e) {P(M=m|E=e)} /min(m,e) {P(M=m|E=e)} 

  #                              Rd = max(P(D=1|n=n)/min(P(D=1|n=n') 

  #                              Rc = max(m,n {P(C=1|M=m, N=n)} /min(v,n {P(C=1|M=m, N=n)}   

  mxM=max(mxM, pM1/pM0, pM0/pM1 ) 

  mnC=min(pC1,  mnC) 

  mxC=max(pC1,  mxC) 
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  mxD1=max(pD1, mxD1) 

  mnD1=min(pD1, mnD1) 

  mxD0=max(pD0, mxD0) 

  mnD0=min(pD0, mnD0) 

 }}  # for i,j                              #end loops over i,j 

 

 Re = mxM 

  

 if (0 < W && W< 1) {Rd= max(mxD0/mnD0, mxD1/mnD1)} #all selected, pE=W 

 if (W == 1 ) {Rd= mxD0/mnD0}                       #exposed is std 

 if (W == 0 ) {Rd= mxD1/mnD1}                       #unexposed is std 

  

 Rc=mxC/mnC 

 

 if ( Re <= 1000000000000000000){  #only do calculations if R not very large 

   On = sqrt( 1/Rd )             

   Bd = 

(Re*(Rd*On*Rc+1)+(Rd*On+Rc))*((On*Rc+1)+Re*(On+Rc))/(((Rd*On*Rc+1)+Re*(Rd*On+Rc))*(R

e*(On*Rc+1)+(On+Rc))) 

   #sRR = S1/S5                          #Standardized Risk Ratio, E+ = std 

   #sRR = S6/S3                          #Standardized Risk Ratio, E- = std 

   sRR = (W*S1+ (1-W)*S6)/(W*S5+(1-W)*S3) 

 

   B=(S1*S4/(S2*S3))/sRR                #true Bias, calculated directly from expected values 

   ratio = rbind(ratio, B/Bd)               #ratio: true bias/bound  = ?distance? between Bound & actual bias 

   ratioL= rbind(ratioL, B/ (1/Bd))      #look at lower bound too, should be >= 1 

   Save=rbind(Save, c(Bd, Re, Rd, Rc))   #describe the conditions simulated 

   mxRe =max(mxRe, Re) 

   mxRd =max(mxRd, Rd) 

   mxRc =max(mxRc, Rc) 

   mxBd=max(Bd, mxBd)                        # keep track of largest Bd 

 } #end if Re not too large    

}  #end Simulation loop 

c(mxBd, mxRe, mxRd, mxRc, length(ratio)) 
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#histogram, if desired 

#hist(ratio, breaks=c(0,.1,.2,.3,.4, .5,.6,.7,.8,.9,1.0, 1.1))  #, plot=TRUE, title=Title) 

 Bdd = Save[,1] 

 Bd_q=quantile(Bdd, probs=c(0.25, 0.50, 0.95))   #25, 50 and 95 percentile for Bdd 

 Re = Save[,2] 

 Re_q=quantile(Re, probs=c(0.25, 0.50, 0.95))   #25, 50 and 95 percentile for Re 

 Rd = Save[,3] 

 Rd_q=quantile(Rd, probs=c(0.25, 0.50, 0.95))  #25, 50 and 95 percentile for Rd 

 Rc = Save[,4] 

 Rc_q=quantile(Rc, probs=c(0.25, 0.50, 0.95))  #25, 50 and 95 percentile for Rc 

  

#--------------- output, e.g., Table 2, main text  (along with dim M x N, muCov) ---------------------------# 

Results =rbind(c(Bd_q, max(Bdd)), c(Re_q, max(Re)), c(Rd_q, max(Rd)), c(Rc_q, max(Rc)))       #Row 

1=Bd, Row 2=Rd, Row 3 =Rc 

colnames(Results)[4]='max' 

rownames(Results)=c('Bd','Re','Rd','Rc') 

Results 

max(ratio)                               #maximum of Ratio, should not be > 1 

min(ratioL)                              #for Lower Bound, should not be < 1 

#getOption("digits") 

#options(digits=8) 

 

 

IV. eAppendix 5. Comparison of    with Bound Assuming Homogeneity.   

We compare bound    with the bound derived by Greenland{Greenland, 2003 #46} under a 

homogeneity assumption (    .  Here, we consider only dichotomous variables, causal relationships 

consistent with Figure 1C (main text) and no true exposure effect, the situation considered by Greenland.  

Greenland used odds ratios to measure the strength of association between variables (Figure 1C) in    , 

whereas we use risk ratios (Equations 5, main text).  To compare     with    and evaluate robustness, 

we calculate odds ratios for each risk ratio in Equation 5, assuming specific frequencies for     and  : 

                                   
   

     
  and                

           choosing this last value as it illustrates the largest differences we identified between     and 

  . [Differences for other values tend to be smaller.]  We set parameters for the strength of association 
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between variables in Figure 1C using risk ratios (Equation 5) and then calculate the corresponding odds 

ratios (Equation 6, main text; Table A13, line 1) used in    .  

(6)        
          

          
 
          

          
                    

              

              
 
              

              
                         

             
          

          
 
          

          
                  

              

              
 
              

              
        

Finally, we calculate the bias expected in the observed risk ratio using Expression (3) and the theoretical 

bound    (Expression 4) which gives an approximate bias and bound for the risk odds ratio (ROR) for 

rare disease.  

Under Greenland’s homogeneity assumption,                       for        . To 

evaluate sensitivity to this assumption, we consider an extreme violation (less extreme situations are 

considered in examples in the main text) wherein                           , but 

                            and used the maximum of these odds ratios in the expression for 

   . As summarized in eTable A15, the expected bias (Equation 3) in the observed ROR can be 

substantially larger than     if the homogeneity assumption is incorrect. For example, suppose all the 

odds ratios in expression (6) were between ¼ and 4:                           , but 

                      The maximum bias if all ORs were 4 (homogeneity) is 1.05, but the bias is 

as large as 1.31 absent homogeneity (all ORs between ¼ and 4) - a potentially important exceedance of 

the bound. The actual bias did not exceed   . 

eTable A15  Summary Comparison of bound incorrectly assuming homogeneity with    

Value of OR (maximum strength of effects 

of biasing variables, Equation 6) 

2.00 4.00 8.00 16.00
$
 

Actual Bias in ROR (Equation 3) 1.04 1.31 2.05 3.73 

Bound for ROR (  ; Equation 4†) 1.04 1.31 2.05 3.73 

Bound for ROR under incorrect 

assumption of homogeneity  

1.003 1.05
 

1.23 1.69 

†Equation 4 gives bound for the bias in the standardized risk ratio which is an approximate bound for the standardized risk odds 

ratio because disease is rare (                       ).  Bound derived by Greenland under homogeneity 

assumption that                      (Equation 6). $Example of probabilities yielding maximum odds ratio of 16.00: 

P(V=1|E=1) ≈ 0.8, P(V=1|E=0)  ≈ 0.2, P(D=1|E=0, N=1) ≈ 0.000016, P(D=1|E=0, N=1) ≈ 0.000001, P(C=c|V=1, N=1) = 

P(C=c|V=0, N=0) ≈ 0.000016, P(C=c|V=0, N=1) = P(C=c|V=1, N=0) ≈ 0.000001,  P(N=1) = 0.2;  homogeneity fails, since 

            but               yielding Bound       if the maximum OR is used. Here,             so 

         

 

V.  eAppendix 6.  R code to Calculate Bias (Equation 3) and Bounds. 

#  Program to Calulate: 1) Expeect Bias, based on Equation, and 2) Bound Bd and Bd_H 

   logit= function(x){log(x/(1-x))} 
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   expit= function(x)(exp(x)/(1+exp(x))) 

#  Variables, Coding (Liu's  SSRI example): 

#     SSRI = selective seritonin reuptake inhibitor 

#     V =1 for depressed, 0 otherwise; it affects CAD, and SSRI use 

#     C= 1 if no CAD & volunteer to participate, 0 otherwise  

#     N= 1 if smoker, 0 otherwise. It that affects participation & Disease, like Lung Cancer 

      al =rep(0,4)     #initialize certain paramters to be input  

      bet=rep(0,3)    #initialize  certain parms 

 #Parameter Input 

  p_V = 0.25   #< --- marginal prevalence of Depression 

  p_E = 0.10   #< --- marginal prevalence of SSRI (Exposure) 

  OR = 27      # odds ratio for SSRE - Depression Association (Liu uses OR's, convert to RRs 

   

  p_N = 0.10   #< --- marginal prevalence of Smoking 

  #logistic model parms for CAD, the collider (as per Liu's example) 

  al[1] = logit(0.076)     # logit( Prob(CAD=1| V=0, N=0) )                                    

  al[2] = log(1.6)         # Log(OR), CAD - Depression| Smoking = 0 

  al[3] = log(3.)        # Log(OR), CAD - Smoking| Depression = 0           

  al[4] = log(1.)      # Log(OR), Depression, Smoking "interaction", logistic model         

  #Refusals: P(Refuse|V=0, N=0)/ P(Refuse|V=1, N=0)/  P(Refuse|V=0, N=1)/ P(Refuse|V=1, N=1)/ 

  q=c(.50,.51,.51,.85)   #set q to c(0,0,0,0)  if no refusals 

  q = c(0,0,0,0) 

  #Parms for outcome D= LungCancer 

  bet[1] =  logit(0.0037) 

  bet[2] = log(1.0)   #SSRI 

  bet[3] = log(15.0)  #smoking 

  

  

# -------- calculate RRs from OR for Depression(V) - SSRI (E) --------- # 

 T  = 1000 

 M1 = p_V*T  # Depression          

 N1 = p_E*T  # SSRI (Exposure) 

 N2 = T- N1  

 M2 = T- M1 
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 b = OR*(M1+N1) + M2-N1    #from 2x2 Table: total 1000, margins: SSRI+=100, Dep=250  

 a= -OR +1 

 c= -OR*M1*N1 

 

 x1 = (-b + sqrt(b^2-4*a*c))/(2*a) 

 x2 = (-b - sqrt(b^2-4*a*c))/(2*a) 

  c(x1,x2) 

 aa = x1            #use the solution 

 #aa =  70 

 bb = M1 - aa 

 cc = N1 - aa 

 dd = N2-M1+aa 

 

 aa*dd/(bb*cc) 

 aa+bb 

 aa+cc 

 c(aa,bb,cc,dd, aa*dd/(bb*cc)) 

 

RREU1 = (aa/N1)/(bb/N2)  #P(V=1|SSRI=1) / P(V=1|SSRI=0 

RREU2 = (cc/N1)/(dd/N2)  #P(V=0|SSRI=1) / P(V=0|SSRI=0) 

c( aa/(aa+cc), bb/(bb+dd), cc/(aa+cc), dd/(bb+dd) ) 

 

 ######## Estimate the Bias  ############## 

 

  

 ##pV=function(v){ p_V*v+ (1-v)*(1-p_V)} 

 pN=function(n){ p_N*n+ (1-n)*(1-p_N)} 

 c(pN(1),pN(0)) 

  

 pV_E=function(v, e){           #Prob (V=1 | E=e),  for convenience 

  if(v==1 && e ==1) {p= aa/N1} 

  if(v==1 && e ==0) {p= bb/N2} 

  if(v==0 && e ==1) {p= cc/N1} 
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  if(v==0 && e ==0) {p= dd/N2} 

  p} 

 c(pV_E(1,1),  pV_E(1,0), pV_E(0,1),  pV_E(0,0)) 

  

 

 pC_VN= function(c,v,n){ 

   p=expit(al[1]+al[2]*v+al[3]*n+al[4]*v*n) 

  #Now account for possible Refusals: prob refuse| no CAD, & Depr, Smoking status 

  if (v==0 && n==0){p=p+q[1]*(1-p)}   

  if (v==1 && n==0){p=p+q[2]*(1-p)} 

  if (v==0 && n==1){p=p+q[3]*(1-p)}    

  if (v==1 && n==1){p=p+q[4]*(1-p)}   

  p=c*p + (1-c)*(1-p) 

  p} 

 c(pC_VN(1,1,1), pC_VN(1,1,0), pC_VN(1,0,1), pC_VN(1,0,0) ) 

 c(pC_VN(0,1,1), pC_VN(0,1,0), pC_VN(0,0,1), pC_VN(0,0,0)) 

  

        

 pD_EN= function(e,n){ 

    expit(bet[1]+bet[2]*e +bet[3]*n) } 

  c(pD_EN(0,1),  pD_EN(0,0))  

  

#get Bias B 

#stratum w/ C=1 

S11=0 

S12=0 

S13=0 

S14=0 

for (v in c(0,1)) { 

 for (n in c(0,1)) { 

   S11= S11 + pN(n)*pV_E(v,1)*pC_VN(1,v,n)*pD_EN(0,n) 

   S12= S12 + pN(n)*pV_E(v,0)*pC_VN(1,v,n)*pD_EN(0,n) 

   S13= S13 + pN(n)*pV_E(v,1)*pC_VN(1,v,n) 

   S14= S14 + pN(n)*pV_E(v,0)*pC_VN(1,v,n) 
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}} 

c(S11,S13,S12,S14) 

B1=S11*S14/(S12*S13) 

OB1 = ((S11/S13)/(1-(S11/S13)))/((S12/S14)/(1-(S12/S14)))   #Odds Ratio 

B1 #Bias in statrum: C=1 

 

#Now, stratum w/ C=0  

S1=0 

S2=0 

S3=0 

S4=0 

for (v in c(0,1)) { 

 for (n in c(0,1)) { 

   S1= S1 + pN(n)*pV_E(v,1)*pC_VN(0,v,n)*pD_EN(0,n)       

   S2= S2 + pN(n)*pV_E(v,0)*pC_VN(0,v,n)*pD_EN(0,n) 

   S3= S3 + pN(n)*pV_E(v,1)*pC_VN(0,v,n) 

   S4= S4 + pN(n)*pV_E(v,0)*pC_VN(0,v,n) 

}} 

B0=S1*S4/(S2*S3) 

OB0 = ((S1/S3)/(1-(S1/S3)))/((S2/S4)/(1-(S2/S4)))   #Odds Ratio 

B0 

 

# -------  now get parms needed to calculate bounds --------- # 

Re = max(RREU1, RREU2, 1/RREU1, 1/RREU2) 

c(RREU1, RREU2, 1/RREU1, 1/RREU2) 

Rd =   max(pD_EN(1,1),pD_EN(0,1),pD_EN(1,0),pD_EN(0,0))  #Smoking Effect on outcome(lung 

cancer) 

Rd =Rd/min(pD_EN(1,1),pD_EN(0,1),pD_EN(1,0),pD_EN(0,0)) 

Rc1=max(pC_VN(1,1,1),pC_VN(1,0,1),pC_VN(1,1,0),pC_VN(1,0,0)) 

Rc1=Rc1/min(pC_VN(1,1,1),pC_VN(1,0,1),pC_VN(1,1,0),pC_VN(1,0,0)) 

Rc0=max(pC_VN(0,1,1),pC_VN(0,0,1),pC_VN(0,1,0),pC_VN(0,0,0)) 

Rc0=Rc0/min(pC_VN(0,1,1),pC_VN(0,0,1),pC_VN(0,1,0),pC_VN(0,0,0)) 

Rc= max(Rc1, Rc0)       #make sure apply relevant Rc: Rc0 for C=0 

Rc=Rc0 
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c(Re, Rd, Rc1, Rc0, Rc) 

 

####### Calculate the Bound 

 Bd =  (Re*(sqrt(Rd)*Rc +1)+ (sqrt(Rd)+Rc) )*   ((Rc/sqrt(Rd) +1)+ Re*(1/sqrt(Rd)+Rc) ) 

 Bd=Bd/((  (sqrt(Rd)*Rc +1)+ Re*(sqrt(Rd)+Rc) )* (Re*(Rc/sqrt(Rd) +1)+ (1/sqrt(Rd)+Rc) ) ) 

 Bd     ##NB: Bound for RR, if disease rare, approx Bound for OR 

 #now, get Bd_H, use largest OR if not uniform 

 R=aa*dd/(bb*cc)    #Star with OR for SSRI, depression (V) 

 ORCV1= (pC_VN(1,1,1)/pC_VN(0,1,1))/(pC_VN(1,0,1)/pC_VN(0,0,1)) 

 ORCV0= (pC_VN(1,1,0)/pC_VN(0,1,0))/(pC_VN(1,0,0)/pC_VN(0,0,0)) 

 ORCN1= (pC_VN(1,1,1)/pC_VN(0,1,1))/(pC_VN(1,1,0)/pC_VN(0,1,0)) 

 ORCN0= (pC_VN(1,0,1)/pC_VN(0,0,1))/(pC_VN(1,0,0)/pC_VN(0,0,0)) 

 ORD =  (pD_EN(1,1)/(1-pD_EN(1,1)))/(pD_EN(1,0)/(1-pD_EN(1,0))) 

 R= max(R, 1/R, ORCV1, 1/ORCV1, ORCV0, 1/ORCV0, ORCN1, 1/ORCN1, ORCN0, 1/ORCN0, 

ORD) 

 OR_H=((R^2+6*R+1)^2)/(16*R*(R+1)^2) 

 c(OR_H,R,aa*dd/(bb*cc),ORD, 1/ORD, ORCV1, 1/ORCV1, ORCV0, 1/ORCV0, ORCN1, 1/ORCN1, 

ORCN0, 1/ORCN0) 

 

c(Re, Rd, Rc, Rc1, Rc0, R)     #Parameters used to calculate Boutnd and Bd_H 

c(B1, OB1, B0, OB0, Bd, OR_H)  #Bias for stratum =1, for Stratum=0, Bound for stratum=0 and Bd_H 

 

 

out=as.list( c(B0, 1/Bd, Bd, 1/OR_H, OR_H) ) 

names(out)=c("bias,C=0", "Lo Bound", "Up Bound", "Lo Bd_H", "Hi Bd_H") 

out 
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