Online Supplement

This online Supplement Includes
I. eAppendix 2, with 1) Sketch of proof for main result; 2) Notation and Definitions; 3) The Main Theorem and proof; 4) Other Standard Populations; 5) Lower Bound; 6) Supporting theorems (statement only).
II. eAppendix 3, with statement and proofs of all supporting Theorems, Propositions and Lemmas.
III. eAppendix 4. Simulation Experiment to Evaluate Bias, compare Bounds and the R code for simulations
IV. eAppendix 5. Comparison of $B d$ with a bound assuming homogeneity.
V. eAppendix $6 . \mathrm{R}$ code to calculate bias (implements Equation 3), and bounds.

I. eAppendix 2:

eAppendix 2 contains: 1) a sketch of the main ideas of our proof that $B d$ in expression (3) bounds the bias; 2) key definitions and notation; 3) the main Theorem and its proof; and 4) a statement of Theorems $1-3$ used to prove it. Proofs of Theorems 1-3 and the Propositions are in eAppendix 3.

1) Sketch of proof for main result:

The main ideas of our proof that $B d$ (expression 3, main text) bounds the bias are as follows. We characterize the strength of association between the variables E, V, C, N, D whose effects create the collider bias using three limits R_{E}, R_{D} and R_{C}. Using $B_{\max }$ to denote the maximum bias for all situations wherein the strengths of association don't exceed these limits, we argue (main Theorem) that: regularity conditions assure that we can approximate continuous or mixtures of continuous and categorical variables by their categorical counterparts so that the maximum bias for categorical variables is within ε of $B_{\max }$. More precisely, $B_{1}>B_{\max }-\varepsilon$ where B_{1} is the bias for some set of categorical variables $E_{1}, V_{1}, C_{1}, N_{1}, D_{1}$. We then show by construction (Theorems 1 and 2 and supporting propositions) that we can modify the probability distributions for these categorical variables to obtain new categorical variables $E_{2}, V_{2}, C_{2}, N_{2}, D_{2}$ with bias B_{2} such that: i) $B_{2}>B_{\max }-7 \varepsilon$; and ii) the contribution to B_{2} is negligible from all sets, other than two specific sets we explicitly define. This simplifies the bias expression, since we only have to consider v in one of these two sets. We next collect the approximation errors (Theorem 3) and show by construction that we can replace $E_{2}, V_{2}, C_{2}, N_{2}, D_{2}$ with variables $E_{3}, V_{3}, C_{3}, N_{3}, D_{3}$ such that i) all variables are dichotomous; and, ii) $B_{3}>B_{\max }-9 \varepsilon$. The resulting bias expression is further simplified and now involves only five parameters. We then use optimization techniques to find the maximum bias $\max \left(B_{3}\right)$ for such dichotomous variables. These steps establish that $B_{\max } \geq \max \left(B_{3}\right)>$
$B_{\max }-9 \varepsilon$. Since ε is arbitrary, $\max \left(B_{3}\right)$ must equal $B_{\max }$ justifying use of $\max \left(B_{3}\right)$ as the bound: $B d=\max \left(B_{3}\right)$.

2) Notation and Definitions:

We only consider values of $R_{E}, R_{C}, R_{D}>1$.
ϕ is the empty set;
$|x|$ has two meanings: if x is a number, $|x|$ is its absolute value; if x is a set, $|x|$ is its cardinality.
$\wp(\vec{V})$ is the set of variables $\vec{V}=E, V, C, N, D$ and their associated probability functions; that is $\wp(\vec{V})=$ $\left\{\vec{V} ; p_{1}(v), p_{0}(v), p_{c}(v, 1), p_{c}(v, 0), p_{D}(n), p_{N}(n)\right\}$ where E, N, D are dichotomous, V is categorical, but otherwise unrestricted, and the causal relationships of Figure 1C hold. Here, $p_{e}(v)=P(V=v \mid E=e)=$ $p_{v, e}$, for $e=0,1, p_{c}(v, n)=P(C=c \mid V=v, N=n)$ for $n=0,1$ where c is the value of C that is selected or conditioned on in Figure 1C, $p_{D}(n)=p_{D}(D=1 \mid N=n)$ and $p_{N}(n)=P(N=n)$ with $O_{N}=\frac{p_{N}(N=1)}{p_{N}(N=0)}$ for $n=0,1$. If $|V|<\infty$, we can parameterize these functions as: $p_{e}(v)=\pi_{v, e}$, $p_{c}(v, n)=\pi_{c, v, n}, p_{D}(n)=\pi_{D, n}$ and $p_{N}(n)=\pi_{N, n}$ for $v=1,2, \ldots,|V| ; e=0,1 ; n=0,1$. $\wp(\vec{V})$ 'satisfies constraint $C R\left(R_{E}, R_{C}, R_{D}\right)$ " if and only if: $\max _{v, e} \frac{p_{e}(v)}{p_{1-e}(v)} \leq R_{E}, \frac{\max _{v, n} p_{c}(v, n)}{\min _{v, n} p_{c}(v, n)} \leq R_{C}$, $\max _{n} \frac{p_{D}(n)}{p_{D}(1-n)} \leq R_{D}$ $\wp(\vec{V})$ "satisfies constraint $C L\left(m n, m x, m n_{c}, m x_{c}, O_{N}\right)$ " if and only if: $m n \leq p_{e}(v) \leq m x$, for $e=0,1 ; \max _{v, n} p_{c}(v, n) \leq m x_{c}, \min _{v, n} p_{c}(v, n) \geq m n_{c}, \frac{p_{N}(N=1)}{p_{N}(N=0)}=O_{N}$. $B(\wp(\vec{V}))$ is the bias B for $\wp(\vec{V})=\left\{\vec{V} ; p_{1}(v), p_{0}(v), p_{c}(v, 1), p_{c}(v, 0), p_{D}(n), p_{N}(n)\right\}$.
$\mathcal{H}=\mathcal{H}\left(n, m n, m x, m n_{c}, m x_{c}, O_{N}, R_{E}, R_{C}, R_{D}, \varepsilon\right)$ denotes the collection of all sets $\wp(\vec{V})=\left\{\vec{V} ; p_{1}(v), p_{0}(v), p_{c}(v, 1), p_{c}(v, 0), p_{D}(n), p_{N}(n)\right\}$ such that: $|V|=n ; \wp(\vec{V})$ satisfies constraints $C_{R}\left(R_{E}, R_{C}, R_{D}\right)$ and $C_{L}\left(m n, m n, m n_{c}, m x_{c}, O_{N}\right)$; and, the bias $B(\wp(\vec{V}))$ satisfies $B(\wp(\vec{V})) \geq$ $B_{\max }-\varepsilon$.

Let $B_{\text {max }}$ be the (overall) maximum of the bias $B(\wp(\vec{V}))$ defined in Equation (2) of the main text, for all probability functions that satisfy constraint $C_{R}\left(R_{E}, R_{C}, R_{D}\right)$. Our goal is to prove that $B_{\max } \leq B d$.

Define the four sums by:

$$
\begin{aligned}
& \Sigma_{1}=\sum_{v} p_{1}(v)\left(P(D=1 \mid E=0, N=1) \cdot O_{N} \cdot p_{c}(v, 1)+P(D=1 \mid E=0, N=0) \cdot p_{c}(v, 0)\right) \\
& \Sigma_{2}=\sum_{v} p_{1}(v)\left(O_{N} \cdot p_{c}(v, 1)+p_{c}(v, 0)\right) \\
& \Sigma_{3}=\sum_{v} p_{0}(v)\left(P(D=1 \mid E=0, N=1) \cdot O_{N} \cdot p_{c}(v, 1)+P(D=1 E=0, \mid N=0) \cdot p_{c}(v, 0)\right)
\end{aligned}
$$

$$
\Sigma_{4}=\sum_{v} p_{0}(v)\left(O_{N} \cdot p_{c}(v, 1)+p_{c}(v, 0)\right)
$$

With this notation, $B(\wp(\vec{V}))$ can be written as $B(\wp(\vec{V}))=\frac{\Sigma_{1} \Sigma_{4}}{\Sigma_{2} \Sigma_{3}}$.
It is useful to note that we can write Σ_{1} to Σ_{4} in several different forms, yet still have $B(\wp(\vec{V}))=\frac{\Sigma_{1} \Sigma_{4}}{\Sigma_{2} \Sigma_{3}}$. For example, since N is dichotomous, we can multiply Σ_{1} to Σ_{4} by $\frac{p_{N}(N=0)}{\min _{n} P(D=1 \mid E=0, N=0)}$ and write $\frac{P(D=1 \mid E=0, N=1)}{P(D=1 \mid E=0, N=0)}=R_{D}, q_{N}=1-p_{N}$ and re-express Σ_{1} to Σ_{4} as:

$$
\begin{array}{ll}
\Sigma_{1}=\sum_{v} p_{1}(v)\left(R_{D} \cdot p_{N} \cdot p_{c}(v, 1)+q_{N} \cdot p_{c}(v, 0)\right) ; & \Sigma_{2}=\sum_{v} p_{1}(v)\left(p_{N} \cdot p_{c}(v, 1)+q_{N} \cdot p_{c}(v, 0)\right) \\
\Sigma_{3}=\sum_{v} p_{0}(v)\left(R_{D} \cdot p_{N} \cdot p_{c}(v, 1)+q_{N} \cdot p_{c}(v, 0)\right) ; & \Sigma_{4}=\sum_{v} p_{0}(v)\left(p_{N} \cdot p_{c}(v, 1)+q_{N} \cdot p_{c}(v, 0)\right)
\end{array}
$$

The derivative with respect to R_{D} is: $\frac{\partial \ln (B)}{\partial R_{D}}=O_{N}\left[\frac{\sum_{v} p_{1}(v) p_{c}(v, 1)}{\Sigma_{1}}-\frac{\sum_{v} p_{0}(v) p_{c}(v, 1)}{\Sigma_{3}}\right]$. If this derivative is negative, we can relabel the levels of N so that the bias is increasing as a function of R_{D}. Thus, we still have $B(\wp(\vec{V}))=\frac{\Sigma_{1} \Sigma_{4}}{\Sigma_{2} \Sigma_{3}}$, if we take R_{D} to be the maximum R_{D}, with $R_{D} \geq 1$ and write:

$$
\Sigma_{1}=\sum_{v} p_{1}(v)\left(R_{D} O_{N} p_{c}(v, 1)+p_{c}(v, 0)\right) \text { and } \Sigma_{3}=\sum_{v} p_{0}(v)\left(R_{D} O_{N} p_{c}(v, 1)+p_{c}(v, 0)\right)
$$

Define the collections of subsets of $V: A_{i}=\left\{v: p_{i}(v)=m x\right\}, C_{i}=\left\{v: p_{i}(v)=m n\right\}, D_{i}=$ $\left\{v: m x>p_{i}(v)>m n\right\} i=0,1$. The collection of subsets, $\left(A_{e}, C_{e}, D_{e}\right)$ for $e=0,1$ is mutually exclusive and collectively exhaustive for V. Note that A_{e}, C_{e}, D_{e} depend on $p_{e}(v) \in \wp(V)$, but for notational simplicity, we suppress that dependency here and elsewhere. There are 9 combinations of subsets $\left(A_{1}, C_{1}, D_{1}\right) \times\left(A_{0}, C_{0}, D_{0}\right)$.
3) Theorem (Main). Fix $R_{E}, R_{D}, R_{C}>1$ and let $\varepsilon>0$. Assume that inequalities (5) of the main text hold for E, M, N, C and D and that structural selection bias is present (Figure 1C). Then the bias (Equation 3, main text) in the conditional RR doesn't exceed $B d=\frac{R_{E}\left(\sqrt{R_{D}} R_{C}+1\right)+\left(\sqrt{R_{D}}+R_{C}\right)}{R_{E}\left(R_{C}+\sqrt{R_{D}}\right)+\left(1+\sqrt{R_{D}} R_{C}\right)} \times \frac{\left(R_{C}+\sqrt{R_{D}}\right)+R_{E}\left(1+\sqrt{R_{D}} R_{C}\right)}{\left(\sqrt{R_{D}} R_{C}+1\right)+R_{E}\left(\sqrt{R_{D}}+R_{C}\right)}$. Proof: Under mild regularity conditions (e.g., similar to those used by Ding and VanderWeele [1], R_{E}, R_{D} and R_{C} are defined for continuous variables, categorical variables or a mixture of continuous and categorical variables. Furthermore, we need consider only categorical variables. This restriction is justified since, if the bias exceeds a particular number x for some R_{E}, R_{D}, R_{C}, and continuous variables E, V, C, N and D with distributions satisfying the inequalities in (5), mild regularity assumptions imply that the continuous variables and distributions can be approximated by categorical variables and distributions also satisfying the inequalities (5) so that the bias also exceeds x for the approximating categorical variables and distributions. Therefore, establishing the bound $B d$ in the categorical case also establishes it in the continuous case and justifies subsequent restriction of the proof to categorical variables.

By Theorem 3 (stated below), given fixed $m n, m x, m n_{c}, m x_{c}, O_{N}, R_{E}, R_{C}, R_{D}$ and $\varepsilon>0$, there exists $\wp\left(\vec{V}_{2}\right) \in \mathcal{H}=\mathcal{H}\left(2, m n, m x, m n_{c}, m x_{c}, O_{N}, R_{E} R_{C}, R_{D}, 9 \varepsilon\right)$ such that $B\left(\wp\left(\vec{V}_{2}\right)\right)$ can be written as:

$$
B\left(\wp\left(\vec{V}_{2}\right)\right)=\frac{R_{E}\left(R_{D} O_{N} r_{c}+1\right)+\left(R_{D} O_{N}+r_{c}^{\prime \prime}\right)}{R_{E}\left(o_{N} r_{c}+1\right)+\left(o_{N}+r_{c}^{\prime \prime}\right)} \times \frac{\left(o_{N} r_{c}+1\right)+R_{E}\left(o_{N}+r_{c}^{\prime \prime}\right)}{\left(R_{D} O_{N} r_{c}+1\right)+R_{E}\left(R_{D} O_{N}+r_{c}^{\prime \prime}\right)}
$$

$\wp\left(\vec{V}_{2}\right) \in \mathcal{H}$ implies $\max _{v, e} \frac{p_{e}(v)}{p_{1-e}(v)} \leq R_{E}, \frac{\max _{v, n} p_{c}(v, n)}{\min _{v, n} p_{c}(v, n)} \leq R_{C}, \max _{n} \frac{p_{D}(n)}{p_{D}(1-n)} \leq R_{D}$ so that E, M, N, C and D satisfy inequalities 5 (main text) and $B\left(\wp\left(\vec{V}_{2}\right)\right)>B_{\text {max }}-9 \varepsilon$; all terms are defined in Theorem 3 .

Subject to the constraints: $1 \leq r_{c} \leq R_{C}, 1 \leq r_{c}^{\prime \prime} \leq R_{C}$ and $0 \leq O_{N}, B\left(\wp\left(\vec{V}_{2}\right)\right)$ attains its maximum at $r_{c}=R_{C}, r_{c}^{\prime \prime}=R_{C}, O_{N}=1 / \sqrt{R_{D}}$. We found the maximum using the optimization method of Byrd et al. [2], an approach designed to solve non-linear problems using a gradient projection method and implemented in the optimr package in R (version 3.3.1). We used a grid of 100 starting values to provide reassurance that the maximum was identified and also verified the solution using the Maximize function in Wolfram Mathematica 11 [3].

Substituting these values of $r_{c}, r_{c}^{\prime \prime}$ and O_{N} into Equations (10), yields the bound:

$$
B d=\frac{R_{E}\left(\sqrt{R_{D}} R_{C}+1\right)+\left(\sqrt{R_{D}}+R_{C}\right)}{R_{E}\left(R_{C}+\sqrt{R_{d}}\right)+\left(1+\sqrt{R_{D}} R_{C}\right)} \times \frac{\left(R_{C}+\sqrt{R_{d}}\right)+R_{E}\left(1+\sqrt{R_{D}} R_{C}\right)}{\left(\sqrt{R_{d}} R_{C}+1\right)+R_{E}\left(\sqrt{R_{D}}+R_{C}\right)}
$$

Since $B d \geq B_{\max }-9 \varepsilon, \quad B_{\max } \geq B d$ by definition and ε is arbitrary, we must have $B d=B_{\max }$, proving the main Theorem.

Note: the solution above uses $r_{c} \leq R_{C}$ and $r_{c}^{\prime \prime} \leq R_{C}$. However, if strong substantive knowledge indicates that $r_{c} \leq R_{C}$ and $r_{c}^{\prime \prime} \leq R_{C}^{\prime \prime}$, with $R_{C} \neq R_{C}^{\prime \prime}$, a tighter bound may be obtained by optimizing $B\left(\wp\left(\vec{V}_{2}\right)\right)$ subject to these alternative constraints.

4) Other Standard Populations.

In the main text we considered the exposed, selected population as the standard, but it is straightforward to also consider the unexposed or the entire selected population as the standard. Let B be the bias and $s R R$ be the (causal) standardized risk ratio, with the exposed as the standard (Equation 2, main text), i.e. the effect of treatment on the treated. Denote the bias and the (causal) standardized risk ratio, if the unexposed were the standard as, say B_{0} and $s_{0} R R$, where B_{0} is the ratio of the $o R R$ divided by $s_{0} R R$. In direct analogy to the case with the exposed as the standard (main text, Equation 3), B_{0} is given by:

$$
B_{0}=\frac{\sum_{v, u} P(V=v \mid E=1) P(U=u) P(D=1 \mid E=1, U=u) P(C=c \mid V=v, U=u)}{\sum_{v, u} P(V=v \mid E=0) P(U=u) P(D=1 \mid E=1, U=u) P(C=c \mid V=v, U=u)} \cdot \frac{\sum_{v, u} P(V=v \mid E=0) P(U=u) P(C=c \mid V=v, U=u)}{\sum_{v, u} P(V=v \mid E=1) P(U=u) P(C=c \mid V=v, U=u)}
$$

This Equation shows that B_{0} has just the same structure as B, except that $P(D=1 \mid E=0, U=u)$ in Equation (2) is replaced by $P(D=1 \mid E=1, U=u)$. Thus, our arguments justifying bound $B d$ for B also hold for B_{0}, provided $R_{D}^{1}=\frac{\max _{n} P(D=1 \mid E=1, N=n)}{\min _{n} P(D=1 \mid E=1, N=n)}$ replaces R_{D} in Equation (4) of the main text.

If the distribution of U among all those selected is the standard, much as in Ding and VanderWeele\{Ding, 2016 \#326\}, we have:

$$
\begin{aligned}
& A C E=w \cdot s R R+(1-w) \cdot s_{0} R R, \quad \text { where } \\
& w=\frac{P(E=1 \mid C=c) \sum_{u} P(D=1 \mid E=0, U=u, C=c) P(U=u \mid E=1, C=c)}{P(E=1 \mid C=c) \sum_{u} P(D=1 \mid E=0, U=u, C=c) P(U=u \mid E=1, C=1)+P(E=0 \mid C=c) \sum_{u} P(D=1 \mid E=0, U=u, C=c) P(U=u \mid E=0, C=1)}, \quad \text { and } A C E
\end{aligned}
$$

is the standardized risk ratio with all in the selected population as the standard (the average causal effect for this population). If we define $R_{D}^{m x}$ as $\max \left(R_{D}, R_{D}^{1}\right)$ and calculate $B d_{A C E}$ using $R_{E}, R_{D}^{m x}$ and R_{C} in Equation (4, main text), we obtain a bound for the bias in the average causal effect $B_{A C E}$:

$$
B_{A C E}=(\mathrm{oRR} / A C E) \leq B d_{A C E}
$$

5) Lower Bound

Here we use our main results to derive a lower bound, say $\underline{B d}$, for the bias (Equation 3, main text) when oRR is used to estimate effects of exposure E. We establish that: $\underline{B d}=\frac{1}{B d}$. To derive this result, we define a new variable $\bar{E}=1-E$. With those "unexposed" to \bar{E} as the standard $(\bar{E}=0)$ in the definition of the effect of \bar{E}, the bias is:

$$
\begin{aligned}
B_{0}(\bar{E}) & =\frac{\sum_{v, u} P(V=v \mid \bar{E}=1) P(U=u) P(D=1 \mid \bar{E}=1, U=u) P(C=c \mid V=v, U=u)}{\sum_{v, u} P(V=v \mid \bar{E}=0) P(U=u) P(D=1 \mid \bar{E}=1, U=u) P(C=c \mid V=v, U=u)} \times \frac{\sum_{v, u} P(V=v \mid \bar{E}=0) P(U=u) P(C=c \mid V=v, U=u)}{\sum_{v, u} P(V=v \mid \bar{E}=1) P(U=u) P(C=c \mid V=v, U=u)} \\
& =\frac{\sum_{v, u} P(V=v \mid E=0) P(U=u) P(D=1 \mid E=0, U=u) P(C=c \mid V=v, U=u)}{\sum_{v, u} P(V=v \mid E=1) P(U=u) P(D=1 \mid E=0, U=u) P(C=c \mid V=v, U=u)} \times \frac{\sum_{v, u} P(V=v \mid E=1) P(U=u) P(C=c \mid V=v, U=u)}{\sum_{v, u} P(V=v \mid E=0) P(U=u) P(C=c \mid V=v, U=u)}
\end{aligned}
$$

Then $B_{0}(\bar{E})=\frac{1}{B}$, where B is given by Equation (2), main text. Applying our result for the upper bound on the bias in estimating the effects of \bar{E}, with those "unexposed" to \bar{E} as the standard $(\bar{E}=0)$, gives:

$$
\begin{aligned}
& \frac{1}{B}=B(\bar{E}) \leq\left(\frac{R_{E}\left(\sqrt{R_{D}^{1}} R_{C}+1\right)+\left(R_{C}+\sqrt{R_{D}^{1}}\right)}{\left(\sqrt{R_{D}^{1}} R_{C}+1\right)+R_{E}\left(R_{C}+\sqrt{R_{D}^{1}}\right)}\right)^{2}, \text { where } R_{D}^{1}=\frac{\max _{n} P(D=1 \mid \bar{E}=1, N=n)}{\min _{n} P(D=1 \mid \bar{E}=1, N=n)}=\frac{\max _{n} P(D=1 \mid E=0, N=n)}{\min _{n} P(D=1 \mid \bar{E}=0, N=n)}= \\
& R_{D}
\end{aligned}
$$

Combining results: $\frac{1}{B d}=\underline{B d} \leq B \leq B d$.

Simulations like those described in eAppendix 4 where the exposed, selected population was the standard, yield similar results with the bias approaching but never exceeding the bound when the unexposed, selected population is the standard and also for the lower bound (data not shown).

5) Supporting Theorems:

We now state Theorems 1-3. Their proofs and supporting Propositions and Lemmas are in eAppendix 3.
Theorem 1. Let R_{E}, R_{C}, R_{D} and $\varepsilon>0$ be given. Set $\varepsilon^{\prime}=\frac{R_{E}-1}{140 R_{D}} \varepsilon$ and let $B_{\max }$ be the maximum of the bias B defined in Equation (3; main text) for all probability functions that satisfy constraint $C_{R}\left(R_{E}, R_{C}, R_{D}\right)$ and the causal relationships of Figure 1 C . Then \exists numbers $m n, m x, m n_{c}, m x_{c}$ and O_{N} and $\mathrm{K}<\infty$ and variables with associated probability functions
$\wp\left(\vec{V}_{\aleph}\right) \in \mathcal{H}\left(\aleph, m n, m x, m n_{c}, m x_{c}, O_{N}, R_{E}, R_{C}, R_{D}, 4 \varepsilon\right)$ such that: (i) $p_{e}\left(\left\{v: v \in A_{1} \cap A_{0}\right\}\right) \leq \varepsilon^{\prime}$, for $e=0,1$. Proof. eAppendix 3.

Theorem 2 Fix $\varepsilon>0, R_{E}, R_{C}, R_{D}>1, m n, m x, m n_{c}, m x_{c}$ with $\frac{m x}{m n} \leq R_{E}$ and $\varepsilon^{\prime}=\frac{R_{E}-1}{140 R_{D}} \varepsilon$. If $\mathcal{H}\left(n^{\prime}, m n, m x, m n_{c}, m x_{c}, R_{E}, R_{C}, R_{D}, 5 \varepsilon\right) \neq \phi$, then \exists a number $\aleph<\infty$ and $\wp\left(\vec{V}_{\aleph}\right) \in \mathcal{H}\left(\aleph, m n, m x, m n_{c}, m x_{c}, O_{N}, R_{E}, R_{C}, R_{D}, 7 \varepsilon\right)$ such that conclusions of Proposition 3 hold (including those of Theorem 1); and, $p_{e}\left(\left\{v: v \in C_{1} \cap C_{0}\right\}\right) \leq \varepsilon^{\prime}$, for $e=0,1$. Proof: eAppendix 3 .

Theorem 3: Fix $m n, m x, m n_{C}, m x_{C}, O_{N}, R_{E}, R_{C}, R_{D}$, For every $\varepsilon>0$ there exists $\wp\left(\vec{V}_{2}\right) \in \mathcal{H}\left(2, m n, m x, m n_{c}, m x_{c}, O_{N}, R_{E}, R_{C}, R_{D}, 9 \varepsilon\right)$ with $B\left(\wp\left(\vec{V}_{2}\right)\right)=\frac{\Sigma_{1} \Sigma_{4}}{\Sigma_{2} \Sigma_{3}}$ such that: $B\left(\wp\left(\vec{V}_{2}\right)\right)>$ $B_{\max }-8 \varepsilon$, where: $\Sigma_{1}=R_{E}\left(R_{D} O_{N} r_{c}+1\right)+\left(R_{D} O_{N}+r_{c}^{\prime \prime}\right) ; \quad \Sigma_{2}=R_{E}\left(O_{N} r_{c}+1\right)+\left(O_{N}+r_{c}^{\prime \prime}\right)$ $\Sigma_{3}=\left(R_{D} O_{N} r_{c}+1\right)+R_{E}\left(R_{D} O_{N}+r_{c}^{\prime \prime}\right) ; \quad \Sigma_{4}=\left(O_{N} r_{c}+1\right)+R_{E}\left(O_{N}+r_{c}^{\prime \prime}\right)$
Proof: eAppendix 3.

II. eAppendix 3:

eAppendix 3 contains proofs of Theorems, Propositions, and Lemmas used to prove the main Theorem, assumptions of which are used throughout. We first prove three Lemmas that will be used in subsequent proofs of Theorems 1-3 and Propositions.

Note: Theorems 1 and 2 have analogous proofs, with similar construction steps; this is also true of Propositions 1, 2, 4 and 5.

Lemma 1. Fix $m n, m x, m n_{c}, m x_{c}, O_{N}, R_{E}, R_{C}, R_{D}$ and ε. Consider $\mathcal{H}=\mathcal{H}\left(n, m n, m x, m n_{c}, m x_{C}, O_{N}, R_{E}, R_{C}, R_{D}, \varepsilon\right)$. If $\mathcal{H} \neq \phi$, then for some $n^{\prime}<\infty, \exists$ variables and functions $\wp\left(\vec{V}^{\prime}\right) \in \mathcal{H}\left(n^{\prime}, m n^{\prime}, m x^{\prime}, m n_{c}, m x_{c}, O_{N}, R_{E}, R_{C}, R_{D}, 2 \varepsilon\right)$ such that: $\left|V^{\prime}\right|=n^{\prime}, p_{e}\left(v^{\prime}\right)$ has bounds $m n^{\prime}$ and $m x^{\prime}$ such that: $m n^{\prime} \leq p_{e}\left(v^{\prime}\right) \leq m x^{\prime}$ and $\frac{m x^{\prime}}{m n^{\prime}} \leq R_{E}$.
Proof: Let $\wp(\vec{V}) \in \mathcal{H}$, with $B(\wp(\vec{V}))>B_{\max }-\varepsilon$. Under mild regularity, $p_{e}(v), e=0,1$ can be approximated by $p_{e}{ }^{\prime}(v) \in \wp\left(\vec{V}^{\prime}\right)$ with range \mathbb{Q} (rational numbers) so that: $B\left(\wp\left(\overrightarrow{V^{\prime}}\right)\right)>B_{\max }-2 \varepsilon$. For simplicity, relabel V^{\prime} as V. Use the following algorithm to recursively define a new variable and functions $\wp\left(\vec{V}^{\prime}\right)$ with the following Steps:

0 . Let $m n=\min _{e, v} p_{e}(v)$. Define $G=\left\{v: \max _{e} p_{e}(v)>R_{E} \cdot m n\right\}$. If G is empty, stop. Otherwise,

1. Pick $v_{1} \in G$ such that $\max _{e} p_{e}\left(v_{1}\right)=\max _{e, v \in G} p_{e}(v)$. Let $m x_{v_{1}}=\max _{e} p_{e}\left(v_{1}\right)$. If $\max _{e} p_{e}\left(v_{1}\right) \leq R \cdot m n$, stop. Otherwise: \exists integers $K_{1}>K_{2}$ such that $m x_{v_{1}} / K_{1}=R_{E}$. $m n / K_{2}$. Label the categories of $V: v_{1}, \ldots, v_{n}$.
2. Create a new variable V^{\prime} with $\left|V^{\prime}\right| \leq K_{1}+(n-1) \times K_{2}$ labeled as $v^{\prime}{ }_{i, j}$ for $i=1,2, \ldots, n$, $j=1,2, \ldots, J_{i}$ where $J_{i}=K_{1}$ if $\max _{e} p_{e}\left(v_{i}\right)=m x_{v_{1}}$ and $J_{i}=K_{2}$ otherwise.
3. Variables E, C, N, D and the probability functions $p_{D}(n)$ and $p_{N}(n)$ are unchanged.
4. Define new probability functions $p_{e}^{\prime}\left(v_{i, j}^{\prime}\right), p_{1-e}^{\prime}\left(v_{i, j}^{\prime}\right)$ and $p_{c}^{\prime}\left(v_{i, j}^{\prime}, n\right)$ as: $p_{e}^{\prime}\left(v_{i, j}^{\prime}\right)=\frac{p_{e}\left(v_{i}\right)}{J_{i}} ; p_{c}^{\prime}\left(v_{i, j}^{\prime}, n\right)=p_{c}\left(v_{i}, n\right)$, for $i=1,2, \ldots, n ; j=1,2, \ldots, J_{i} ; e, n=0,1$.
5. Define: $m n_{\text {new }}=\frac{m n}{K_{2}} ; m x_{\text {new }}=\max _{v^{\prime}, e} p^{\prime}{ }_{e}\left(v^{\prime}\right)$.
6. Relabel: $m n=m n_{\text {new }}, m x=m x_{\text {new }}$, drop the primes from V^{\prime} and the probability functions $\wp\left(V^{\prime}\right)$. Return to Step 0.
Each iteration reduces the number of unique values of $p_{e}(v)$ outside the interval [$m n_{n e w}, m x_{\text {new }}$], assuring that the algorithm eventually stops. With each iteration, the values of $p_{c}(v, n)$ and, because of duplication, $B\left(\wp \supset\left(\left(\overrightarrow{V^{\prime}}\right)\right)\right.$ don’t change. Therefore at completion, the final variables and functions $\wp\left(\vec{V}^{\prime}\right)$ still satisfy constraint $C_{R}\left(R_{E}, R_{C}, R_{D}\right)$, and the construction assures $m x=R_{E} \cdot m n$.

Lemma 2: If $B=B(\wp(\vec{V}))>1$ and $R_{E}>1$, then $\frac{R_{E} \Sigma_{4}-\Sigma_{3}}{R_{E} \Sigma_{2}-\Sigma_{1}}>\frac{\Sigma_{3}-\Sigma_{4}}{\Sigma_{1}-\Sigma_{2}}$.
Proof: by contradiction. If the conclusion is false, then we would have $\frac{R_{E} \Sigma_{4}-\Sigma_{3}}{R_{E} \Sigma_{2}-\Sigma_{1}} \leq \frac{\Sigma_{3}-\Sigma_{4}}{\Sigma_{1}-\Sigma_{2}}$. Dividing both sides by $\Sigma_{3}-\Sigma_{4}$ and multiplying both sides by $R_{E} \Sigma_{2}-\Sigma_{1}$ would give:
$\frac{R_{E} \Sigma_{4}-\Sigma_{3}}{\Sigma_{3}-\Sigma_{4}}<\frac{R_{E} \Sigma_{2}-\Sigma_{1}}{\Sigma_{1}-\Sigma_{2}}$. Dividing numerator and denominator on the left (right) by $\Sigma_{3}\left(\Sigma_{1}\right)$ would imply $\frac{R_{E} \frac{\Sigma_{4}}{\Sigma_{3}}-1}{1-\frac{\Sigma_{4}}{\Sigma_{3}}}<\frac{R_{E} \frac{\Sigma_{2}}{\Sigma_{1}}-1}{1-\frac{\Sigma_{2}}{\Sigma_{1}}}$. Cross multiplying by $1-\frac{\Sigma_{4}}{\Sigma_{3}}$ and $1-\frac{\Sigma_{2}}{\Sigma_{1}}$ then would imply:
$R_{E} \frac{\Sigma_{4}}{\Sigma_{3}}-1-R_{E} \frac{\Sigma_{4}}{\Sigma_{3}} \frac{\Sigma_{2}}{\Sigma_{1}}+\frac{\Sigma_{2}}{\Sigma_{1}}<R_{E} \frac{\Sigma_{2}}{\Sigma_{1}}-1-R_{E} \frac{\Sigma_{4}}{\Sigma_{3}} \frac{\Sigma_{2}}{\Sigma_{1}}+\frac{\Sigma_{4}}{\Sigma_{3}}$. Canceling common terms gives:
$\frac{\Sigma_{4}}{\Sigma_{3}}\left(R_{E}-1\right)<\frac{\Sigma_{2}}{\Sigma_{1}}\left(R_{E}-1\right)$, which would imply $B<1$ if $R_{E}>1$, a contradiction, completing the proof.

Lemma 3. For fixed $n<\infty, m n, m x, m n_{C}, m x_{c} R_{E}, R_{C}, R_{D}, O_{N}$ and ε, let
$\mathcal{H}=\mathcal{H}\left(n, m n, m x, m n_{c}, m x_{c}, O_{N}, R_{E}, R_{C}, R_{D}, \varepsilon\right)$ where $\frac{m x}{m n} \leq R_{E}$. If $\mathcal{H} \neq \phi$, $\exists \wp\left(\vec{V}^{\prime}\right) \in \mathcal{H}$ such that: $p_{c}(v, n)$ has the same value for $n=0,1$ and all $v \in A_{1} \cap C_{0}$, and similarly for v in each combinations of sets $\left(A_{1}, C_{1}\right) \times\left(A_{0}, C_{0}\right)$.

Proof: Define $S=A_{1} \cap C_{0}$. Create $\wp\left(\vec{V}^{\prime}\right) \in \mathcal{H}$ from $\wp(\vec{V}) \in \mathcal{H}$, where $\wp\left(\vec{V}^{\prime}\right)=\wp(\vec{V})$ except that: $p_{c}{ }^{\prime}(v, n)=\sum_{v \in S} p_{c}(v, n) /|S|$. Then: $B\left(\wp\left(\vec{V}^{\prime}\right)\right)=B(\wp(\vec{V}))$ since $p_{e}(v)$ is constant for all $v \in S$ in each of the defining sums; also $\wp\left(\vec{V}^{\prime}\right) \in \mathcal{H}, \frac{m x}{m n} \leq R_{E}$ holds if true for $\wp(\vec{V})$ and $p_{c}{ }^{\prime}(v, n)$ has the same value for all $v \in S$ for $n=0,1$. The corresponding result holds for the other combinations $\left(A_{1}, C_{1}\right) \times\left(A_{0}, C_{0}\right)$, concluding the proof.

Theorem 1. Let R_{E}, R_{C}, R_{D} and $\varepsilon, \varepsilon^{\prime}>0$ be given and let $B_{\text {max }}$ be the maximum of the bias B defined in Equation (3; main text) for all probability functions that satisfy constraint $C_{R}\left(R_{E}, R_{C}, R_{D}\right)$ and the causal relationships of Figure 1C. Then \exists numbers $m n, m x, m n_{c}, m x_{c}$ and O_{N} and $\kappa<\infty$ and variables with associated probability functions $\wp\left(\vec{V}_{\aleph}\right) \in \mathcal{H}\left(\aleph, m n, m x, m n_{c}, m x_{c}, O_{N}, R_{E}, R_{C}, R_{D}, 4 \varepsilon\right)$ such that $p_{e}\left(\left\{v: v \in A_{1} \cap A_{0}\right\}\right) \leq \varepsilon^{\prime}$, for $e=0,1$.

Proof: Recall $A_{e}=\left\{v: p_{e}(v)=m x\right\}$. By the first part of the proof of the main Theorem, \exists categorical variables \vec{V}_{J} and associated probability functions $\wp\left(\vec{V}_{J}\right)$ with $\left|V_{J}\right|=J<\infty$ that satisfy constraint
$C_{R}\left(R_{E}, R_{C}, R_{D}\right)$ and $B_{\text {max }} \geq B\left(\wp\left(\overrightarrow{V_{J}}\right)\right) \geq B_{\text {max }}-\varepsilon$. Taking
$m n=\min _{e, v} p_{e}(v), m x=\max _{e, v} p_{e}(v), m n_{c}=\min _{v, n} p_{c}(v, n), m x_{c}=\max _{v, n} p_{c}(v, n)$ and $O_{N}=$ $\frac{p_{N}(N=1)}{p_{N}(N=0)}, \wp\left(\vec{V}_{J}\right)$ satisfies constraint $C_{L}\left(m n, m x, m n_{c}, m x_{C}, O_{N}\right)$ and thus $\wp\left(\vec{V}_{J}\right) \in \mathcal{H}\left(J, m n, m x, m n_{c}, m x_{c}, o_{N}, R_{E}, R_{C}, R_{D}, \varepsilon\right)$. By Lemma 1, for some $n^{\prime}<\infty, \exists$ variables and
functions $\wp\left(\vec{V}_{n^{\prime}}^{*}\right) \in \mathcal{H}\left(n^{\prime}, m n^{\prime}, m x^{\prime}, m n_{c}, m x_{c}, O_{N}, R_{E}, R_{C}, R_{D}, 2 \varepsilon\right)$ such that: $\left|V_{n^{\prime}}^{*}\right|=n^{\prime}, p_{e}\left(v^{\prime}\right)$ has bounds $m n^{\prime} \leq p_{e}\left(v^{\prime}\right) \leq m x^{\prime}$ with $\frac{m x \prime}{m n^{\prime}} \leq R_{E}$. By Lemma 3, we assume $p_{c}(v, 1)$ and $p_{c}(v, 0)$ each has the same value for all v in each combination $\left(A_{1}, C_{1}\right) \times\left(A_{0}, C_{0}\right)$,

For each value v of V, consider the partial derivatives $\frac{\partial \ln (B)}{\partial p_{c}(v, 1)}$ and $\frac{\partial \ln (B)}{\partial p_{c}(v, 0)}$. If both were nonnegative, we would have:

$$
\begin{aligned}
& \frac{\partial \ln (B)}{\partial p_{c}(v, 1)}=O_{N}\left[\frac{R_{D} m x}{\Sigma_{1}}-\frac{m x}{\Sigma_{2}}-\frac{R_{D} m x}{\Sigma_{3}}+\frac{m x}{\Sigma_{4}}\right] \geq 0 \quad \text { so } 1 \geq \frac{\Sigma_{1} \Sigma_{2}}{\Sigma_{3} \Sigma_{4}} \frac{R_{D} \Sigma_{4}-\Sigma_{3}}{R_{D} \Sigma_{2}-\Sigma_{1}} ; \text { and }, \\
& \frac{\partial \ln (B)}{\partial p_{c}(v, 0)}=\frac{m x}{\Sigma_{1}}-\frac{m x}{\Sigma_{2}}-\frac{m x}{\Sigma_{3}}+\frac{m x}{\Sigma_{4}} \geq 0 \quad \text { so } 1 \leq \frac{\Sigma_{1} \Sigma_{2}}{\Sigma_{3} \Sigma_{4}} \frac{\Sigma_{3}-\Sigma_{4}}{\Sigma_{1}-\Sigma_{2}} .
\end{aligned}
$$

This would imply: $\frac{\Sigma_{1} \Sigma_{2}}{\Sigma_{3} \Sigma_{4}} \frac{R_{D} \Sigma_{4}-\Sigma_{3}}{R_{D} \Sigma_{2}-\Sigma_{1}} \leq \frac{\Sigma_{1} \Sigma_{2}}{\Sigma_{3} \Sigma_{4}} \frac{\Sigma_{3}-\Sigma_{4}}{\Sigma_{1}-\Sigma_{2}}$, a contradiction if $B(\wp(\vec{V}))>1$ and $R_{E}>1$ by Lemma 2. Thus, we must have either case (i) or (ii):
(i) $\frac{\partial \ln (B)}{\partial p_{c}(v, 1)} \geq 0$ and $\frac{\partial \ln (B)}{\partial p_{c}(v, 0)}<0$. In this case, we can decrease $p_{c}(v, 0)$ until $p_{c}(v, 0)=m n_{c}$, without decreasing $B(\wp(\vec{V}))$; or we have:
(ii) $\frac{\partial \ln (B)}{\partial p_{c}(v, 1)}<0$. In this case, we can decrease $p_{c}(v, 1)$ until $p_{c}(v, 1)=m n_{c}$, without decreasing $B(\wp(\vec{V}))$. Thus, we can assume either $(i) p_{c}(v, 1)=m n_{c}$; or $(i i) p_{c}(v, 0)=m n_{c}$.
(i) Proposition 1 (below) shows that we can find $\aleph<\infty$ and variables with associated probability functions $\wp\left(\vec{V}_{\aleph}\right) \in \mathcal{H}\left(\aleph, m n, m x, m n_{c}, m x_{c}, O_{N}, R_{E}, R_{C}, R_{D}, 3 \varepsilon\right)$ such that: $p_{e}\left(\left\{v: v \in A_{1} \cap A_{0}\right.\right.$, $\left.\left.p_{c}(v, 1)=m n_{c}\right\}\right) \leq \varepsilon^{\prime}$ for $e=0,1$.
(ii) Proposition 2 (below) shows that there exists $\kappa<\infty$ and variables \vec{V}_{\aleph} with associated probability functions $\wp\left(\overrightarrow{V_{\aleph}}\right) \in \mathcal{H}\left(\aleph, m n, m x, m n_{c}, m x_{c}, O_{N}, R_{E}, R_{C}, R_{D}, 4 \varepsilon\right)$ such that: conclusions of proposition 2 continue to hold; and $p_{e}\left(\left\{v: v \in A_{1} \cap A_{0}, p_{c}(v, 0)=m n_{c}\right\}\right) \leq \varepsilon^{\prime}$ for $e=0,1$.

Parts (i-ii) cover both possible combination of values for $p_{c}(v, 1)$ and $p_{c}(v, 0)$ with $v \in A_{1} \cap A_{0}$, and together show that $p_{e}\left(\left\{v: v \in A_{1} \cap A_{0}\right\}\right) \leq \varepsilon$, for $e=0,1$, completing the proof of Theorem 1 .

Proposition 1. Fix $\varepsilon, \varepsilon^{\prime}>0, R_{E}, R_{C}, R_{D}>1$, and $m n, m x, m n_{c}, m x_{c}, O_{N}$ with $\frac{m x}{m n} \leq R_{E}$. If $\exists \wp\left(\vec{V}_{n^{\prime}}\right) \in$ $\mathcal{H}\left(n^{\prime}, m n, m x, m n_{c}, m x_{c}, O_{N}, R_{E}, R_{C}, R_{D}, 2 \varepsilon\right)$, then \exists a number $\aleph<\infty$ and $\wp\left(\vec{V}_{\aleph}\right) \in \mathcal{H}\left(\aleph, m n, m x, m n_{c}, m x_{c}, O_{N}, R_{E}, R_{C}, R_{D}, 3 \varepsilon\right)$ such that $p_{e}\left(\left\{v: v \in A_{1} \cap A_{0}, p_{c}(v, 1)=m n_{c}\right\}\right) \leq$ ε^{\prime} for $e=0,1$.

Proof. Recall that $A_{e}=\left\{v: p_{e}(v)=m x_{c}\right\}$ for $e=0,1$.

1) By the first part of Theorem $1, \exists \wp\left(\vec{V}_{\mathcal{N}}\right) \in \mathcal{H}\left(n^{\prime}, m n, m x, m n_{c}, m x_{c}, O_{N}, R_{E}, R_{C}, R_{D}, 2 \varepsilon\right)$ with $\frac{m x \prime}{m n^{\prime}} \leq$ R_{E}, and $B\left(\wp\left(\vec{V}_{א}\right)\right)>B_{\max }-2 \varepsilon$.
2) With error at most ε in $B\left(\wp\left(\vec{V}_{\aleph}\right)\right)$, we can approximate $p_{e}(v)$, so that $m n$ and $m x$ are rational, and in particular \exists integers $b>a: a \cdot m x=b \cdot m n$ and even after approximation, $B\left(\wp\left(\vec{V}_{\aleph}\right)\right)>B_{m a x}-3 \varepsilon$.
3) If $p_{e}\left(\left\{v: v \in A_{1} \cap A_{0}, p_{c, J}(v, 1)=m n_{c}\right\}\right) \leq \varepsilon^{\prime}$ for $e=0,1$, we are done. If not, then we show how to construct $\wp\left(\vec{V}_{\aleph}\right)$ with the desired properties without decreasing $B\left(\wp\left(\vec{V}_{\aleph}\right)\right)$. Choose an integer $K>\frac{a+b}{\varepsilon^{\prime}}$.
4) Label the categories of V_{J} by v_{i} for $i=1,2, \ldots, J=\left|V_{J}\right|$. For each category v_{i} of V_{J}, define categories of a variable $V^{\prime}{ }_{J \cdot K}$ by: $v_{i, k}, i=1, \ldots, J ; k=1,2, \ldots, K$ and associated probability functions: $\wp\left(\vec{V}_{J \cdot K}^{\prime}\right)=$ $\left\{\vec{V}_{J \cdot K}^{\prime} ; p_{1, K}^{\prime}\left(v_{i, k}\right)=p_{1}\left(v_{i}\right) / K, p_{0, K}^{\prime}\left(v_{i, k}\right)=p_{0}\left(v_{i}\right) / K, p_{c, K}^{\prime}\left(v_{i, k}, 1\right)=p_{c}\left(v_{i}, 1\right), p_{c, K}^{\prime}\left(v_{i, k}, 0\right)=\right.$ $\left.p_{c}\left(v_{i}, 0\right)\right\}$. By construction K cancels from the bias expressions, so $B\left(\wp\left(\vec{V}_{J \cdot K}^{\prime}\right)\right)$ is unchanged, $\frac{m x_{K}}{m n_{K}} \leq$ R_{E} and $\wp\left(\vec{V}^{\prime}{ }_{J \cdot K}\right) \in \mathcal{H}\left(J \cdot K, m n_{K}, m x_{K}, m n_{c}, m x_{c}, O_{N}, R_{E}, R_{C}, R_{D}, 3 \varepsilon\right)$.
5) If $p_{e, K}\left(\left\{v: v \in A_{1} \cap A_{0}, p_{c}(v, 1)=m n_{c}\right\}\right) \leq \varepsilon^{\prime}$ for $e=0,1$, we are done. If not then we construct other variables and probability functions $\wp\left(\vec{V}_{\kappa}\right) \in \mathcal{H}=\mathcal{H}\left(\aleph, m n_{K}, m x_{K}, m n_{c}, m x_{c}, O_{N}, R_{E}, R_{C}, R_{D}, 3 \varepsilon\right)$, with: $\frac{m x_{K}}{m n_{K}} \leq R_{E}$, an equal or larger value of $B\left(\wp\left(\vec{V}_{\aleph}\right)\right)$ and a smaller value of $p_{e, K}\left(\left\{v: v \in A_{1} \cap A_{0}\right.\right.$, $\left.\left.p_{c}(v, 1)=m n_{c}\right\}\right)$.
6) Let $A A_{K}=\left\{v: v \in A_{1} \cap A_{0}, p_{c, N}^{\prime}(v, 1)=m n_{K},\right\}$. Then $\left|A A_{K}\right|$ must be greater than $a+b$. Otherwise: ${p^{\prime}}_{e, K}\left(A A_{K}\right) \leq\left|A A_{K}\right| \cdot m x_{K} \leq(a+b) \cdot m x_{K}=(a+b) \cdot \frac{m x}{K}<(a+b) \frac{m x}{(a+b)} \varepsilon^{\prime} \leq \varepsilon^{\prime}$, by choice of N and since $m x \leq 1$.
7) Thus, choose $a+b$ points in $A A_{K}$. To simplify notation, we drop K and primes (${ }^{\prime}$) from variables and functions in $\wp\left(\vec{V}_{J \cdot K}\right)$ and the limits: e.g., $p_{e, K}^{\prime}(v)=p_{e}(v)$ for $e=0,1$ and $m x=m x_{K}$.

We now show that we could decrease $\left|A A_{K}\right|=\left|\left\{v: v \in A_{1} \cap A_{0}, p_{c}(v, 1)=m n_{c}\right\}\right|$ without decreasing $B\left(\wp\left(\vec{V}_{J \cdot K}\right)\right)$ by assigning new values of $p_{e}(v)$ and $p_{c}(v, n)$ for sets of $a+b$ points. The construction will assure, that with these new variables and functions $\wp\left(\vec{V}^{\prime}\right)$, we have: $B\left(\wp\left(\vec{V}^{\prime}\right)\right)>B_{\text {max }}-3 \varepsilon$, $p_{e}\left(\left|A A_{K}^{\prime}\right|\right) \leq \varepsilon^{\prime}$ and $\wp\left(\vec{V}^{\prime}\right) \in \mathcal{H}\left(n, m n, m x, m n_{c}, m x_{c}, O_{N}, R_{E}, R_{C}, R_{D}, 3 \varepsilon\right)$.

For each set of $n=a+b$ points in $A_{1} \cap A_{0}$ with $p_{c}(v, 1)=m n_{c}$, the current ("old") values and proposed, new (to be assigned) values are shown in eTable A1. In general, $p_{c}(v, 0)$ can vary, but we can replace $p_{c}(v, 0)$ with the average $m d=\sum_{v \in A_{1} \cap A_{0}} p_{c}(v, 0) /(a+b)$ by Lemma eTable A1: Old and
reassigned ("new") values of $p_{0}(v), p_{1}(v), p_{c}(v, 1)$ and $p_{c}(v, 0)$ for each of $n=a+b$ points in $A_{1} \cap A_{0}$ with $p_{c}(v, 1)=m n_{c}$
eTable A1

Type, number of points n	$p_{1}(v)$	$p_{0}(v)$	$p_{c}(v, 1)$	$p_{c}(v, 0)$
Old	Old values of probability functions for the n selected points			
$n=a+b$	$m x$	$m x$	$m n_{c}$	$m d^{\dagger}$
Total: $n=a+b$	$(a+b) m x$	$(a+b) m x$		
New	New values of probability functions for the n selected points			
Type 1, $n=b$	$m x$	$m n$	w	x
Type 2, $n=b$	$m n$	$m x$	y	z
Total, $n=2 b$	$(a+b) m x$	$(a+b) m x$		

$\dagger p_{c}(v, 0)$ is replaced with the average (see text above).
Recall that $B\left(\left(\wp \vec{V}_{\aleph}\right)\right)=\frac{\Sigma_{1} \Sigma_{4}}{\Sigma_{2} \Sigma_{3}}$. The contributions of the n points to each of the sums $\Sigma_{1}, \Sigma_{2}, \Sigma_{3}, \Sigma_{4}$ before (old) and after using the new values are shown in eAppendix Table A2.
eTable A2: Old and "New" contribution of the $n=a+b$ points to $\Sigma_{1}, \Sigma_{2}, \Sigma_{3}, \Sigma_{4}$

Sum	Old Value	New Value: Type 1 $+\quad 1$	
Σ_{1}	$(a+b) \cdot m x\left[R_{D} O_{N} m n_{c}+m d\right]$	$b \cdot m x \cdot\left(R_{D} O_{N} w+x\right)$	$+b \cdot m n \cdot\left(R_{D} O_{N} y+z\right)$
Σ_{2}	$(a+b) \cdot m x\left[O_{N} m n_{c}+m d\right]$	$b \cdot m x \cdot\left(O_{N} w+x\right)$	$+b \cdot m n \cdot\left(O_{N} y+z\right)$
Σ_{3}	$(a+b) \cdot m x\left[R_{D} O_{N} m n_{c}+m d\right]$	$b \cdot m n \cdot\left(R_{D} O_{N} w+x\right)$	$+b \cdot m x \cdot\left(R_{D} O_{N} y+z\right)$
Σ_{4}	$(a+b) \cdot m x\left[O_{N} m n_{c}+m d\right]$	$b \cdot m n \cdot\left(O_{N} w+x\right)$	$+b \cdot m x \cdot\left(O_{N} y+z\right)$

By subtracting the old contribution from the new contribution, we get the change in each of the sums the difference that will occur by reassigning $p_{c}(v, 1)$ and $p_{c}(v, 0)$ as proposed: eAppendix Table A3.
eAppendix Table A3. The changes in the sums $\Sigma_{1}, \Sigma_{2}, \Sigma_{3}, \Sigma_{4}$ due to changing $p_{c}(v, 1)$ and $p_{c}(v, 0)$.

Δ_{i}	Difference: $\Delta_{i}=\mathrm{New}_{\mathrm{i}}-\mathrm{Old}_{\mathrm{i}}$
Δ_{1}	$\begin{aligned} & b \cdot m x\left(R_{D} O_{N} w+x\right)+b \cdot m n\left(R_{D} O_{N} y+z\right)-(a+b) R_{D} O_{N} m x \cdot m n_{c}-(a+b) m x \cdot m d \\ & =R_{E} \cdot R_{E} \cdot R_{D} O_{N}\left(w-m n_{c}\right)+R_{E} \cdot R_{E}(x-m d)+R_{E} \cdot R_{D} O_{N}\left(y-m n_{c}\right)+R_{E} \cdot(z-m d) \end{aligned}$
Δ_{2}	$\begin{aligned} & b \cdot m x\left(O_{N} k+x\right) \quad+b \cdot m n\left(O_{N} y+z\right)-(a+b) \cdot m x \cdot\left[O_{N} m n_{c}+m d\right] \\ & =R_{E} \cdot R O_{N}\left(k-m n_{c}\right)+R_{E} \cdot R(x-m d)+R_{E} \cdot O_{N} \cdot\left(\mathrm{y}-m n_{c}\right)+R_{E}(z-m d) \end{aligned}$
Δ_{3}	$\begin{aligned} & b \cdot R_{D} m n \cdot O_{N} w+b \cdot m n \cdot x+b \cdot m x \cdot\left(R_{D} O_{N} y+z\right)-(a+b) \cdot m x\left[R_{D} O_{N} m n_{c}+m d\right] \\ & =R_{E} \cdot R_{D} O_{N}\left(w-m n_{c}\right)+R_{E}(x-m d)+R_{E} \cdot R_{E} \cdot R_{D} O_{N}\left(\mathrm{y}-m n_{c}\right)+R_{E} \cdot R_{E}(z-m d) \end{aligned}$
Δ_{4}	$\begin{aligned} & =b \cdot m n \cdot\left(O_{N} w+x\right)+b \cdot m x \cdot\left(O_{N} y+z\right)-(a+b) \cdot m x \cdot\left[O_{N} m n_{c}+m d\right] \\ & =R_{E} O_{N}\left(w-m n_{c}\right)+R_{E}(x-m d)+R_{E} \cdot R_{E} O_{N}\left(\mathrm{y}-m n_{c}\right)+R_{E} \cdot R_{E}(z-m d) \end{aligned}$

The second line in each cell of the right column of Table A3 follows by rearranging and then using $b=a \cdot m n, m x=R_{E} \cdot m n$ and cancelling a and $m n$. (Cancelation simplifies the expression but does not affect the value of $\left.B=B\left(\wp\left(\vec{V}_{J \cdot K}^{\prime}\right)\right)\right)$. Setting $w=m n_{c}, x=m d, y=m n_{c}$ and $z=m d$, doesn't change
B (all Δ_{i} are 0) and the constraints are still satisfied. [Many other possible substitutions would increase B.]

This construction decreases $\left|A A_{K}\right|$ by $a+b$: after redefining the distribution functions $p_{e}(v)$ in $\wp\left(\vec{V}_{\aleph}\right)$ as in Table A1, $p_{e}(v) \in\{m n, m x\}$ so that none of the $a+b$ selected points remain in $A_{1} \cap A_{0}$. We can repeat the process of reassigning probabilities, starting at step 6 and as reflected in eAppendix Tables A1A3, until $\left|\left\{v: v \in A_{1} \cap A_{0}, p_{c}(v, 1)=m n_{c}\right\}\right|<a+b$ so that $p_{e}\left(\left\{v: v \in A_{1} \cap A_{0}, p_{c}(v, 1)=m n_{c}\right\}\right) \leq \varepsilon^{\prime}$ for $e=0,1$, completing proof of Proposition 1.

Proposition 2: Fix $\varepsilon>0, R_{E}, R_{C}, R_{D}>1$, and $m n, m x, m n_{c}, m x_{c}$ with $\frac{m x}{m n} \leq R_{E}$. If $\exists \wp\left(\vec{V}_{n^{\prime}}\right) \in$ $\mathcal{H}\left(n^{\prime}, m n, m x, m n_{c}, m x_{C}, O_{N}, R_{E}, R_{C}, R_{D}, 3 \varepsilon\right)$ satisfying conclusions of Proposition 1, then \exists a number $\aleph<\infty$ and $\wp\left(\vec{V}_{\aleph}\right) \in \mathcal{H}\left(\aleph, m n, m x, m n_{c}, m x_{c}, O_{N}, R_{E}, R_{C}, R_{D}, 4 \varepsilon\right)$ such that conclusions of Proposition 1 hold; and $p_{e}\left(\left\{v: v \in A_{1} \cap A_{0}, p_{c}(v, 0)=m n_{c}\right\}\right) \leq \varepsilon^{\prime}$ for $e=0,1$.

Proof. Proposition 2 follows by showing it would be possible to redefine the functions in $\wp\left(V_{\mathbb{\aleph}}\right)$ so that $p_{e}\left(\left\{v: v \in A_{1} \cap A_{0}, p_{c}(v, 0)=m n_{c}\right\}\right) \leq \varepsilon^{\prime}$, without increasing $B\left(\wp\left(\vec{V}_{\mathbb{N}}\right)\right)$ so that $\wp\left(\vec{V}_{\mathbb{N}}\right) \in \mathcal{H}^{\prime}=\mathcal{H} \cap$ $\left\{\wp\left(V_{\aleph}\right): p_{e}\left(\left\{v: v \in A_{1} \cap A_{0}, p_{c}(v, 0)=m n_{c}\right\}\right) \leq \varepsilon^{\prime}\right.$ for $\left.e=0,1\right\}$.

Let $\wp\left(\vec{V}_{N}\right) \in \mathcal{H}\left(n^{\prime}, m n, m x, m n_{c}, m x_{c}, O_{N}, R_{E}, R_{C}, R_{D}, 3 \varepsilon\right)$ denote the variables and functions whose existence is proven in Proposition 1. Suppose, for the functions in $\wp\left(\vec{V}_{\mathrm{N}}\right)$, that $p_{e}\left(\left\{v: v \in A_{1} \cap A_{0}\right.\right.$, $\left.\left.p_{c}(v, 1)=m n_{c}\right\}\right) \leq \varepsilon^{\prime}$ for $e=0$ or 1. Paralleling the proof of Proposition 1, if $p_{e}\left(\left\{v: v \in A_{1} \cap A_{0}\right.\right.$, $\left.\left.p_{c}(v, 0)=m n_{c}\right\}\right)>\varepsilon^{\prime}$, modify $\wp\left(\vec{V}_{\aleph}\right)$ to increase the number of points if needed and approximate $p_{e}(v)$ by rational numbers so that $B\left(\wp\left(\vec{V}_{\aleph}\right)\right)>B_{\max }-4 \varepsilon$ and $\kappa>\frac{a+b}{\varepsilon}$, where $\kappa=|V|$ and $b>a$ are integers with $a \cdot m x=b \cdot m n$. Select $a+b$ points in $A_{1} \cap A_{0}$ such that $p_{c}(v, 0)=m n_{c}$. Replace $p_{c}(v, 1)$ by the average $m d$, without affecting $B\left(\wp\left(\vec{V}^{\prime}\right)\right)$ or the constraints $\left(m d=\sum_{v \in A_{1} \cap A_{0}} p_{c}(v, 1) /\left|A_{1} \cap A_{0}\right|\right)$.

We now sketch how to modify $\wp\left(\vec{V}_{\mathbb{N}}\right)$, analogous to Proposition 1 , with the values for $p_{0}(v)$ and $p_{c}(v, n)$ in Table A4, so that $B\left(\wp\left(\vec{V}_{\aleph}\right)\right)$ won't decrease, but $p_{e, K}\left(\left\{v: v \in A_{1} \cap A_{0}, p_{c}(v, 0)=m n_{c}\right\}\right) \leq \varepsilon^{\prime}$.
eAppendix Table A4: Old and reassigned ("new") values of $p_{0}(v), p_{1}(v), p_{c}(v, 1)$ and $p_{c}(v, 0)$ for each set of $n=a+b$ points in $A_{1} \cap A_{0}$ with $\left.p_{c}(v, 0)=m n_{c}\right\}$

Type, number of points n	$p_{1}(v)$	$p_{0}(v)$	$p_{c}(v, 1)$	$p_{c}(v, 0)$
Old	Old values of probability functions for the selected points			
$n=a+b$	$m x$	$m x$	$m d^{\dagger}$	$m n_{c}$
Total: $n=a+b$	$(a+b) m x$	($a+b$		
New	New values of probability functions for the selected points			
Type 1, $n=b$	$m x$	$m n$	w	x

Type $2, \quad n=b$	$m n$	$m x$	y	z
Total, $n=2 b$	$(a+b) m x$	$(a+b) m x$		

$\dagger p_{c}(v, 1)$ can vary, but is replaced by the average by Lemma 3 .
The contributions of these points to each of the sums $\Sigma_{1}, \Sigma_{2}, \Sigma_{3}, \Sigma_{4}$ before (old) and after (using new values) are shown in eTable A5.
eTable A5: Old and "New" contribution of the $n=a+b$ points to $\Sigma_{1}, \Sigma_{2}, \Sigma_{3}, \Sigma_{4}$

Sum	Old Value	New Value: Type 1 +	Type2
Σ_{1}	$(a+b) \cdot m x\left[R_{D} O_{N} m d+m n_{c}\right]$	$b \cdot m x \cdot\left(R_{D} O_{N} w+x\right)+b \cdot m n \cdot\left(R_{D} O_{N} y+z\right)$	
Σ_{2}	$(a+b) \cdot m x\left[O_{N} m d+m n_{c}\right]$	$b \cdot m x \cdot\left(O_{N} w+x\right)$	$+b \cdot m n \cdot\left(O_{N} y+z\right)$
Σ_{3}	$(a+b) \cdot m x\left[R_{D} O_{N} m d+m n_{c}\right]$	$b \cdot m n \cdot\left(R_{D} O_{N} w+x\right)$	$+b \cdot m x \cdot\left(R_{D} O_{N} y+z\right)$
Σ_{4}	$(a+b) \cdot m x\left[O_{N} m d+m n_{c}\right]$	$b \cdot m n \cdot\left(O_{N} w+x\right)$	$+b \cdot m x \cdot\left(O_{N} y+z\right)$

By subtracting the old contribution from the new contribution, we get the change $\left(\Delta_{i}\right)$ in each of the sums (difference that will occur by reassigning $p_{c}(v, n)$ as proposed), as summarized in eTable A6.
eTable A6. Changes in the sums $\Sigma_{1}, \Sigma_{2}, \Sigma_{3}, \Sigma_{4}$ due to changing $p_{c}(v, 1)$ and $p_{c}(v, 0)$.

Δ_{i}	Difference: $\Delta_{i}=\mathrm{New}_{\mathrm{i}}-\mathrm{Old}_{\mathrm{i}}$
Δ_{1}	$\begin{aligned} & b \cdot m x\left(R_{D} O_{N} w+x\right)+b \cdot m n\left(R_{D} O_{N} y+z\right)-(a+b) R_{D} O_{N} m x \cdot m d-(a+b) m x \cdot m n_{c} \\ & =R_{E} \cdot R_{E} \cdot R_{D} O_{N}(w-m d)+R_{E} \cdot R_{E}\left(x-m n_{c}\right)+R_{E} \cdot R_{D} O_{N}(y-m d)+R_{E} \cdot\left(z-m n_{c}\right) \end{aligned}$
Δ_{2}	$\begin{aligned} & b \cdot m x\left(O_{N} k+x\right)+b \cdot m n\left(O_{N} y+z\right)-(a+b) \cdot m x \cdot\left[O_{N} m d+m n_{c}\right] \\ & =R_{E} \cdot R_{E} O_{N}(k-m d)+R_{E} \cdot R_{E}\left(x-m n_{c}\right)+R_{E} \cdot O_{N} \cdot(\mathrm{y}-m d)+R_{E}\left(z-m n_{c}\right) \end{aligned}$
Δ_{3}	$\begin{aligned} & b \cdot R_{D} m n \cdot O_{N} w+b \cdot m n \cdot x+b \cdot m x \cdot\left(R_{D} O_{N} y+z\right)-(a+b) \cdot m x\left[R_{D} O_{N} m d+m n_{c}\right] \\ & =R_{E} \cdot R_{D} O_{N}(w-m d)+R_{E}\left(x-m n_{c}\right)+R_{E} \cdot R_{E} \cdot R_{D} O_{N}(y-m d)+R_{E} \cdot R_{E}\left(z-m n_{c}\right) \end{aligned}$
Δ_{4}	$\begin{aligned} & =b \cdot m n \cdot\left(O_{N} w+x\right)+b \cdot m x \cdot\left(O_{N} \mathrm{y}+z\right)-(a+b) \cdot m x \cdot\left[O_{N} m d+m n_{c}\right] \\ & =R_{E} O_{N}(w-m d)+R_{E}\left(x-m n_{c}\right)+R_{E} \cdot R_{E} O_{N}(\mathrm{y}-m d)+R_{E} \cdot R_{E}\left(z-m n_{c}\right) \end{aligned}$

If we set $w=m d ; x=m n_{c} ; y=m d$ and $z=m n_{c}$, then $\Sigma_{1}, \Sigma_{2}, \Sigma_{3}, \Sigma_{4}$ do not change $\left(\Delta_{1}=\Delta_{2}=\Delta_{3}=\right.$ $\left.\Delta_{4}=0\right)$, the constraints are still satisfied, $B\left(\wp\left(\vec{V}_{\aleph}\right)\right)$ does not decrease, conclusions of Proposition 1, continue to hold except $B\left(\wp\left(\vec{V}_{\mathbb{N}}\right)\right) \geq B_{\max }-4 \varepsilon$. However, with the changes $p_{e}(v)$ no longer equals $m x$ for the $a+b$ selected points so that $\left|\left\{v \in A_{1} \cap A_{0},\right\}\right|$ is reduced by $a+b$. We can repeat the process of reassigning probability functions (Tables A4-A6) until $\left|A_{1} \cap A_{0} \cap\left\{v: m n_{c} \leq p_{c}(v, 0)=m x_{c}\right\}\right|<a+b$ implying that $p_{e}\left(\left\{v: v \in A_{1} \cap A_{0}, p_{c}(v, 0)=m n_{c}\right\}\right) \leq \varepsilon^{\prime}$ for $e=0,1$, concluding the proof of Proposition 2.

Proposition 3: Fix $\varepsilon, \varepsilon^{\prime}>0, R_{E}, R_{C}, R_{D}>1$, and $m n, m x, m n_{c}, m x_{c}$ with $\frac{m x}{m n} \leq R_{E}$. If $\exists \wp\left(\vec{V}_{n^{\prime}}\right) \in \mathcal{H}=$ $\mathcal{H}\left(n^{\prime}, m n, m x, m n_{c}, m x_{c}, O_{N}, R_{E}, R_{C}, R_{D}, 4 \varepsilon\right)$ satisfying conclusions of Theorem 1, then \exists a number
$\aleph<\infty$ and $\wp\left(\vec{V}_{\aleph}\right) \in \mathcal{H}^{\prime}=\mathcal{H}\left(\aleph, m n, m x, m n_{c}, m x_{c}, R_{E}, R_{C}, R_{D}, 5 \varepsilon\right)$ such that conclusions of Theorem 1 hold; and $p_{e}\left(V \in D_{e}\right) \leq \varepsilon^{\prime}$ for $e=0,1$.

Proof. Recall $D_{e}=\left\{v: m n<p_{e}(v)<m x\right\}$ for $e=0,1$. First, consider $e=1$. Let $\wp\left(\vec{V}_{n^{\prime}}\right) \in \mathcal{H}$ be the variables and functions whose existence is proven in Theorem 1. By the construction in Propositions 1 and $2, \exists \wp\left(\vec{V}_{\mathbb{N}}\right) \in \mathcal{H}$ such that $p_{e}\left(\left\{v: v \in A_{1} \cap A_{0}\right\}\right) \leq \varepsilon^{\prime} ; e=0,1$. If $p_{1}\left(V_{\mathbb{N}} \in D_{1}\right)>m x, D_{1}$ must include at least two points, say v_{1} and v_{2} labeled so $p_{1}\left(v_{1}\right)>p_{1}\left(v_{2}\right)$. Let $B\left(\wp\left(\vec{V}_{\mathbb{N}}\right)\right)(\alpha, \Delta)$ represent the bias, after changing $p_{1}\left(v_{1}\right)$ by a small amount $\Delta>0$ and $p_{1}\left(v_{2}\right)$ by $-\alpha \Delta: p_{1}\left(v_{i}\right) \rightarrow p_{1}\left(v_{i}\right)+\Delta(-\alpha)^{i-1}$, $0<\alpha, p_{1}\left(v_{i}\right)$. We show we can increase $p_{1}\left(v_{1}\right)$ by Δ and decrease $p_{1}\left(v_{2}\right) \alpha \Delta$ without changing $B\left(\wp\left(\vec{V}_{\mathbb{k}}\right)\right)$; if so, the proportional change, $P C=\frac{B\left(\wp\left(\vec{V}_{\mathrm{k}}\right)\right)(\alpha, \Delta)-B\left(\wp\left(\vec{V}_{\mathrm{N}}\right)\right)(0,0)}{B\left(\wp\left(\vec{V}_{\mathbb{k}}\right)\right)(0,0)}$ must be 0 . Direct evaluation of PC leads to:

$$
\begin{aligned}
& 0=\frac{\Sigma_{1}+\Delta\left(R_{D} o_{N} p_{c}\left(v_{1}, 1\right)+p_{c}\left(v_{1}, 0\right)\right)-\alpha \Delta\left(R_{D} o_{N} p_{c}\left(v_{2}, 1\right)+p_{c}\left(v_{2}, 0\right)\right) / \Sigma_{1}}{\Sigma_{2}+\Delta\left(O_{N} p_{c}\left(v_{1}, 1\right)+p_{c}\left(v_{1}, 0\right)\right)-\alpha \Delta\left(o_{N} p_{c}\left(v_{2}, 1\right)+p_{c}\left(v_{2}, 0\right)\right) / \Sigma_{2}}-1 \quad \text { which has the solution } \\
& \alpha=\frac{\Sigma_{2}\left(R_{D} o_{N} p_{c}\left(v_{1}, 1\right)+p_{c}\left(v_{1}, 0\right)\right)-\Sigma_{1}\left(o_{N} p_{c}\left(v_{1}, 1\right)+p_{c}\left(v_{1}, 0\right)\right)}{\Sigma_{2}\left(R_{D} O_{N} p_{c}\left(v_{2}, 1\right)+p_{c}\left(v_{2}, 0\right)\right)-\Sigma_{1}\left(o_{N} p_{c}\left(v_{2}, 1\right)+p_{c}\left(v_{2}, 0\right)\right)} \text {. Set } \Delta=\min \left(m x-p_{1}\left(v_{i}\right), \frac{1}{\alpha}\left(p_{1}\left(v_{2}\right)-\right.\right.
\end{aligned}
$$

$m n)$). If the denominator is 0 , set up the problem to change $p_{1}\left(v_{i}\right) \rightarrow p_{1}\left(v_{i}\right)-\Delta(-\beta)^{2-i}, 0<\beta, \Delta$. Reasoning as before identifies the solution:

$$
\beta=\frac{\Sigma_{2}\left(R_{D} o_{N} p_{c}\left(v_{2}, 1\right)+p_{c}\left(v_{2}, 0\right)\right)-\Sigma_{1}\left(o_{N} p_{c}\left(v_{2}, 1\right)+p_{c}\left(v_{2}, 0\right)\right)}{\Sigma_{2}\left(R_{D} O_{N} p_{c}\left(v_{1}, 1\right)+p_{c}\left(v_{1}, 0\right)\right)-\Sigma_{1}\left(o_{N} p_{c}\left(v_{1}, 1\right)+p_{c}\left(v_{1}, 0\right)\right)} . \quad \Delta=\min \left(\frac{1}{\beta}\left(m x-p_{1}\left(v_{i}\right),\left(p_{1}\left(v_{2}\right)-m n\right)\right)\right.
$$

If this denominator is also 0 , then choose $0<\alpha, \Delta$ so that $p_{1}\left(v_{1}\right)+\Delta=m x$ and $p_{1}\left(v_{2}\right)-\Delta \alpha=m n$. After the changes, v_{1} or $v_{2} \notin D_{1} B\left(\wp\left(\vec{V}_{\mathbb{*}}\right)\right) \geq B_{m x}-3 \varepsilon$ as the offsetting changes don't affect $B\left(\wp\left(\vec{V}_{\aleph}\right)\right)$, constraints or the conclusions of Theorem 1 or Proposition 1 or 2 . Repeat the process until $\left|D_{1}\right| \leq 1$. The analogous construction applies for $e=0$, proving Proposition 3 .

Theorem 2. Fix $\varepsilon, \varepsilon^{\prime}>0, R_{E}, R_{C}, R_{D}>1$, and $m n, m x, m n_{c}, m x_{c}$ with $\frac{m x}{m n} \leq R_{E}$. If $\exists \wp\left(\vec{V}_{n^{\prime}}\right) \in$ $\mathcal{H}\left(n^{\prime}, m n, m x, m n_{c}, m x_{c}, R_{E}, R_{C}, R_{D}, 5 \varepsilon\right)$ satisfying conclusion of Proposition 3 , then \exists a number $\mathbb{\aleph}<\infty$ and $\wp\left(\vec{V}_{\aleph}\right) \in \mathcal{H}\left(\aleph, m n, m x, m n_{C}, m x_{C}, O_{N}, R_{E}, R_{C}, R_{D}, 7 \varepsilon\right)$ such that conclusions of Proposition 3 hold (including those of Theorem 1); and, $p_{e}\left(\left\{v: v \in C_{1} \cap C_{0}\right\}\right) \leq \varepsilon^{\prime}$, for $e=0,1$.

Proof: Recall $C_{e}=\left\{v: p_{e}(v)=m n\right\}$ for $e=0,1$.The proof parallels that of Theorem 1. Let $\wp\left(\vec{V}_{J}\right)$ be the categorical variables and functions satisfying conclusions of Proposition 3, under assumptions stated in the main Theorem. Denote the probability functions in $\wp\left(\vec{V}_{J}\right)$ by: $\left\{p_{1, J}(v), p_{0, J}(v), p_{c, J}(v, 1)\right.$, $\left.p_{c, J}(v, 0)\right\}$ and the associated limits by $m n_{J}, m x_{J}$. To simplify notation, we drop the subscript J for $V_{J}, m n_{J}, m x_{J}$ and the probability functions.

For each value v of V, consider $\frac{\partial \ln (B)}{\partial p_{c}(v, 1)}$ and $\frac{\partial \ln (B)}{\partial p_{c}(v, 0)}$. If both were non-negative, then we would have:

$$
\begin{aligned}
& \frac{\partial \ln (B)}{\partial p_{c}(v, 1)}=O_{N}\left[\frac{R_{D} m n}{\Sigma_{1}}-\frac{m n}{\Sigma_{2}}-\frac{R_{D} m n}{\Sigma_{3}}+\frac{m n}{\Sigma_{4}}\right] \geq 0 \quad \text { so } 1 \geq \frac{\Sigma_{1} \Sigma_{2}}{\Sigma_{3} \Sigma_{4}} \frac{R_{D} \Sigma_{4}-\Sigma_{3}}{R_{D} \Sigma_{2}-\Sigma_{1}} ; \text { and }, \\
& \frac{\partial \ln (B)}{\partial p_{c}(v, 0)}=\frac{m n}{\Sigma_{1}}-\frac{m n}{\Sigma_{2}}-\frac{m n}{\Sigma_{3}}+\frac{m n}{\Sigma_{4}} \geq 0 \quad \text { so } 1 \leq \frac{\Sigma_{1} \Sigma_{2}}{\Sigma_{3} \Sigma_{4}} \frac{\Sigma_{3}-\Sigma_{4}}{\Sigma_{1}-\Sigma_{2}}
\end{aligned}
$$

This would imply: $\frac{\Sigma_{1} \Sigma_{2}}{\Sigma_{3} \Sigma_{4}} \frac{R_{D} \Sigma_{4}-\Sigma_{3}}{R_{D} \Sigma_{2}-\Sigma_{1}} \leq \frac{\Sigma_{1} \Sigma_{2}}{\Sigma_{3} \Sigma_{4}} \frac{\Sigma_{3}-\Sigma_{4}}{\Sigma_{1}-\Sigma_{2}}$, a contradiction if $B(\wp(\vec{V}))>1$ by Lemma 2 . Thus, we must have either case (i) or (ii):
(i) $\frac{\partial \ln (B)}{\partial p_{c}(v, 1)} \geq 0$ and $\frac{\partial \ln (B)}{\partial p_{c}(v, 0)}<0$. In this case, we can decrease $p_{c}(v, 0)$ until $p_{c}(v, 0)=m n_{c}$, without decreasing $B(\wp(\vec{V}))$; or we have:
(ii) $\frac{\partial \ln (B)}{\partial p_{c}(v, 1)}<0$. In this case, we can decrease $p_{c}(v, 1)$ until $p_{c}(v, 1)=m n_{c}$, without decreasing $B(\wp(\vec{V}))$. Thus, we can assume either $(i) p_{c}(v, 1)=m n_{c}$; or $(i i) p_{c}(v, 0)=m n_{c}$.
i. We prove in Proposition 4 (below) that, if $\mathcal{H}\left(n^{\prime}, m n, m x, m n_{c}, m x_{c}, R_{E}, R_{C}, R_{D}, 5 \varepsilon\right) \neq \phi$, then \exists a number $\aleph<\infty$ and $\wp\left(\vec{V}_{\aleph}\right) \in \mathcal{H}\left(\aleph, m n, m x, m n_{c}, m x_{c}, R_{E}, R_{C}, R_{D}, 6 \varepsilon\right)$ such that: conclusions of Proposition 3 continue to hold; and $p_{e}\left(\left\{v: v \in C_{1} \cap C_{0}, p_{c}(v, 1)=m n_{c}\right\}\right) \leq \varepsilon^{\prime}$ for $e=0,1$;
ii). We prove in Proposition 5 (below) that if $\mathcal{H}\left(n^{\prime}, m n, m x, m n_{c}, m x_{c}, R_{E}, R_{C}, R_{D}, 6 \varepsilon\right) \neq \phi$, then \exists a number $\aleph<\infty$ and $\wp\left(\overrightarrow{V_{\aleph}}\right) \in \mathcal{H}\left(\aleph, m n, m x, m n_{c}, m x_{c}, R_{E}, R_{C}, R_{D}, 7 \varepsilon\right)$ such that: conclusions of Proposition 4 continue to hold; (ii) $p_{e}\left(\left\{v: v \in C_{1} \cap C_{0}, p_{c}(v, 0)=m n_{c}\right\}\right) \leq \varepsilon^{\prime}$ for $e=0,1$.

Cases (i-ii) cover the possible combination of values for $p_{c}(v, 1)$ and $p_{c}(v, 0)$ with $v \in C_{1} \cap C_{0}$, and together show that $p_{e}\left(\left\{v: v \in A_{1} \cap A_{0}\right) \leq \varepsilon^{\prime}\right.$, for $e=0,1$, completing the proof of Theorem 2 .

Proposition 4. Fix $\varepsilon, \varepsilon^{\prime}>0, R_{E}, R_{C}, R_{D}>1$, and $m n, m x, m n_{c}, m x_{c}$ with $\frac{m x}{m n} \leq R_{E}$. If $\wp\left(\vec{V}_{n^{\prime}}\right) \in$ $\mathcal{H}\left(n^{\prime}, m n, m x, m n_{c}, m x_{c}, R_{E}, R_{C}, R_{D}, 5 \varepsilon\right)$ satisfying conclusion of Proposition 3 , then \exists a number $\aleph<\infty$ and $\wp\left(\vec{V}_{\aleph}\right) \in \mathcal{H}\left(\aleph, m n, m x, m n_{c}, m x_{c}, R_{E}, R_{C}, R_{D}, 6 \varepsilon\right)$ such that: conclusions of Proposition 3 continue to hold; and $P\left(\left\{v: v \in C_{1} \cap C_{0}, p_{c}(v, 1)=m n_{c}\right\}\right) \leq \varepsilon^{\prime}$.

Proof. Recall $C_{i}=\left\{v: p_{i}(v)=m n\right\}$ for $i=0,1$.

1) By assumptions of the main Theorem including mild regularity conditions, \exists a categorical variable V_{J} and probability functions $\wp\left(\vec{V}_{J}\right) \in \mathcal{H}\left(n^{\prime}, m n, m x, m n_{c}, m x_{c}, R_{E}, R_{C}, R_{D}, 5 \varepsilon\right)$.
2) With error at most ε in $B\left(\wp\left(\vec{V}_{N}\right)\right)$, we can approximate $p_{c}(v)$ so that $m n$ and $m x$ are rational, and in particular \exists integers $b>a: a \cdot m x=b \cdot m n$ and $B\left(\wp\left(\vec{V}_{\aleph}\right)\right)>B_{\max }-6 \varepsilon$...
3) If $p_{e}\left(\left\{v: v \in C_{1} \cap C_{0}, p_{c, J}(v, 1)=m n_{c}\right\}\right) \leq \varepsilon^{\prime}$ for $e=0,1$, we are done. If not, we show how to construct $\wp\left(\vec{V}_{\aleph}\right)$ with the desired properties without decreasing $B\left(\wp\left(\vec{V}_{\aleph}\right)\right)$. Choose an integer $K>\frac{a+b}{\varepsilon^{\prime}}$.
4) For each value v_{i} of $V_{J}, i=1,2, \ldots, J=\left|V_{J}\right|$, define K new points $v_{i, k}, i=1, \ldots, J ; k=1,2, \ldots, K$ and associated probability functions: $\wp^{\prime}\left(V_{J \cdot K}\right)=\left\{p^{\prime}{ }_{1, K}\left(v_{i, k}\right)=p_{1}\left(v_{i}\right) / K, p^{\prime}{ }_{0, K}\left(v_{i, k}\right)=p_{0}\left(v_{i}\right) /\right.$ $\left.K, p_{c, K}^{\prime}\left(v_{i}, 1\right)=p_{c}\left(v_{i}, 1\right) / K, p_{c, K}^{\prime}\left(v_{i, k}, 0\right)=p_{c}\left(v_{i}, 0\right) / K\right\}$. By construction K cancels from the bias expression, so $B\left(\wp\left(\vec{V}_{J \cdot K}^{\prime}\right)\right)$ is unchanged, $\wp\left(\vec{V}_{J \cdot K}^{\prime}\right) \in \mathcal{H}\left(J \cdot K, m n_{K}, m x_{K}, m n_{c}, m x_{c}, O_{N}, R_{E}, R_{C}, R_{D}, 6 \varepsilon\right)$ and $\frac{m x_{K}}{m n_{K}} \leq R_{E}$.
5) If $p_{e}\left(\left\{v: v \in C_{1} \cap C_{0}, p_{c, K}(v, 1)=m n_{c}\right\}\right) \leq \varepsilon^{\prime}$ for $e=0,1$, stop. If not we show how to construct other variables and probability functions $\wp\left(\vec{V}_{\mathbb{N}}\right) \in \mathcal{H}\left(\aleph, m n_{K}, m x_{K}, m n_{c}, m x_{c}, O_{N}, R_{E}, R_{C}, R_{D}, 6 \varepsilon\right)$, with $\frac{m x_{K}}{m n_{K}}=R_{E}$ but with $B\left(\wp\left(\vec{V}_{\aleph}\right)\right)$ equal or larger, and $p_{e, K}\left(\left\{v: v \in A_{1} \cap A_{0}, p_{c}(v, 1)=m n_{c}\right\}\right) \leq \varepsilon^{\prime}$.
6) $\left|C C_{K}\right| \geq a+b$, where $C C_{K}=\left\{v: v \in C_{1} \cap C_{0}, p_{c, K}(v, 1)=m n_{c}\right\}$ since: $p_{e, K}(C C) \leq m x \cdot m x_{K} \leq$ $(a+b) \cdot m x_{K}=(a+b) \leq(a+b) \frac{m x}{(a+b)} \varepsilon^{\prime} \leq \varepsilon^{\prime}$ and $m x \leq 1$.
7) Choose $a+b$ points in $C C_{K}$. To simplify notation, we drop K from the subscripts of functions in $\wp\left(\vec{V}_{J \cdot K}\right)$ and from the limits: e.g., $m x=m x_{K}$ and $p_{e, K}(v)=p_{e}(v)$ for $e=0,1$.

We now show that we could decrease $\left|C C_{K}\right|$ without decreasing $B\left(\wp\left(\vec{V}_{J \cdot K}\right)\right)$ by assigning new values of $p_{e}(v)$ and $p_{c}(v, n)$ for sets of $a+b$ points. The construction will assure, that with these new variables and functions $\wp\left(\vec{V}^{\prime}\right)$ we have: $B\left(\wp\left(\vec{V}^{\prime}\right)\right)>B_{\max }-6 \varepsilon ; p_{e}\left(\left|C C_{K}\right|\right) \leq \varepsilon^{\prime}$; $\wp\left(V^{\prime}\right) \in \mathcal{H}\left(n, m n, m x, m n_{c}, m x_{c}, O_{N}, R_{E}, R_{C}, R_{D}, 6 \varepsilon\right)$. The old values and the new assignment are shown in eTable A7 for the $n=a+b$ points in $C_{1} \cap C_{0}$ with $p_{c}(v, 1)=m n_{c}, p_{c}(v, 0)=m d$.
eTable A7: Old and reassigned ("new") values of $p_{0}(v), p_{1}(v), p_{c}(v, 1)$ and $p_{c}(v, 0)$ for each set of $n=a+b$ points in $C_{1} \cap C_{0}$ with $p_{c}(v, 1)=m n_{c}$

Type, number of points n	$p_{1}(v)$	$p_{0}(v)$	$p_{c}(v, 1)$	$p_{c}(v, 0)$
Old	Old values of probability functions for the selected points			
$n=a+b$	$m n$	$m n$	$m n_{c}$	$m d^{\dagger}$
Total: $n=a+b$	$(a+b) m n$	$(a+b) m n$		
New	New values of probability functions for the selected points			
Type 1, $n=a$	$m x$	$m n$	w	x
Type 2, $n=a$	$m n$	$m x$	y	z
Total, $n=2 a$	$(a+b) m n$	$(a+b) m n$		

\dagger In general, $p_{c}(v, 0)$ will vary for $v \in C_{1} \cap C_{0}$, but can be replaced by the average by Lemma 3 .

The contributions of these n points to each of the sums $\Sigma_{1}, \Sigma_{2}, \Sigma_{3}, \Sigma_{4}$ before (old) and after (using new values) are shown in eTable A8.
eTable A8: Old and "New" contribution of the $n=a+b$ points to $\Sigma_{1}, \Sigma_{2}, \Sigma_{3}, \Sigma_{4}$

Sum	Old Value	New Value: Type 1 $+\quad 1$	
Σ_{1}	$(a+b) \cdot m n\left[R_{D} O_{N} m n_{c}+m d\right]$	$a \cdot m x \cdot\left(R_{D} O_{N} w+x\right)+a \cdot m n \cdot\left(R_{D} O_{N} \mathrm{y}+z\right)$	
Σ_{2}	$(a+b) \cdot m n\left[O_{N} m n_{c}+m d\right]$	$a \cdot m x \cdot\left(O_{N} w+x\right)$	$+a \cdot m n \cdot\left(O_{N} \mathrm{y}+z\right)$
Σ_{3}	$(a+b) \cdot m n\left[R_{D} O_{N} m n_{c}+m d\right]$	$a \cdot m n \cdot\left(R_{D} O_{N} w+x\right)+a \cdot m x \cdot\left(R_{D} O_{N} \mathrm{y}+z\right)$	
Σ_{4}	$(a+b) \cdot m n\left[O_{N} m n_{c}+m d\right]$	$a \cdot m n \cdot\left(O_{N} w+x\right)+a \cdot m x \cdot\left(O_{N} \mathrm{y}+z\right)$	

By subtracting the old from the new contribution, we get the change in each of the sums - the difference that will occur by reassigning $p_{c}(v, 1)$ and $p_{c}(v, 0)$ as proposed: eTable A9.
eTable A9. Changes in the sums $\Sigma_{1}, \Sigma_{2}, \Sigma_{3}, \Sigma_{4}$ due to changing $p_{c}(v, 1)$ and $p_{c}(v, 0)$.

Δ_{i}	Difference: $\Delta_{i}=\mathrm{New}_{\mathrm{i}}-\operatorname{Old}_{\mathrm{i}}$
Δ_{1}	$a \cdot m x\left(R_{D} O_{N} w+x\right)+a \cdot m n\left(R_{D} O_{N} \mathrm{y}+z\right)-(a+b) R_{D} O_{N} m n \cdot m n_{c}-(a+b) m n \cdot m d$ $=R_{E} \cdot R_{D} O_{N}\left(w-m n_{c}\right)+R_{E}(x-m d)+R_{D} O_{N}\left(\mathrm{y}-m n_{c}\right)+(z-m d)$
Δ_{2}	$a \cdot m x\left(O_{N} k+x\right) \quad+a \cdot m n\left(O_{N} \mathrm{y}+z\right)-(a+b) \cdot m n \cdot\left[O_{N} m n_{c}+m d\right]$ $=R_{E} O_{N}\left(k-m n_{c}\right)+R_{E}(x-m d)+O_{N} \cdot\left(\mathrm{y}-m n_{c}\right)+(z-m d)$
Δ_{3}	$a \cdot R_{D} m n \cdot O_{N} w+a \cdot m n \cdot x+b \cdot m x \cdot\left(R_{D} O_{N} \mathrm{y}+z\right)-(a+b) \cdot m n\left[R_{D} O_{N} m n_{c}+m d\right]$ $=R_{D} O_{N}\left(w-m n_{c}\right)+(x-m d)+R_{E} \cdot R_{D} O_{N}\left(\mathrm{y}-m n_{c}\right)+R_{E}(z-m d)$
$\Delta_{4} \quad$	$=a \cdot m n \cdot\left(O_{N} w+x\right) \quad+a \cdot m x \cdot\left(O_{N} \mathrm{y}+z\right)-(a+b) \cdot m n \cdot\left[O_{N} m n_{c}+m d\right]$
	$=O_{N}\left(w-m n_{c}\right)+(x-m d)+R_{E} O_{N}\left(\mathrm{y}-m n_{c}\right)+R_{E}(z-m d)$

If we set $w=m n_{c}, x=m d, y=m n_{c}$ and $z=m d$, then $\Sigma_{1}, \Sigma_{2}, \Sigma_{3}, \Sigma_{4}$ don't change, the constraints are still satisfied, and conclusions of Propositions 1-3 still hold. However, with the changes $p_{e}(v) \neq m x$ so that $\left|\left\{v \in C_{1} \cap C_{0},\right\}\right|$ is reduced by $a+b$. Many other possible substitutions would increase B.

We can continue the construction until $\left|C_{1} \cap C_{0} \cap\left\{v: p_{c}(v, 1)=m n_{c}\right\}\right|<a+b$ implying that $p_{k}\left(\left\{v: v \in C_{1} \cap C_{0}, p_{c}(v, 1)=m n_{c}\right\}\right) \leq \varepsilon^{\prime}$ for $k=0,1$., concluding the proof of Proposition 4.

Proposition 5: Fix $\varepsilon, \varepsilon^{\prime}>0, R_{E}, R_{C}, R_{D}>1$, and $m n, m x, m n_{c}, m x_{c}$ with $\frac{m x}{m n} \leq R_{E}$. If $\mathcal{H}\left(n^{\prime}, m n, m x, m n_{c}, m x_{c}, O_{N}, R_{E}, R_{C}, R_{D}, 6 \varepsilon\right) \neq \phi$ then \exists a number $\aleph<\infty$ and $\wp\left(\overrightarrow{V_{\aleph}}\right) \in \mathcal{H}\left(\aleph, m n, m x, m n_{C}, m x_{C}, O_{N}, R_{E}, R_{C}, R_{D}, 7 \varepsilon\right)$ such that conclusions of Propositions 1-4 continue to hold; and, $p_{e}\left(\left\{v: v \in C_{1} \cap C_{0}, p_{c}(v, 0)=m n_{c}\right\}\right) \leq \varepsilon^{\prime}$ for $e=0,1$.

Proof. Proposition 5 follows by showing it would be possible to redefine the functions in $\wp\left(V_{\mathbb{N}}\right)$ so that $p_{e}\left(\left\{v: v \in C_{1} \cap C_{0}, p_{c}(v, 1)=m n_{c}\right\}\right) \leq \varepsilon^{\prime}$ without increasing $B\left(\wp\left(V_{\aleph}\right)\right)$ and so that $B\left(\wp\left(V_{\aleph}\right)\right)>$ $B_{\max }-7 \varepsilon$ for the new functions.

Let $\wp\left(\vec{V}_{\aleph}\right)$ be the variables and functions whose existence is proven in Proposition 4 . As in the proofs of
Propositions 1, 2 and 4, increase the number of points if needed so that $\aleph>\frac{a+b}{\varepsilon^{\prime}}$, select $a+b$ points in $C_{1} \cap C_{0}$ such that $p_{c}(v, 0)=m n$. If $p_{e}\left(\left\{v: v \in C_{1} \cap C_{0}, p_{c}(v, 0)=m n_{c}\right\}\right)>\varepsilon^{\prime}$, as in the proof of
Propositions 1 and 4 , we can modify $\wp\left(\vec{V}_{\aleph}\right)$ as indicated in eTable A10.
eTable A10: Old and reassigned ("new") values of $p_{0}(v), p_{1}(v), p_{c}(v, 1)$ and $p_{c}(v, 0)$ for each set of $n=a+b$ points in $C_{1} \cap C_{0}$ with $p_{c}(v, 0)=m n_{c}$

Type, number of points n	$p_{1}(v)$	$p_{0}(v)$	$p_{c}(v, 1)$	$p_{c}(v, 0)$
Old	Old values of probability functions for the selected points			
$n=a+b$	$m n$	$m n$	$\overline{m d}^{\dagger} \rightarrow m d$	$m n_{c}$
Total: $\quad n=a+b$	$(a+b) m n$	$(a+b) m n$		
New	New values of probability functions for the selected points			
Type 1, $n=a$	$m x$	$m n$	w	x
Type 2, $n=a$	$m n$	$m x$	y	Z
Total, $n=2 a$	$(a+b) m n$	$(a+b) m n$		

\dagger In general, $p_{c}(v, 0)$ will vary for $v \in C_{1} \cap C_{0}$, but can be replaced with the average by Lemma 3 .
The contributions of these points to each of the sums $\Sigma_{1}, \Sigma_{2}, \Sigma_{3}, \Sigma_{4}$ before (old) and after (using new values) are shown in eTable 11.
eTable A11: Old and "New" contribution of the $n=a+b$ points to $\Sigma_{1}, \Sigma_{2}, \Sigma_{3}, \Sigma_{4}$

Sum	Old Value	New Value: Type 1 $+\quad 1$	Type2
Σ_{1}	$(a+b) \cdot m n\left[R_{D} O_{N} m d+m n_{c}\right]$	$a \cdot m x \cdot\left(R_{D} O_{N} w+x\right)$	$+a \cdot m n \cdot\left(R_{D} O_{N} y+z\right)$
Σ_{2}	$(a+b) \cdot m n\left[O_{N} m d+m n_{c}\right]$	$a \cdot m x \cdot\left(O_{N} w+x\right)$	$+a \cdot m n \cdot\left(O_{N} y+z\right)$
Σ_{3}	$(a+b) \cdot m n\left[R_{D} O_{N} m d+m n_{c}\right]$	$a \cdot m n \cdot\left(R_{D} O_{N} w+x\right)$	$+a \cdot m x \cdot\left(R_{D} O_{N} y+z\right)$
Σ_{4}	$(a+b) \cdot m n\left[O_{N} m d+m n_{c}\right]$	$a \cdot m n \cdot\left(O_{N} w+x\right)$	$+a \cdot m x \cdot\left(O_{N} y+z\right)$

By subtracting old contributions from the new ones, we get the change in each of the sums - the difference that will occur by reassigning $p_{c}(v, 1)$ and $p_{c}(v, 0)$ as proposed: eTable A12, where Δ_{i} denotes the change in Σ_{i} for $i=1,2,3,4$ due to modifications of the functions in $\wp\left(\vec{V}_{\aleph}\right)$.
eTable A12. The change in each of the sums $\Sigma_{1}, \Sigma_{2}, \Sigma_{3}, \Sigma_{4}$ due to changing $p_{c}(v, n)$.

Δ_{i}	Difference: $\Delta_{i}=\mathrm{New}_{\mathrm{i}}-\mathrm{Old}_{\mathrm{i}}$
Δ_{1}	$a \cdot m x\left(R_{D} O_{N} w+x\right)+a \cdot m n\left(R_{D} O_{N} \mathrm{y}+z\right)-(a+b) R_{D} O_{N} m n \cdot m d-(a+b) m n \cdot m n_{c}$ $=R_{E} \cdot R_{D} O_{N}(w-m d)+R_{E}\left(x-m n_{c}\right)+R_{D} O_{N}(\mathrm{y}-m d)+\left(z-m n_{c}\right)$
Δ_{2}	$a \cdot m x\left(O_{N} k+x\right) \quad+a \cdot m n\left(O_{N} \mathrm{y}+z\right)-(a+b) \cdot m n \cdot\left[O_{N} m d+m n_{c}\right]$ $=R_{E} O_{N}(w-m d)+R_{E}\left(x-m n_{c}\right)+O_{N} \cdot(\mathrm{y}-m d)+\left(z-m n_{c}\right)$
Δ_{3}	$a \cdot R_{D} m n \cdot O_{N} w+a \cdot m n \cdot x+b \cdot m x \cdot\left(R_{D} O_{N} \mathrm{y}+z\right)-(a+b) \cdot m n\left[R_{D} O_{N} m d+m n_{c}\right]$ $=R_{D} O_{N}(w-m d)+\left(x-m n_{c}\right)+R_{E} \cdot R_{D} O_{N}(\mathrm{y}-m d)+R_{E}\left(z-m n_{c}\right)$
Δ_{4}	$=a \cdot m n \cdot\left(O_{N} w+x\right) \quad+a \cdot m x \cdot\left(O_{N} \mathrm{y}+z\right)-(a+b) \cdot m n \cdot\left[O_{N} m d+m n_{c}\right]$
	$=O_{N}(w-m d)+\left(x-m n_{c}\right)+R_{E} O_{N}(\mathrm{y}-m d)+R_{E}\left(z-m n_{c}\right)$

If we set $w=m d ; x=m n_{c} ; \mathrm{y}=m d$ and $z=m n_{c}$, then $\Sigma_{1}, \Sigma_{2}, \Sigma_{3}, \Sigma_{4}$ and B do not change since $\Delta_{1}=\Delta_{2}=\Delta_{3}=\Delta_{4}=0$, and the constraints are still satisfied. However, after the changes $p_{e}(v) \neq m x$ so that $\left|\left\{v \in C_{1} \cap C_{0}\right\}\right|$ is reduced by $a+b$. Many other possible substitutions would increase B.

We repeat the construction until $\left|C C_{K} \cap\left\{v: p_{c}(v, 0)=m n_{c}\right\}\right|<a+b$. The construction does not affect the conclusions of Propositions 1-4, concluding the proof.

Theorem 3: Fix $m n, m x, m n_{c}, m x_{c}, O_{N}, R_{E}, R_{C}, R_{D}$, For every $\varepsilon>0$ there exists a dichotomous variable V and $\wp\left(\vec{V}_{2}\right) \in \mathcal{H}\left(2, m n, m x, m n_{c}, m x_{c}, O_{N}, R_{E}, R_{C}, R_{D}, 9 \varepsilon\right)$ with $B\left(\wp\left(\vec{V}_{2}\right)\right)=\frac{\Sigma_{1} \Sigma_{4}}{\Sigma_{2} \Sigma_{3}}, B\left(\wp\left(\vec{V}_{2}\right)\right)>$ $B_{\max }-9 \varepsilon$ where: (1) $\quad \Sigma_{1}=R_{E}\left(R_{D} O_{N} r_{c}+1\right)+\left(R_{D} O_{N}+r_{c}^{\prime \prime}\right) ; \quad \Sigma_{2}=R_{E}\left(O_{N} r_{c}+1\right)+\left(O_{N}+r_{c}^{\prime \prime}\right)$

$$
\Sigma_{3}=\left(R_{D} O_{N} r_{c}+1\right)+R_{E}\left(R_{D} O_{N}+r_{c}^{\prime \prime}\right) ; \quad \Sigma_{4}=\left(O_{N} r_{c}+1\right)+R_{E}\left(O_{N}+r_{c}^{\prime \prime}\right)
$$

Proof: Given $R_{E}, R_{C}, R_{D}, \varepsilon>0$ and $B_{\max }$, set $\varepsilon^{\prime}=\frac{\left(R_{E}-1\right) \varepsilon}{\left(1+R_{D}\right)^{2}\left[\left(14 R_{E}+42\right) R_{C} R_{D}-7\left(R_{E}+1\right) \varepsilon\right]}$. Theorems 1 and 2 imply there exists $\wp\left(\vec{V}_{\aleph}\right) \in \mathcal{H}\left(\mathbb{\aleph}, m n, m x, m n_{c}, m x_{c}, O_{N}, R_{E}, R_{C}, R_{D}, 7 \varepsilon\right)$ such that $B\left(\wp\left(\vec{V}_{\mathbb{N}}\right)\right) \geq B_{\max }-$ 7ε and $p_{e}(X)<7 \varepsilon^{\prime}$ where $X=\left\{v: v \notin\left(A_{1} \cap C_{0}\right) \cup\left(A_{1} \cap C_{0}\right)\right\}$. Using $\Sigma_{1, \mathbb{X}}$ to $\Sigma_{4, \mathrm{X}}$ to denote the four sums in $B\left(\wp\left(\vec{V}_{\aleph}\right)\right)=\frac{\Sigma_{1, \aleph} \Sigma_{4, \mathrm{~K}}}{\Sigma_{2, K} \Sigma_{3, \mathrm{~K}}}$, we have $\frac{\Sigma_{1, \aleph} \Sigma_{4, \mathrm{~K}}}{\Sigma_{2, \aleph} \Sigma_{3, \mathrm{~N}}} \geq B_{\max }-7 \varepsilon$. We can write $\Sigma_{1, \mathrm{~K}}$ to $\Sigma_{4, \mathrm{~N}}$ as:
(2) $\quad \Sigma_{1, \mathrm{~N}}=m x \sum_{v}^{A}\left(p_{D} p_{N} p_{c}(v, 1)+q_{D} q_{N} p_{c}(v, 0)\right)+m n \sum_{v}^{B}\left(p_{D} p_{N} p_{c}(v, 1)+q_{D} q_{N} p_{c}(v, 0)\right)+e r_{1}$

$$
\begin{aligned}
& \Sigma_{2, \mathrm{~N}}=m x \sum_{v}^{A}\left(p_{N} p_{c}(v, 1)+q_{N} p_{c}(v, 0)\right)+m n \sum_{v}^{B}\left(p_{N} p_{c}(v, 1)+q_{N} p_{c}(v, 0)\right)+e r_{2} \\
& \Sigma_{3, \mathrm{~N}}=m n \sum_{v}^{A}\left(p_{D} p_{N} p_{c}(v, 1)+q_{D} q_{N} p_{c}(v, 0)+m x \sum_{v}^{B}\left(p_{D} p_{N} p_{c}(v, 1)+q_{D} q_{N} p_{c}(v, 0)\right)+e r_{3}\right.
\end{aligned}
$$

$$
\Sigma_{4, \mathrm{~N}}=m n \sum_{v}^{A}\left(p_{N} p_{c}(v, 1)+q_{N} p_{c}(v, 0)\right)+m x \sum_{v}^{B}\left(p_{N} p_{c}(v, 1)+q_{N} p_{c}(v, 0)+e r_{4}\right.
$$

where: $e r_{1}=\sum_{v \in X} p_{1}(v)\left(p_{D} p_{N} p_{c}(v, 1)+q_{D} q_{N} p_{c}(v, 0)\right)$ with corresponding definitions for $e r_{2}, e r_{3}, e r_{4} ; p_{N}=P(N=1), q_{N}=1-p_{N}, p_{D}=P(D=1 \mid E=1, N=1), q_{D}=P(D=1 \mid E=$ $0, N=0$); and where Σ_{v}^{A} and Σ_{v}^{B} are sums over $v \in A_{1} \cap C_{0}$ and $v \in C_{1} \cap A_{0}$. The factor $m x$ that appears in $\Sigma_{1, \mathrm{x}}$ represents $p_{1}(v)$, since $p_{1}(v)=m x$ for all $v \in A_{1} \cap C_{0}$; justification of other factors is similar. We have:

$$
0 \leq e r_{1}=\sum_{v \in X} p_{1}(v)\left[p_{D} p_{N} p_{c}(v, 1)+q_{D} q_{N} p_{c}(v, 0)\right] \leq 7 \varepsilon^{\prime} R_{D} R_{C}\left(O_{N}+1\right) q_{N} q_{D} m n_{c} ;
$$

the same bound holds for $e r_{2}, e r_{3}$ and $e r_{4}$.
By Lemma 3, we can assume $p_{c}(v, n)=p_{c}\left(v^{\prime}, n\right)$, for all $v, v^{\prime} \in A_{1} \cap C_{0}$ and similarly for $C_{1} \cap A_{0}$. Thus, letting $N_{A}\left(N_{A^{\prime}}\right)$ be the number of points in $A_{1} \cap C_{0}\left(C_{1} \cap A_{0}\right)$, we can write Equations (2) as:
(3) $\quad \Sigma_{1, \mathrm{~N}}=m x N_{A}\left(p_{D} p_{N} p_{c}(v, 1)+q_{D} q_{N} p_{c}(v, 0)\right)+m n N_{A^{\prime}}\left(p_{D} p_{N} p_{c}(v, 1)+q_{D} q_{N} p_{c}(v, 0)\right)+e r_{1}$

$$
\begin{aligned}
& \Sigma_{2, \mathrm{~N}}=m x N_{A}\left(p_{N} p_{c}(v, 1)+q_{N} p_{c}(v, 0)\right)+m n N_{A^{\prime}}\left(p_{N} p_{c}(v, 1)+q_{N} p_{c}(v, 0)\right)+e r_{2} \\
& \Sigma_{3, \mathrm{~N}}=m n N_{A}\left(p_{D} p_{N} p_{c}(v, 1)+q_{D} q_{N} p_{c}(v, 0)+m x N_{A^{\prime}}\left(p_{D} p_{N} p_{c}(v, 1)+q_{D} q_{N} p_{c}(v, 0)\right)+e r_{3}\right. \\
& \Sigma_{4, \mathrm{~N}}=m n N_{A}\left(p_{N} p_{c}(v, 1)+q_{N} p_{c}(v, 0)\right)+m x N_{A^{\prime}}\left(p_{N} p_{c}(v, 1)+q_{N} p_{c}(v, 0)+e r_{4}\right.
\end{aligned}
$$

$\sum_{v} p_{e}(v)=1$, for $e=0,1$, implying: $m x N_{A}+m n N_{A^{\prime}}+\varepsilon_{1}=1$ and $m n N_{A}+m x N_{A^{\prime}}+\varepsilon_{0}=1$, where $\varepsilon_{e}=p_{e}(X) \leq 7 \varepsilon^{\prime}$. Lemma 4 quantifies $\left|N_{A}-N_{A^{\prime}}\right|$ and provides a bound for the error if N_{A} replaces N_{A} :
(4) $\quad \Sigma_{1, \mathrm{~N}}=m x N_{A}\left(p_{D} p_{N} p_{c}(v, 1)+q_{D} q_{N} p_{c}(v, 0)\right)+m n N_{A}\left(p_{D} p_{N} p_{c}(v, 1)+q_{D} q_{N} p_{c}(v, 0)\right)+e r_{1}{ }^{\prime}$

$$
\begin{aligned}
& \Sigma_{2, \mathrm{~N}}=m x N_{A}\left(p_{N} p_{c}(v, 1)+q_{N} p_{c}(v, 0)\right)+m x N_{A}\left(p_{N} p_{c}(v, 1)+q_{N} p_{c}(v, 0)\right)+e r_{2}{ }^{\prime} \\
& \Sigma_{3, \mathrm{~N}}=m n N_{A}\left(p_{D} p_{N} p_{c}(v, 1)+q_{D} q_{N} p_{c}(v, 0)+m x N_{A}\left(p_{D} p_{N} p_{c}(v, 1)+q_{D} q_{N} p_{c}(v, 0)\right)+e r_{3}{ }^{\prime}\right. \\
& \Sigma_{4, \mathrm{~N}}=m n N_{A}\left(p_{N} p_{c}(v, 1)+q_{N} p_{c}(v, 0)\right)+m x N_{A}\left(p_{N} p_{c}(v, 1)+q_{N} p_{c}(v, 0)+e r_{4}{ }^{\prime}\right.
\end{aligned}
$$

where $e r_{i}^{\prime}=e r_{i}+\delta_{i}$ and δ_{i} is the additional error due to replacing $N_{A^{\prime}}$ with N_{A}. δ_{i} is defined in Lemma 4 which shows $\left|\delta_{i}\right| \leq \frac{28 \varepsilon^{\prime}}{\left(R_{E}-1\right)} R_{D} R_{C}\left(O_{N}+1\right) q_{D} q_{N} m n_{c}$. Thus, $\left|e r_{i}^{\prime}\right| \leq\left(7 \varepsilon^{\prime}+\frac{28 \varepsilon^{\prime}}{R_{E}-1}\right) R_{D} R_{C}\left(O_{N}+\right.$ 1) $q_{D} q_{N} m n_{c}$.

Define $\Sigma_{i}=\Sigma_{i, \mathrm{~N}}-e r_{i}{ }^{\prime}$. Lemma 5 shows that we can replace $\Sigma_{i, \mathrm{~N}}$ with Σ_{i} (dropping $e r_{i}{ }^{\prime}$) to write $B\left(\wp\left(\vec{V}_{\mathbb{N}}\right)\right)$ with error bounded by $\left|\frac{\Sigma_{1} \Sigma_{4}}{\Sigma_{2} \Sigma_{3}}-\frac{\Sigma_{1, \aleph} \Sigma_{4, \mathrm{~N}}}{\Sigma_{2, \aleph} \Sigma_{3, k}}\right| \leq 2 \varepsilon$. Thus $\frac{\Sigma_{1} \Sigma_{4}}{\Sigma_{2} \Sigma_{3}} \geq B_{\max }-9 \varepsilon$.

We now re-express Σ_{1} to Σ_{4}. Divide Σ_{1} and Σ_{3} by $m n N_{A} q_{D} q_{N} m n_{c}$ and divide Σ_{2} and Σ_{4} by $m n N_{A} q_{N} m n_{c}$ without changing $\frac{\Sigma_{1} \Sigma_{4}}{\Sigma_{2} \Sigma_{3}}$. Replace $\frac{p_{D}}{q_{D}}, \frac{p_{N}}{q_{N}}$ and $\frac{\max }{\min }$ with R_{D}, O_{N} and R_{E} (defined previously). Replace $\frac{p_{c}(v, 1)}{m n_{c}}$ and $\frac{p_{c}(v, 0)}{m n_{c}}$ with r_{c} and r for $v \in A_{1} \cap C_{0}$ and $\frac{p_{c}(v, 1)}{m n_{c}}$ and $\frac{p_{c}(v, 0)}{m n_{c}}$ with r_{c}^{\prime} and $r_{c}^{\prime \prime}$ for $\left.v \in C_{1} \cap A_{0}\right)$. By the construction in Theorems 1-2 and Propositions 1-5, $1 \leq r, r_{c}, r_{c}^{\prime}, r_{c}^{\prime \prime} \leq \frac{m x_{c}}{m n_{c}}=R_{C}$. By Lemma 6, one of r, r_{c} and one of $r_{c}^{\prime}, r_{c}^{\prime \prime}$ must be at its boundary (1 or R_{C}). We take $r=1$ and $r_{c}^{\prime}=1$, but each of the other choices is handled similarly. These changes don't affect the value of $\frac{\Sigma_{1} \Sigma_{4}}{\Sigma_{2} \Sigma_{3}}$ (or $B\left(\wp\left(\vec{V}_{\mathbb{K}}\right)\right)$). After the divisions and substitutions, taking $r=1$ and $r_{c}^{\prime}=1$, we can express Σ_{1} to Σ_{4} as:

$$
\begin{array}{ll}
\Sigma_{1}=R_{E}\left(R_{D} O_{N} r_{c}+1\right)+\left(O_{N}+r_{c}^{\prime \prime}\right) ; & \Sigma_{2}=R_{E}\left(O_{N} r_{c}+1\right)+\left(O_{N}+r_{c}^{\prime \prime}\right) \\
\Sigma_{3}=\left(R_{D} O_{N} r_{c}+1\right)+R_{E}\left(R_{D} O_{N}+r_{c}^{\prime \prime}\right) ; & \Sigma_{4}=\left(O_{N} r_{c}+1\right)+R_{E}\left(O_{N}+r_{c}^{\prime \prime}\right)
\end{array}
$$

Now $\frac{\Sigma_{1, \aleph} \Sigma_{4, \mathbb{K}}}{\Sigma_{2, \aleph} \Sigma_{3, \mathbb{K}}}$ is an approximation (within 7ε) to $B\left(\wp\left(\vec{V}_{\mathbb{N}}\right)\right.$), and $\frac{\Sigma_{1} \Sigma_{4}}{\Sigma_{2} \Sigma_{3}}$ approximates $\frac{\Sigma_{1, \aleph} \Sigma_{4, \mathcal{N}}}{\Sigma_{2, \aleph} \Sigma_{3, \mathcal{K}}}$. However, $\frac{\Sigma_{1} \Sigma_{4}}{\Sigma_{2} \Sigma_{3}}$ has exactly the structure of the bias for $\wp\left(\vec{V}_{2}\right)$, where $\vec{V}_{2}=E, V, C, N, D$ with all variables dichotomous; $P(V=1 \mid E=1)=\frac{R_{E}}{R_{E}+1} ; \quad P(V=1 \mid E=0)=\frac{1}{R_{E}+1} ; R_{D}=\frac{P(D=1 \mid N=1)}{P(D=1 \mid N=0)} ; O_{N}=\frac{P(N=1)}{P(N=0)} ;$ and, $p_{c}(v, n)=$ $P(C=c \mid V=v, N=n)$. Reflecting the definitions and construction,
$\wp\left(\vec{V}_{2}\right) \in \mathcal{H}\left(2, m n, m x, m n_{c}, m x_{c}, O_{N}, R_{E}, R_{C}, R_{D}, 9 \varepsilon\right)$, with $B\left(\wp\left(\vec{V}_{2}\right)\right)=\frac{\Sigma_{1} \Sigma_{4}}{\Sigma_{2} \Sigma_{3}}>B_{\text {max }}-9 \varepsilon$, proving Theorem 3.

Lemma 4: Define $\Sigma_{i, \mathrm{~N}}$ as in Theorem 3, and let $\Sigma_{i, \mathrm{~N}}^{\prime}=\Sigma_{i, \mathrm{~N}}$, but with N_{A}, replaced by N_{A}; e.g.,
$\Sigma_{1, \mathrm{~N}}^{\prime}=m x N_{A}\left(p_{D} p_{N} p_{c}(v, 1)+q_{D} q_{N} p_{c}(v, 0)\right)+m n N_{A}\left(p_{D} p_{N} p_{c}(v, 1)+q_{D} q_{N} p_{c}(v, 0)\right)+e r_{1}$.
If both: i) $R_{E} m n N_{A}+m n N_{A^{\prime}}+\varepsilon_{1}=1$; and, $\left.i i\right) m n N_{A}+R_{E} m n N_{A^{\prime}}+\varepsilon_{0}=1$ hold with $\left|\varepsilon_{0}\right|,\left|\varepsilon_{1}\right| \leq$ $p_{e}(X) \leq 7 \varepsilon^{\prime}$, then: $\left|N_{A}-N_{A^{\prime}}\right| \leq \frac{28 \varepsilon^{\prime}}{(R-1) m n}$ and $\delta_{i}=\left|\Sigma_{i, \mathrm{~N}}^{\prime}-\Sigma_{i, \mathrm{~N}}\right| \leq \frac{28 \varepsilon^{\prime}}{(R-1)} R_{D} R_{C}\left(O_{N}+1\right) q_{D} q_{N} m n_{c}$.
Proof: Multiplying both sides of Equation (ii) by R_{E} gives
(1) $R_{E} m n N_{A}+R_{E}^{2} m n N_{A^{\prime}}+R_{E} \varepsilon_{0}=R_{E}$. Subtracting Equation (i) from (1) and solving gives:
(2) $N_{A^{\prime}}=\frac{1}{\left(R_{E}+1\right) m n}-\frac{R_{E} \varepsilon_{0}-\varepsilon_{1}}{\left(R_{E}^{2}-1\right) m n}$ and $N_{A}=\frac{1}{\left(R_{E}+1\right) m n}+\frac{\varepsilon_{0}-R_{E} \varepsilon_{1}}{\left(R_{E}^{2}-1\right) m n}$. Subtracting N_{A} from $N_{A^{\prime}}$
(3) $N_{A^{\prime}}-N_{A}=\frac{\varepsilon_{1}-\varepsilon_{0}}{\left(R_{E}^{2}-1\right) m n}$; since $\left|\varepsilon_{i}\right| \leq 7 \varepsilon^{\prime}:\left|N_{A^{\prime}}-N_{A}\right| \leq \frac{28 \varepsilon^{\prime}}{\left(R_{E}-1\right) m n}$, and $N_{A} m n \geq \frac{1}{R_{E}+1}-\frac{7 \varepsilon^{\prime}}{R_{E}-1}$.

We now prove $\delta_{i} \leq \frac{28 \varepsilon^{\prime}}{\left(R_{E}-1\right)} R_{D} R_{C}\left(O_{N}+1\right) q_{D} q_{N} m n_{c}$. Proof for $i=2,3,4$ is similar. By definition

$$
\begin{aligned}
\left|\Sigma_{1, \mathrm{x}}^{\prime}-\Sigma_{1, \mathrm{~N}}\right| & =\mid m x N_{A}\left(p_{D} p_{N} p_{c}(v, 1)+q_{D} q_{N} p_{c}(v, 0)\right)+m n N_{A}\left(p_{D} p_{N} p_{c}(v, 1)+q_{D} q_{N} p_{c}(v, 0)\right) \\
& -m x N_{A}\left(p_{D} p_{N} p_{c}(v, 1)+q_{D} q_{N} p_{c}(v, 0)\right)+m n N_{A \prime}\left(p_{D} p_{N} p_{c}(v, 1)+q_{D} q_{N} p_{c}(v, 0)\right) \mid \\
& =\left|N_{A}-N_{A^{\prime}}\right| m n\left[p_{D} p_{N} p_{c}(v, 1)+q_{D} q_{N} p_{c}(v, 0)\right] \\
& =\left|N_{A}-N_{A^{\prime}}\right| m n\left[R_{D} O_{N} r_{c}{ }^{\prime}+r_{c}{ }^{\prime \prime}\right]\left(q_{D} q_{N} m n_{c}\right) \\
& \leq \frac{28 \varepsilon \prime}{\left(R_{E}-1\right)} R_{D} R_{C}\left(O_{N}+1\right) q_{D} q_{N} m n_{c}, \text { as claimed. The last inequality follows from (3) and }
\end{aligned}
$$ because $R_{D} R_{C}\left(O_{N}+1\right) \leq\left[R_{D} O_{N} r_{c}{ }^{\prime}+r_{c}{ }^{\prime \prime}\right]$. The same bound holds for δ_{2}, δ_{3}, and δ_{4}.

Lemma 5: Let $\Sigma_{i}, \Sigma_{i, \aleph}, e r_{i}^{\prime}$ and ε be as defined in Theorem 3. If $\left|e r_{i}^{\prime}\right| \leq\left(7 \varepsilon^{\prime}+\frac{28 \varepsilon^{\prime}}{R_{E}-1}\right) R_{D} R_{C}\left(O_{N}+\right.$

1) $q_{D} q_{N} m n_{c}$, then $\left|\frac{\Sigma_{1} \Sigma_{4}}{\Sigma_{2} \Sigma_{3}}-\frac{\Sigma_{1, \mathrm{~N}}}{\Sigma_{2, \mathrm{~K}}} \frac{\Sigma_{4, \mathrm{~N}}}{\Sigma_{3, \mathrm{~N}}}\right| \leq 2 \varepsilon$. To simplify notation, set er $r_{i}=e r_{i}{ }^{\prime}$.

Proof: The following equalities and inequalities follow from the definitions and algebraic manipulation, and inequalities proven at the end of Lemma 5 :

$$
\begin{aligned}
& \Sigma_{1}=m x N_{A}\left(p_{D} p_{N} p_{c}(v, 1)+q_{D} q_{N} p_{c}(v, 0)\right)+m n N_{A}\left(p_{D} p_{N} p_{c}(v, 1)+q_{D} q_{N} p_{c}(v, 0)\right) \\
&=m n N_{A}\left[R_{E}\left(R_{D} O_{N} r+r_{c}\right) q_{D} q_{N} m n_{c}+\left(R_{D} O_{N} r^{\prime}+r_{c}^{\prime \prime}\right) q_{D} q_{N} m n_{c}\right] \\
& \frac{\Sigma_{1, \mathrm{~N}}}{\Sigma_{2, \mathrm{~N}}}-\frac{\Sigma_{1}}{\Sigma_{2}}=\frac{\Sigma_{1}+e r_{1}}{\Sigma_{2}+e r_{2}}-\frac{\Sigma_{1}}{\Sigma_{2}}=\frac{\Sigma_{1} \Sigma_{2}+e r_{1} \Sigma_{2}-\Sigma_{1} \Sigma_{2}-e r_{2} \Sigma_{1}}{\Sigma_{2}\left(\Sigma_{2}+e r_{2}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{e r_{1} \Sigma_{2}-e r_{2} \Sigma_{1}}{\Sigma_{2}\left(\Sigma_{2}+e r_{2}\right)}=\frac{e r_{1}-e r_{2} \frac{\Sigma_{1}}{\Sigma_{2}}}{\Sigma_{2}+e r_{2}}=\frac{\frac{e r_{1}}{\Sigma_{2}}-e r_{2} \frac{\Sigma_{1}}{\left(\Sigma_{2}\right)^{2}}}{1+\frac{e 2_{2}}{\Sigma_{2}}}=\frac{\frac{e r_{1}}{\Sigma_{2}} \frac{e r_{2} \Sigma_{1}}{\Sigma_{2} \Sigma_{2}}}{1+\frac{e r_{2}}{\Sigma_{2}}} . \quad \text { Therefore: } \\
\left.\frac{\frac{e r_{1}}{\Sigma_{2}}-e r_{2} \frac{\Sigma_{1}}{\left(\Sigma_{2}\right)^{2}}}{1+\frac{e l L_{2}}{\Sigma_{2}}} \right\rvert\, & \leq \frac{\max \left(\left|e r_{1}\right|,\left|e r_{2}\right|\right)}{\Sigma_{2}} \frac{1+R_{D}}{1-\frac{\left|e r_{2}\right|}{\Sigma_{2}}} \leq\left(1+R_{D}\right) \max \left(\frac{\left|e r_{1}\right|}{\Sigma_{2}}, \frac{\left|e r_{2}\right|}{\Sigma_{2}}\right)\left(1+\max \left(\frac{\left|e r_{1}\right|}{\Sigma_{2}}, \frac{\left|e r_{2}\right|}{\Sigma_{2}}\right)\right) \\
& \leq \frac{\left(1+R_{D}\right) \varepsilon}{2\left(1+R_{D}\right)^{2}}\left(1+\frac{\varepsilon}{2\left(1+R_{D}\right)^{2}}\right)<\frac{\varepsilon}{1+R_{D}}, \text { provided } \frac{\varepsilon}{2\left(1+R_{D}\right)^{2}}<\frac{1}{2} . \text { The penultimate inequality }
\end{aligned}
$$ follows from max $\left(\frac{\left|e r_{1}\right|}{\Sigma_{2}}, \frac{\left|e r_{2}\right|}{\Sigma_{2}}\right) \leq \frac{\left(7 R_{E}+21\right) \varepsilon^{\prime} R_{D} R_{C}}{R_{E}-1-\left(R_{E}+1\right) 7 \varepsilon^{\prime}}$ shown below and choice of ε^{\prime} so that $\frac{\left(7 R_{E}+21\right) \varepsilon^{\prime} R_{D} R_{C}}{R_{E}-1-\left(R_{E}+1\right) 7 \varepsilon^{\prime}} \leq$ $\frac{\varepsilon}{2\left(1+R_{D}\right)^{2}}$. Similarly,

$$
\begin{aligned}
& \frac{\Sigma_{4, \mathrm{~N}}}{\Sigma_{4, \mathrm{~N}}}-\frac{\Sigma_{4}}{\Sigma_{3}}=\frac{\Sigma_{4}+e r_{4}}{\Sigma_{3}+e r_{3}}-\frac{\Sigma_{4}}{\Sigma_{3}}=\frac{\Sigma_{4} \Sigma_{3}+e r_{4} \Sigma_{3}-\Sigma_{4} \Sigma_{3}-e r_{3} \Sigma_{4}}{\Sigma_{3, \mathrm{~N}}\left(\Sigma_{3, \mathrm{~N}}+e r_{3}\right)}=\frac{e r_{4}-e r_{3} \frac{\Sigma_{4}}{\Sigma_{3}}}{\Sigma_{3}+e r_{3}}=\frac{\frac{e r_{4}}{\Sigma_{3}}-\frac{e r_{3} \Sigma_{4}}{\left(\Sigma_{3}\right)^{2}}}{1+\frac{e r_{3}}{\Sigma_{3}}} \text { so that } \\
& \left\lvert\, \frac{e r_{4}}{\Sigma_{3}}-\frac{e r_{3}}{\left(\Sigma_{3}\right)^{2}}\right. \\
& 1+\frac{e r_{3}}{\Sigma_{3}}
\end{aligned} \leq \frac{\max \left(\left|e r_{3}\right|,\left|e r_{4}\right|\right)}{\Sigma_{3}} \frac{1+R_{D}}{1-\frac{\left|e r_{3}\right|}{\Sigma_{3}}} \leq \frac{\varepsilon}{1+R_{D}}, \quad \text { since } \max \left(\frac{\left|e r_{3}\right|}{\Sigma_{3}}, \frac{\left|e r_{4}\right|}{\Sigma_{3}}\right) \leq \frac{\left(7 R_{E}+21\right) \varepsilon^{\prime} R_{D} R_{C}}{R_{E}-1-\left(R_{E}+1\right) 7 \varepsilon^{\prime}}, ~ l
$$

,, the same bound as for $\max \left(\frac{\left|e r_{1}\right|}{\Sigma_{1}}, \frac{\left|e r_{2}\right|}{\Sigma_{2}}\right)$. Finally:

$$
\begin{aligned}
& \left|\frac{\Sigma_{1, \mathrm{~K}}}{\Sigma_{2, \mathrm{~K}}} \frac{\Sigma_{4, \mathrm{~N}}}{\Sigma_{3, \mathrm{~K}}}-\frac{\Sigma_{1}}{\Sigma_{2}} \frac{\Sigma_{4}}{\Sigma_{3}}\right|=\left|\left(\frac{\Sigma_{1, \mathrm{~K}}}{\Sigma_{2, \mathrm{~N}}} \frac{\Sigma_{4, \mathrm{~K}}}{\Sigma_{3, \mathrm{~K}}}-\frac{\Sigma_{1}}{\Sigma_{2}} \frac{\Sigma_{4, \mathrm{~K}}}{\Sigma_{3, \mathrm{~K}}}\right)+\left(\frac{\Sigma_{1}}{\Sigma_{2}} \frac{\Sigma_{4, \mathrm{~K}}}{\Sigma_{3, \mathrm{~K}}}-\frac{\Sigma_{1}}{\Sigma_{2}} \frac{\Sigma_{4}}{\Sigma_{3}}\right)\right| \\
& \quad=\left|\left(\frac{\Sigma_{1, \mathrm{~K}}}{\Sigma_{2, \mathrm{~K}}}-\frac{\Sigma_{1, \mathrm{~K}}}{\Sigma_{2, \mathrm{~N}}}\right) \frac{\Sigma_{4, \mathrm{~K}}}{\Sigma_{3, \mathrm{~K}}}+\frac{\Sigma_{1}}{\Sigma_{2}}\left(\frac{\Sigma_{4, \mathrm{~K}}}{\Sigma_{3, \mathrm{~N}}}-\frac{\Sigma_{4}}{\Sigma_{3}}\right)\right| \leq R_{D} \frac{\varepsilon}{1+R_{D}}+R_{D} \frac{\varepsilon}{1+R_{D}}<2 \varepsilon, \text { proving Lemma } 5 .
\end{aligned}
$$

Inequalities used in proof of Lemma 5:

0) $\left|e r_{1}\right| \leq\left(7 \varepsilon^{\prime}+\frac{28 \varepsilon^{\prime}}{R-1}\right) R_{D} R_{C}\left(O_{N}+1\right) q_{D} q_{N} m n_{c}$, proven in Theorem 3
1) $\Sigma_{2}=\operatorname{mnN}_{A}\left[R_{E}\left(p_{N} p_{c}(v, 1)+q_{N} p_{c}(v, 0)\right)+\left(p_{N} p_{c}(v, 1)+q_{N} p_{c}(v, 0)\right)\right]$
$\geq m n N_{A}\left(R_{E}+1\right)\left(O_{N}+1\right) q_{N} m n_{c} \geq\left(\frac{1}{R_{E}+1}-\frac{7 \varepsilon^{\prime}}{R_{E}-1}\right)\left(R_{E}+1\right)\left(O_{N}+1\right) q_{N} m n_{c} ;$
2) $\left.\frac{\left|e r_{1}\right|}{\Sigma_{2}} \leq \frac{\max \left|e r_{1}\right|}{\min \Sigma_{2}} \leq \frac{\left(7 \varepsilon^{\prime}+\frac{28 \varepsilon^{\prime}}{R_{E}-1}\right) R_{D} R_{C}\left(O_{N}+1\right) q_{D} q_{N} m n_{c}}{\left(\frac{1}{R_{E}+1}-\frac{7 \varepsilon^{\prime}}{R_{E}-1}\right.}\right)\left(R_{E}+1\right)\left(O_{N}+1\right) q_{N} m n_{c} \quad=\frac{\left(7 \varepsilon^{\prime}+\frac{28 \varepsilon^{\prime}}{R_{E}-1}\right) R_{D} R_{C}}{\left(\frac{1}{R_{E}+1}-\frac{7 \varepsilon^{\prime}}{R_{E}-1}\right)\left(R_{E}+1\right)}=\frac{\left(7 R_{E}+21\right) \varepsilon^{\prime} R_{D} R_{C}}{R_{E}-1-\left(R_{E}+1\right) 7 \varepsilon^{\prime}} \leq \frac{\varepsilon}{2\left(1+R_{D}\right)^{2}}$ by choice of ε^{\prime} and $\left|e r_{1}\right| \leq\left(7 \varepsilon^{\prime}+\frac{28 \varepsilon^{\prime}}{R-1}\right) R_{D} R_{C}\left(O_{N}+1\right) q_{D} q_{N} m n_{c} ; \frac{\left|e r_{2}\right|}{\Sigma_{2}}, \frac{\left|e r_{3}\right|}{\Sigma_{3}}, \frac{\left|e r_{4}\right|}{\Sigma_{3}}$ are also bounded by $\frac{\varepsilon}{1+R_{D}}$.
3) $1<\frac{\Sigma_{1}}{\Sigma_{2}}<R_{D}: \frac{\Sigma_{1}}{\Sigma_{2}}=\frac{R_{E}\left(R_{D} O_{N} r_{C}+1\right)+\left(R_{D} O_{N}+r_{C}^{\prime \prime}\right)}{R_{E}\left(O_{N} r_{c}+1\right)+\left(O_{N}+r_{C}^{\prime \prime}\right)}$ is a weighted average of 1 and $R_{D}(a, b)$ over $a=$ 0,$1 ; b=0,1: R_{D}(1, b)=R_{D} \& R_{D}(0, b)=1, b=0,1$, and weights: $w(1,1)=\frac{R_{E}}{R_{E}+1} O_{N} r_{c}, w(1,0)=$ $\frac{1}{R_{E}+1} O_{N}, w(0,1)=\frac{R_{E}}{R_{E}+1}, w(0,0)=\frac{1}{R_{E}+1} r^{\prime \prime}{ }_{c}$. The same reasoning shows $1<\frac{\Sigma_{3}}{\Sigma_{4}}<R_{D}$.
Lemma 6: Consider $\wp\left(\vec{V}_{\aleph}\right) \in \mathcal{H}\left(\aleph, m n, m x, m n_{c}, m x_{c}, O_{N}, R_{E}, R_{C}, R_{D}, \varepsilon\right) \neq \phi$ such that conclusions of Theorem 2 hold. Then $\exists \wp\left(\vec{V}_{\aleph}\right) \in \mathcal{H}\left(\aleph, m n, m x, m n_{c}, m x_{c}, O_{N}, R_{E}, R_{C}, R_{D}, \varepsilon\right)$ such that for $v \in A_{1} \cap C_{0}$ either $p_{c}(v, n)=m n_{c}$ or $p_{c}(v, n)=m x_{c}$ for all v and $n=0$ or 1 . The same claim holds for $v \in C_{1} \cap A_{0}$.

Proof. This result was proven in the first part of the proofs of Theorems 1 and 2 by considering the partial derivatives $\frac{\partial \ln (B)}{\partial p_{c}(v, 1)}$ and $\frac{\partial \ln (B)}{\partial p_{c}(v, 0)}$; it is summarized and repeated here for convenience.

III. eAppendix 4. Simulation Experiment to evaluate bound and R program for simulations

We also illustrate empirically that bound $B d$ is valid. Thus, we conduct a series of simulations, each with its own set of randomly generated parameters. The purpose is to empirically illustrate that the actual bias approaches, but doesn't exceed $B d$. We assess bound $B d$'s performance and "tightness", measured as the difference between the expected bias and $B d$, under our simulation conditions. We consider scenarios in which V and N has either 2, 3, 4 or 5 categories; E, and D are dichotomous; and, we select or condition on $C=c$, consistent with the causal structure in Figure 1C. We randomly generate parameters for the probability functions in bias expression (3) (eTable A13; R program just below). For each set of parameters generated, we calculate the bias according to Equation 3 (main text), the values of R_{E}, R_{D} and R_{C}, the bound $B d$ (Equation 4), and compare the ratio of the bias to the bound. The purpose isn't to assess the magnitude of bias for plausible parameters (some combinations are extreme), but rather to empirically demonstrate validity - for any parameter combination. Examples $1-8$ of the main text utilize only a restricted range of parameters.
eTable A13. Summary of random Parameter generation for simulation study

Distribution	Model for generating Parameters
$P(N=n)=\pi_{N, n} ; n=1, \ldots, N ; 0 \leq \pi_{N, n} ; \sum_{n=1}^{N} \pi_{N, n}=1$	Dirichlet $\left(\mathrm{N}, \alpha_{1}, \ldots, \alpha_{N}\right) ; \alpha_{n}=\frac{1}{N}$
$P(C=c \mid V=v, N=n)=\pi_{c, v, n} ; v=1, \ldots, V, n=1, \ldots, N ; 0 \leq$	$\pi_{c, v, n}=\operatorname{expit}\left(\beta_{v}+\beta_{n}+\beta_{v, n}\right)$ $\pi_{c, v, n} \leq 1$
$P(D=1 \mid E=0, N=n)=\pi_{D, n} ; n=1, \ldots, N^{\dagger} ; 0 \leq \pi_{D, n} \leq 1$	$\pi_{D, n}=\operatorname{expit}\left(\gamma_{n}\right)$, where $\gamma_{n} \sim N\left(0, \operatorname{dim}(N)^{-1}\right)$
$P(V=v \mid E=e)=\pi_{v, e} ; v=1, \ldots, V, E=0,1 ; 0 \leq \pi_{v, e} ; \sum_{v=1}^{V} \pi_{v, e}=1$	$\operatorname{Dirichlet}\left(\mathrm{~V}, \alpha_{1, e}, \ldots, \alpha_{V, e}\right)^{\ddagger} ; \alpha_{v, e}=\frac{1}{V}$

\dagger bias in the standardized RR, with the exposed as the standard does not depend on $P(D=1 \mid E=1, N=n)$, see Equation (3); main text. \ddagger absent further constraints, $R_{E}=\max _{v, e} \frac{\pi_{v, e}}{\pi_{v, 1-e}}$ was often exceedingly large (e.g., $>10^{20}$), so we used constraints so that $\max _{v, e} \frac{\pi_{v, e}}{\pi_{v, 1-e}}$ was less than 100 .

As summarized in eTable A14, we simulate bias over a wide range of bound parameters (R_{E}, R_{D} and R_{C}). In ten scenarios collectively including over $1,000,000$ simulations, the actual bias never exceeded $B d$. Furthermore, the bias was close to the bound in each scenario for at least some parameter values. The maximum simulated bias was slightly less than $B d$ in scenarios seven and ten, perhaps because the parameter-space dimensions were larger than for other scenarios and our simulations may have left some parts incompletely explored. By design, large parameter combinations aren't excluded to evaluate empiric validity for a wide range of situations.
eTable A14 Description of Simulation Results, and Ratio \dagger of Largest Bias to Bound Observed in each simulation Scenario (R_{E}, R_{D}, R_{C} as defined in Equations 5) ${ }^{\text {' }}$.

Scenario*	$\begin{aligned} & \mathrm{Dim} \\ & M, N \end{aligned}$	Covariance (muCov in program)	$R_{E} \ddagger$ median, max	$\begin{aligned} & \quad R_{D} \\ & \text { median, } \\ & \text { max } \\ & \hline \end{aligned}$	R_{C} median, max	Bd median, max	Ratio † $\max (\mathrm{bias} / \mathrm{Bd})$
1	2,2	4	$\begin{aligned} & 7.204, \\ & 100.000 \end{aligned}$	$\begin{aligned} & 1.554, \\ & 58.469 \end{aligned}$	$\begin{aligned} & 1.045, \\ & 10.073 \end{aligned}$	$\begin{aligned} & 1.005, \\ & 2.582 \end{aligned}$	1
2	2, 2	2	$\begin{aligned} & 7.204, \\ & 100.000 \end{aligned}$	$\begin{aligned} & 1.554, \\ & 58.469 \end{aligned}$	$\begin{aligned} & 1.314, \\ & 53.854 \end{aligned}$	$\begin{aligned} & \text { 1.028, } \\ & 6.765 \end{aligned}$	1
3	2, 2	1	$\begin{aligned} & 7.204, \\ & 100.000 \end{aligned}$	$\begin{aligned} & 1.554, \\ & 58.469 \end{aligned}$	$\begin{aligned} & 1.766 \\ & 120.019 \end{aligned}$	$\begin{aligned} & \text { 1.057, } \\ & 9.412 \end{aligned}$	0.9999999
4	2, 2	0	$\begin{aligned} & \hline 7.204, \\ & 100.000 \end{aligned}$	$\begin{aligned} & 1.554, \\ & 58.469 \end{aligned}$	$\begin{aligned} & \hline 2.667, \\ & 227.381 \end{aligned}$	$\begin{aligned} & 1.095, \\ & 10.998 \end{aligned}$	0.9999998
5	2, 2	-1	$\begin{aligned} & 7.204, \\ & 100.000 \end{aligned}$	$\begin{aligned} & 1.554, \\ & 58.469 \end{aligned}$	$\begin{aligned} & 4.043, \\ & 457.327 \end{aligned}$	$\begin{aligned} & 1.130, \\ & 12.452 \end{aligned}$	0.9999997
6	2, 2	-2	$\begin{aligned} & 7.204, \\ & 100.000 \end{aligned}$	$\begin{aligned} & 1.554, \\ & 58.469 \end{aligned}$	$\begin{aligned} & 5.605 \\ & 841.442 \end{aligned}$	$\begin{aligned} & 1.154, \\ & 14.166 \end{aligned}$	0.9999997
7	3,3	0	$\begin{aligned} & 13.111, \\ & 100.000 \end{aligned}$	$\begin{aligned} & 2.132, \\ & 57.857 \end{aligned}$	$\begin{aligned} & 4.861, \\ & 1172.693 \end{aligned}$	$\begin{aligned} & 1.438, \\ & 15.467 \end{aligned}$	0.9993791
8	4,2	0	$\begin{aligned} & 15.594, \\ & 100.000 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.560, \\ & 56.406 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.403, \\ & 719.145 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.239, \\ & 14.439 \\ & \hline \end{aligned}$	0.9999902
9	2, 4	0	$\begin{aligned} & \hline 7.230, \\ & 100.000 \end{aligned}$	$\begin{aligned} & \hline 2.600, \\ & 57.647 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4.380, \\ & 1071.381 \end{aligned}$	$\begin{aligned} & 1.370, \\ & 18.981 \end{aligned}$	0.9999985
10	5, 5	0	$\begin{aligned} & 17.358, \\ & 100.000 \end{aligned}$	$\begin{aligned} & 2.987 \\ & 74.171 \end{aligned}$	$\begin{aligned} & 9.478, \\ & 809.786 \end{aligned}$	$\begin{aligned} & 2.084, \\ & 36.008 \end{aligned}$	0.9707631

${ }^{17}$ R program for simulations in this online Supplement below. *Each Scenario included 100,000 simulations. \ddagger Max $R_{E} \sim 100$ in each Scenario, due to constraints. \dagger Maximum ratio of bias to upper bound (Bd),.
\#Supplemental Material, R program to simulate performance of Bound Bd.
\#M Bias: $\mathrm{E}<---\mathrm{V}$--->C<--- N --->D \#in equations use $\mathrm{P}(\mathrm{M}=\mathrm{m} \mid \mathrm{E}=\mathrm{e})$
\# Evaluate lower Bound as well (RatioL should be >=1)
\# Non-Null
library (MASS) \#for mvn
library (MCMCpack) \#Dirichlet density: rdirichlet(n, alpha)
expit=function $(\mathrm{x})\{\exp (\mathrm{x}) /(1+\exp (\mathrm{x}))\}$ \#expit(0$)$
set.seed(77373) \#<---Set the seed, if desired for repeatability
\#\#\#\#\#\#\#\#\#\# set the input parameters for scenarios 1-10 \#\#\#\#\#\#\#\#\#\#\#\#\#
NSim $=100000 \quad$ \#<---Set Number of simulations (100,000 for Tables)
W = 0
\#<---Set the standard: $\mathrm{W}=1$ for $\mathrm{E}+\mathrm{W}=0$ for E -, or e.g. 0.5 for $\mathrm{P}(\mathrm{E})=0.5$
DimM=2
\#<---Set dimiensions of M, N

DimN=2

```
DimMx =max(DimM, DimN) #<---used to create covariance matrix
muCov =rep( 4, DimMx) #<-- the Covariance for interaction parms,M x N --> C
# Include Above: DimM, DimN, muCov in Table (muCov sets the average covariance of the M-effect
and N-effect on C, logit scale)
```

\# Other parameters, no need to change for different scenarios
Cov1 =matrix(rep($0, \operatorname{DimMx} \wedge 2$), nrow=DimMx) \# CovarMatrix for interzction parms
$\mathrm{muCl}=\quad \mathrm{rep}(0, \operatorname{DimM})$ \# Mean, parms for efffect of each M-category on C
muC2 $=\quad \operatorname{rep}(0, \operatorname{DimN})$ \# Mean, parms for efffect of each N-category on E
$\mathrm{muD}=\operatorname{rep}(0, \operatorname{DimN})$ \# Mean, parms for efffect of each N -category on D
$\mathrm{L} 1=\operatorname{sqrt}(100) \quad \#<-$ Set Approx limit on simulated max $\mathrm{P}(\mathrm{M}=\mathrm{m} \mid \mathrm{E}=1) / \mathrm{P}(\mathrm{M}=\mathrm{m} \mid \mathrm{E}=0)$. Can increase to
L1^2
\# after normalize.

```
SigC1= diag(DimM )
SigC2= diag(DimN )
SigD = diag(DimN ) #used w/ muD in mvrnorm to get D parms
```

alphM0 $=$ rep $(1 / D i m M, ~ D i m M) \quad \#<--$ use to generate M-parms for $\mathrm{E}=0, \mathrm{M}=\mathrm{V}$ in m / s
alphM1 $=\operatorname{rep}(1 / D i m M, \operatorname{DimM}) \quad \#<--$ use to generate M-parms for $E=1, M=V$ in m / s
alphN $=\operatorname{rep}(1 / D i m N, D i m N)$
Save =NULL \#Initialize
SaveM = NULL
ratio =NULL
ratioL=NULL \#use for lower bound
\# use following to describe simulation conditions
$m x R e=0$
$m x R d=0$
$\mathrm{mxRc}=0$
mxOn=0
$m x B d=0$
for (k in 1:NSim) $\{$
\#simulation loop: each simulation in Table $=100,000$

```
# -- get parms for P(M=m|E=e) --
    parmM1=rdirichlet(1, alphM1) #<-- parms for P(M=m|E=1), M=V in m/s
    parmM0=rdirichlet(1, alphM0) #<-- parms for P(M=m|E=0), M=V in m/s
    for (kk in 1:length(parmM1)) { #
    if (parmM1[kk] >= L1*parmM0[kk]) {parmM1[kk]=L1*parmM0[kk]}
    if (parmM0[kk] >= L1*parmM1[kk]) {parmM0[kk]=L1*parmM1[kk]} # limit to ratio of 1000
    } # rbind(parmM1[1:8], pM1[1:8], pM0[1:8], pM1[1:8]/pM0[1:8])
parmM1=parmM1/sum(parmM1) #normalize parmM1, parmM0
parmM0=parmM0/sum(parmM0)
# -- get parms for P(N=n) -- #
    parmN=rdirichlet(1, alphN) #N parameters
# -- get parms for M-->C
    parmC1=mvrnorm(n = 1, muC1, SigC1, tol = 1e-5, empirical = FALSE, EISPACK = FALSE)
# -- get parms for N-->C
    parmC2=mvrnorm(n = 1, muC2, SigC2, tol = 1e-5, empirical = FALSE, EISPACK = FALSE)
# - COV
    parmC12=mvrnorm(n=DimMx, muCov, Cov1, tol = 1e-5, empirical = FALSE, EISPACK = FALSE)
# -- get parms for N-->D
    parmDN =mvrnorm(n = 1, muD, SigD, tol = 1e-5, empirical = FALSE, EISPACK = FALSE)
    parmDNI=mvrnorm(n = 1, muD, SigD, tol = 1e-5, empirical = FALSE, EISPACK = FALSE)
#interaction w/E
    parmDE=rnorm(n = 1, 1,1) # main effect of E
    S1 =0 #initialize sums
    S2=0
    S3 =0
    S4 =0
    S5 =0 #used for SRR, E+ is std
    S6 =0 #used for SRR, E- is std
    mxM =0 #initialize max, min
```

```
\(\mathrm{mnC}=1\)
\(\mathrm{mxC}=0\)
\(m x D 1=0\)
\(\mathrm{mnD} 1=1\)
\(\mathrm{mxD} 0=0\)
\(\mathrm{mnD} 0=1\)
for \((\mathrm{i}\) in \(1:\) DimM) \(\{\quad\) \#\# i=1
for \((\mathrm{j}\) in 1:DimN) \(\{\)
\(\mathrm{M} 1=\mathrm{c}(\operatorname{rep}(0, \max (0, \mathrm{i}-1)), 1, \operatorname{rep}(0, \max (0, \mathrm{DimM}-\mathrm{i}))) \quad\) \#value M 1 , or \(=r m u l t i n o m(1,1\), alphM \()\)
\(\mathrm{pM} 0=\mathrm{M} 1 \% * \% \mathrm{t}(\mathrm{parmM}) \quad\) \#Prob \((\mathrm{M}=\mathrm{i} \mid \mathrm{E}=0)\)
\(\mathrm{pM} 1=\mathrm{M} 1 \% * \% \mathrm{t}(\) parmM1) \(\quad\) \#Prob \((\mathrm{M}=\mathrm{i} \mid \mathrm{E}=1)\)
\(\mathrm{N}=\mathrm{c}(\operatorname{rep}(0, \max (0, \mathrm{j}-1)), 1, \operatorname{rep}(0, \max (0, \operatorname{DimN}-\mathrm{j}))) \quad\) \#value \(\mathrm{N} ;\) or \(=\) rmultinom \((1,1, \operatorname{alph} \mathrm{~N})\)
\(\mathrm{pN}=\mathrm{dmultinom}(\mathrm{N}\), size \(=1, \operatorname{parmN}) \quad \# \operatorname{Prob}(\mathrm{~N}=\mathrm{j})\)
\# -- get probs for \(\mathrm{M}, \mathrm{N}-->\mathrm{C}\), includes interaction terms for \(\mathrm{M}, \mathrm{N}-->\mathrm{C}\) (parmC12)
\(\mathrm{pC} 1=\operatorname{dbinom}(1,1, \operatorname{expit}(0+\mathrm{M} 1 \% * \% \operatorname{parmC} 1+\mathrm{N} \% * \% \operatorname{parmC} 2+\operatorname{parmC} 12[\mathrm{i}, \mathrm{j}])) \quad \# \mathrm{p}(\mathrm{C}=1 \mid \mathrm{M}=\mathrm{i}, \mathrm{N}=\mathrm{j})\)
\(\operatorname{pD} 0=\operatorname{dbinom}(1,1, \operatorname{expit}(0+\mathrm{t}(\mathrm{N}) \% * \% \operatorname{parmDN})) \quad \# \mathrm{p}(\mathrm{D}=1 \mid \mathrm{N}=\mathrm{j}, \mathrm{E}=0)\)
\(\mathrm{pD} 1=\operatorname{dbinom}(1,1, \operatorname{expit}(0+\mathrm{t}(\mathrm{N}) \% * \% \operatorname{parmDN}+\operatorname{parmDE}+\mathrm{t}(\mathrm{N}) \% * \% \operatorname{parmDNI})) \# \mathrm{p}(\mathrm{D}=1 \mid \mathrm{N}=\mathrm{j}, \mathrm{E}=1)\)
\(\mathrm{S} 1=\mathrm{S} 1+\mathrm{pM} 1 *_{\mathrm{pN}}{ }^{*} \mathrm{pC} 1 * \mathrm{pD} 1\)
\(\mathrm{S} 2=\mathrm{S} 2+\mathrm{pM} 1 * \mathrm{pN}^{*} \mathrm{pC} 1\)
\(\mathrm{S} 3=\mathrm{S} 3+\mathrm{pM} 0 *{ }^{2}{ }^{*}{ }^{*} \mathrm{pC} 1 * \mathrm{pD} 0\)
\(\mathrm{S} 4=\mathrm{S} 4+\mathrm{pM} 0 * \mathrm{pN}^{*} \mathrm{pC} 1\)
\(\mathrm{S} 5=\mathrm{S} 5+\mathrm{pM} 1{ }^{*} \mathrm{pN}^{*} \mathrm{pC} 1 * \mathrm{pD} 0\)
\(\mathrm{S} 6=\mathrm{S} 6+\mathrm{pM} 0 *{ }^{2}{ }^{2}{ }^{*} \mathrm{pC} 1 * \mathrm{pD} 1\)
```

\#Use Equation 5: $\operatorname{Re}=\max (\mathrm{m}, \mathrm{e})\{\mathrm{P}(\mathrm{M}=\mathrm{m} \mid \mathrm{E}=\mathrm{e})\} / \min (\mathrm{m}, \mathrm{e})\{\mathrm{P}(\mathrm{M}=\mathrm{m} \mid \mathrm{E}=\mathrm{e})\}$
\# $\quad \mathrm{Rd}=\max \left(\mathrm{P}(\mathrm{D}=1 \mid \mathrm{n}=\mathrm{n}) / \min \left(\mathrm{P}\left(\mathrm{D}=1 \mid \mathrm{n}=\mathrm{n}^{\prime}\right)\right.\right.$
\# $\quad \mathrm{Rc}=\max (\mathrm{m}, \mathrm{n}\{\mathrm{P}(\mathrm{C}=1 \mid \mathrm{M}=\mathrm{m}, \mathrm{N}=\mathrm{n})\} / \min (\mathrm{v}, \mathrm{n}\{\mathrm{P}(\mathrm{C}=1 \mid \mathrm{M}=\mathrm{m}, \mathrm{N}=\mathrm{n})\}$
$\mathrm{mxM}=\max (\mathrm{mxM}, \mathrm{pM} 1 / \mathrm{pM} 0, \mathrm{pM} 0 / \mathrm{pM} 1)$
$\mathrm{mnC}=\min (\mathrm{pC} 1, \mathrm{mnC})$
$m x C=\max (\mathrm{pC} 1, \mathrm{mxC})$

```
mxD1=max(pD1, mxD1)
mnD1=min(pD1, mnD1)
mxD0=max(pD0, mxD0)
mnD0=min(pD0, mnD0)
}} # for i,j #end loops over i,j
Re=mxM
if (0<W && W< 1) {Rd= max(mxD0/mnD0, mxD1/mnD1)} #all selected, pE=W
if (W== 1) {Rd= mxD0/mnD0} #exposed is std
if (W== 0) {Rd= mxD1/mnD1} #unexposed is std
Rc=mxC/mnC
if ( }\textrm{Re}<=1000000000000000000){ #only do calculations if R not very large
    On=sqrt(1/Rd )
    Bd=
(Re*}(\mp@subsup{\textrm{Rd}}{}{*}\textrm{On}*\textrm{Rc}+1)+(\textrm{Rd}*\textrm{On}+\textrm{Rc}))*((\textrm{On}*\textrm{Rc}+1)+\mp@subsup{\textrm{Re}}{}{*}(\textrm{On}+\textrm{Rc}))/(((\mp@subsup{\textrm{Rd}}{}{*}\textrm{On}*\mp@subsup{\textrm{Rc}}{}{*}+1)+\mp@subsup{\textrm{Re}}{}{*}(\textrm{Rd}*\textrm{On}+\textrm{Rc}))*(\textrm{R
e*(On*Rc+1)+(On+Rc)))
    #sRR = S1/S5 #Standardized Risk Ratio, E+ = std
    #sRR = S6/S3 #Standardized Risk Ratio, E- = std
    sRR = (W*S1+(1-W)*S6)/(W*S5+(1-W)*S3)
    B=(S1*S4/(S2*S3))/sRR #true Bias, calculated directly from expected values
    ratio = rbind(ratio, B/Bd) #ratio: true bias/bound = ?distance? between Bound & actual bias
    ratioL= rbind(ratioL, B/ (1/Bd)) #look at lower bound too, should be >= 1
    Save=rbind(Save, c(Bd, Re, Rd, Rc)) #describe the conditions simulated
    mxRe =max(mxRe, Re)
    mxRd=max(mxRd, Rd)
    mxRc =max(mxRc, Rc)
    mxBd=max(Bd, mxBd) # keep track of largest Bd
} #end if Re not too large
} #end Simulation loop
c(mxBd, mxRe,mxRd,mxRc, length(ratio))
```

\#histogram, if desired
\#hist(ratio, breaks=c(0,.1,.2,.3,.4, .5,.6,.7,.8,.9,1.0, 1.1)) \#, plot=TRUE, title=Title)
Bdd = Save[,1]
Bd_q=quantile(Bdd, probs=c(0.25, 0.50, 0.95)) \#25, 50 and 95 percentile for Bdd
$\mathrm{Re}=\mathrm{Save}[, 2]$
Re_q=quantile(Re, probs=c($0.25,0.50,0.95)$) \#25, 50 and 95 percentile for Re
Rd = Save[,3]
Rd_q=quantile(Rd, probs=c($0.25,0.50,0.95))$ \#25, 50 and 95 percentile for Rd
Rc = Save[,4]
Rc_q=quantile(Rc, probs=c($0.25,0.50,0.95))$ \#25, 50 and 95 percentile for Rc
\#---------------- output, e.g., Table 2, main text (along with $\operatorname{dim} \operatorname{Mx}$ N, muCov) ------------------------------
Results $=$ rbind $\left(c\left(B d _q, \max (B d d)\right), c\left(\operatorname{Re} _q, \max (R e)\right), c\left(R d _q, \max (R d)\right), c\left(R c _q, \max (R c)\right)\right) \quad$ \#Row 1=Bd, Row 2=Rd, Row $3=$ Rc
colnames(Results)[4]='max'
rownames(Results)=c('Bd','Re','Rd','Rc')
Results

```
max(ratio) #maximum of Ratio, should not be > 1
min(ratioL) #for Lower Bound, should not be < 1
#getOption("digits")
#options(digits=8)
```


IV. eAppendix 5. Comparison of Bd with Bound Assuming Homogeneity.

We compare bound $B d$ with the bound derived by Greenland\{Greenland, 2003 \#46\} under a homogeneity assumption $\left(B d_{H}\right)$. Here, we consider only dichotomous variables, causal relationships consistent with Figure 1C (main text) and no true exposure effect, the situation considered by Greenland. Greenland used odds ratios to measure the strength of association between variables (Figure 1C) in $B d_{H}$, whereas we use risk ratios (Equations 5, main text). To compare $B d_{H}$ with $B d$ and evaluate robustness, we calculate odds ratios for each risk ratio in Equation 5, assuming specific frequencies for D, C and V : $P(C=1 \mid V=1, N=n)=0.000001, P(V=1 \mid E=1)=\frac{\sqrt{R_{E}}}{1+\sqrt{R_{E}}}$ and $P(D=1 \mid N=0, E=0)=$ 0.000001 , choosing this last value as it illustrates the largest differences we identified between $B d_{H}$ and $B d$. [Differences for other values tend to be smaller.] We set parameters for the strength of association
between variables in Figure 1C using risk ratios (Equation 5) and then calculate the corresponding odds ratios (Equation 6, main text; Table A13, line 1) used in $B d_{H}$.

$$
\begin{array}{ll}
O R=\frac{P(V=1 \mid E=1)}{P(V=0 \mid E=1)} \cdot \frac{P(V=0 \mid E=0)}{P(V=1 \mid E=0)} ; & O R_{C V, n}=\frac{P(C=1 \mid V=1, N=n)}{P(C=0 \mid V=1, N=n)} \cdot \frac{P(C=0 \mid V=0, N=n)}{P(C=1 \mid V=0, N=n)}, n=0,1 ; \tag{6}\\
O R_{D}=\frac{P(D=1 \mid N=1)}{P(D=0 \mid N=1)} \cdot \frac{P(D=0 \mid N=0)}{P(D=1 \mid N=0)} ; & O R_{C N, v}=\frac{P(C=1 \mid V=v, N=1)}{P(C=0 \mid V=v, N=1)} \cdot \frac{P(C=0 \mid V=v, N=0)}{P(C=1 \mid V=v, N=0)}, v=0,1
\end{array}
$$

Finally, we calculate the bias expected in the observed risk ratio using Expression (3) and the theoretical bound $B d$ (Expression 4) which gives an approximate bias and bound for the risk odds ratio (ROR) for rare disease.

Under Greenland's homogeneity assumption, $O R=O R_{D}=O R_{C V, n}=O R_{C N, v}$, for $n, v=0,1$. To evaluate sensitivity to this assumption, we consider an extreme violation (less extreme situations are considered in examples in the main text) wherein $O R=O R_{D}=O R_{C N, v=1}=O R_{C V, n=1}>1$, but $O R_{C N, v=0}=O R_{C V n=0}=1 / O R_{C V n=1}$, and used the maximum of these odds ratios in the expression for $B d_{H}$. As summarized in eTable A15, the expected bias (Equation 3) in the observed ROR can be substantially larger than $B d_{H}$ if the homogeneity assumption is incorrect. For example, suppose all the odds ratios in expression (6) were between $1 / 4$ and 4: $O R=O R_{D}=O R_{C N, v=1}=O R_{C V, n=1}=4$, but $O R_{C N, v=0}=O R_{C V n=0}=1 / 4$. The maximum bias if all ORs were 4 (homogeneity) is 1.05 , but the bias is as large as 1.31 absent homogeneity (all ORs between $1 / 4$ and 4) - a potentially important exceedance of the bound. The actual bias did not exceed $B d$.
eTable A15 Summary Comparison of bound incorrectly assuming homogeneity with $B d$

Value of OR (maximum strength of effects of biasing variables, Equation 6)	2.00	4.00	8.00	$16.00^{\$}$
Actual Bias in ROR (Equation 3)	1.04	1.31	2.05	3.73
Bound for ROR (Bd; Equation 4†)	1.04	1.31	2.05	3.73
Bound for ROR under incorrect assumption of homogeneity \ddagger	1.003	1.05	1.23	1.69

\dagger Equation 4 gives bound for the bias in the standardized risk ratio which is an approximate bound for the standardized risk odds ratio because disease is rare $(P(D=1 \mid N=0, E=0)=0.000001)$. \ddagger Bound derived by Greenland under homogeneity assumption that $O R=O R_{d}=O R_{C V, n}=O R_{C N, v}$ (Equation 6). ${ }^{\text {E Example of probabilities yielding maximum odds ratio of 16.00: }}$ $\mathrm{P}(\mathrm{V}=1 \mid \mathrm{E}=1) \approx 0.8, \mathrm{P}(\mathrm{V}=1 \mid \mathrm{E}=0) \approx 0.2, \mathrm{P}(\mathrm{D}=1 \mid \mathrm{E}=0, \mathrm{~N}=1) \approx 0.000016, \mathrm{P}(\mathrm{D}=1 \mid \mathrm{E}=0, \mathrm{~N}=1) \approx 0.000001, \mathrm{P}(\mathrm{C}=\mathrm{c} \mid \mathrm{V}=1, \mathrm{~N}=1)=$ $\mathrm{P}(\mathrm{C}=\mathrm{c} \mid \mathrm{V}=0, \mathrm{~N}=0) \approx 0.000016, \mathrm{P}(\mathrm{C}=\mathrm{c} \mid \mathrm{V}=0, \mathrm{~N}=1)=\mathrm{P}(\mathrm{C}=\mathrm{c} \mid \mathrm{V}=1, \mathrm{~N}=0) \approx 0.000001, \mathrm{P}(\mathrm{N}=1)=0.2$; homogeneity fails, since $O R_{C V, n=1} \approx 16$ but $O R_{C V, n=0} \approx 1 / 16$ yielding Bound ≈ 1.69 if the maximum OR is used. Here, $R_{E} \approx R_{C} \approx R_{D} \approx 16$ so $B d \approx 3.73$.

V. eAppendix 6. R code to Calculate Bias (Equation 3) and Bounds.

\# Program to Calulate: 1) Expeect Bias, based on Equation, and 2) Bound Bd and Bd_H

```
        logit= function(x){log(x/(1-x))}
```

expit $=$ function $(x)(\exp (x) /(1+\exp (x)))$
\# Variables, Coding (Liu's SSRI example):
\# \quad SSRI $=$ selective seritonin reuptake inhibitor
\# $\quad \mathrm{V}=1$ for depressed, 0 otherwise; it affects CAD, and SSRI use
\# $\mathrm{C}=1$ if no CAD \& volunteer to participate, 0 otherwise
\# $\mathrm{N}=1$ if smoker, 0 otherwise. It that affects participation \& Disease, like Lung Cancer $\mathrm{al}=\mathrm{rep}(0,4) \quad$ \#initialize certain paramters to be input
bet=rep(0,3) \#initialize certain parms

\#Parameter Input

p_V $=0.25 \quad \#<---$ marginal prevalence of Depression
p_E $=0.10 \quad \#<---$ marginal prevalence of SSRI (Exposure)
OR = 27 \# odds ratio for SSRE - Depression Association (Liu uses OR's, convert to RRs
p_N =0.10 \#< --- marginal prevalence of Smoking
\#logistic model parms for CAD, the collider (as per Liu's example)

```
al[1] = logit(0.076) # logit( Prob(CAD=1 | =0, N=0) )
    al[2] = log(1.6) # Log(OR), CAD - Depression| Smoking = 0
    al[3] = log(3.) # Log(OR), CAD - Smoking}|\mathrm{ Depression = 0
    al[4] = log(1.) # Log(OR), Depression, Smoking "interaction", logistic model
```

 \#Refusals: \(\mathrm{P}(\) Refuse \(\mid \mathrm{V}=0, \mathrm{~N}=0) / \mathrm{P}(\) Refuse \(\mid \mathrm{V}=1, \mathrm{~N}=0) / \mathrm{P}(\) Refuse \(\mid \mathrm{V}=0, \mathrm{~N}=1) / \mathrm{P}(\) Refuse \(\mid \mathrm{V}=1, \mathrm{~N}=1) /\)
 \(\mathrm{q}=\mathrm{c}(.50, .51, .51, .85) \quad\) \#set q to \(\mathrm{c}(0,0,0,0)\) if no refusals
 \(q=c(0,0,0,0)\)
 \#Parms for outcome \(\mathrm{D}=\) LungCancer
 \(\operatorname{bet}[1]=\operatorname{logit}(0.0037)\)
 bet[2] \(=\log (1.0) \quad \# S S R I\)
 \(\operatorname{bet}[3]=\log (15.0)\) \#smoking
 \# -------- calculate RRs from OR for Depression(V) - SSRI (E) --------- \#
$\mathrm{T}=1000$
$\mathrm{M} 1=\mathrm{p}$ _ $\mathrm{V}^{*} \mathrm{~T}$ \# Depression
N1 = p_E*T \# SSRI (Exposure)
$\mathrm{N} 2=\mathrm{T}-\mathrm{N} 1$
$\mathrm{M} 2=\mathrm{T}-\mathrm{M} 1$

```
b = OR*(M1+N1) + M2-N1 #from 2x2 Table: total 1000, margins: SSRI+=100, Dep=250
a=-OR +1
c= -OR*M1*N1
x1 = (-b + sqrt(b^2-4*a*c))/(2*a)
x2 = (-b - sqrt(b^2-4*a*c))/(2*a)
c(x1,x2)
aa = x1 #use the solution
#aa=70
bb = M1 - aa
cc = N1 - aa
dd = N2-M1 +aa
aa*dd/(bb*cc)
aa+bb
aa+cc
c(aa,bb,cc,dd, aa*dd/(bb*cc))
RREU1 = (aa/N1)/(bb/N2) #P(V=1|SSRI=1) / P(V=1|SSRI=0
RREU2 = (cc/N1)/(dd/N2) #P(V=0|SSRI=1) / P(V=0|SSRI=0)
c( aa/(aa+cc), bb/(bb+dd), cc/(aa+cc), dd/(bb+dd) )
```

\#\#\#\#\#\#\#\# Estimate the Bias \#\#\#\#\#\#\#\#\#\#\#\#\#\#

```
\#\#pV=function(v) \(\left\{\mathrm{p}_{-} \mathrm{V}^{*} \mathrm{v}+(1-\mathrm{v})^{*}\left(1-\mathrm{p} \_\mathrm{V}\right)\right\}\)
\(\mathrm{pN}=\) function(n) \(\{\mathrm{p}\) _N*n+(1-n)*(1-p_N) \}
\(\mathrm{c}(\mathrm{pN}(1), \mathrm{pN}(0))\)
pV_E=function(v, e) \(\{\quad\) \#Prob ( \(\mathrm{V}=1 \mid \mathrm{E}=\mathrm{e}\) ), for convenience
if(v==1 \&\& e ==1) \(\{\mathrm{p}=\mathrm{a} / \mathrm{N} 1\}\)
if(v==1 \&\& e \(==0)\{p=b b / N 2\}\)
if( \(\mathrm{v}==0\) \& \& \(\mathrm{e}==1\) ) \(\{\mathrm{p}=\mathrm{cc} / \mathrm{N} 1\}\)
```

```
if(v==0 && e ==0) {p= dd/N2}
p}
c(pV_E(1,1), pV_E(1,0),pV_E(0,1), pV_E(0,0))
pC_VN= function(c,v,n){
    p=expit(al[1]+al[2]*v+al[3]*n+al[4]* v*n)
#Now account for possible Refusals: prob refuse| no CAD, & Depr, Smoking status
if (v==0 && n==0){p=p+q[1]*(1-p)}
if (v==1 && n==0){p=p+q[2]*(1-p)}
if (v==0 && n==1){p=p+q[3]*(1-p)}
if (v==1 && n==1){p=p+q[4]*(1-p)}
p=c*p}+(1-c)*(1-p
p}
c(pC_VN(1,1,1), pC_VN(1,1,0), pC_VN(1,0,1), pC_VN(1,0,0) )
c(pC_VN(0,1,1), pC_VN(0,1,0), pC_VN(0,0,1), pC_VN(0,0,0))
pD_EN= function(e,n){
    expit(bet[1]+bet[2]*e +bet[3]*n) }
    c(pD_EN(0,1), pD_EN(0,0))
```


\#get Bias B

\#stratum w/ $\mathrm{C}=1$
S11=0
S12=0
S13=0
S14=0
for (v in $\mathrm{c}(0,1)$) \{
for (n in $\mathrm{c}(0,1)$) \{

```
S11= S11 + pN(n)*pV_E(v,1)*pC_VN(1,v,n)*pD_EN(0,n)
S12=S12 + pN(n)*pV_E(v,0)*pC_VN(1,v,n)*pD_EN(0,n)
S13=S13 + pN(n)*pV_E(v,1)*pC_VN(1,v,n)
S14=S14 + pN(n)*pV_E(v,0)*pC_VN(1,v,n)
```

```
}}
c(S11,S13,S12,S14)
B1=S11*S14/(S12*S13)
OB1 = ((S11/S13)/(1-(S11/S13)))/((S12/S14)/(1-(S12/S14))) #Odds Ratio
B1 #Bias in statrum: C=1
#Now, stratum w/ C=0
S1=0
S2=0
S3=0
S4=0
for (v in c(0,1)) {
for (n in c(0,1)) {
    S1= S1 + pN(n)*pV_E(v,1)*pC_VN(0,v,n)*pD_EN(0,n)
    S2=S2 + pN(n)*pV_E(v,0)*pC_VN(0,v,n)*pD_EN(0,n)
    S3= S3 + pN(n)*pV_E(v,1)*pC_VN(0,v,n)
    S4= S4 + pN(n)*pV_E(v,0)*pC_VN(0,v,n)
}}
B0=S1*S4/(S2*S3)
OB0 = ((S1/S3)/(1-(S1/S3)))/((S2/S4)/(1-(S2/S4))) #Odds Ratio
B0
# ------- now get parms needed to calculate bounds
```

\qquad

```
\(\operatorname{Re}=\max (\) RREU 1, RREU2, 1/RREU1, 1/RREU2)
c(RREU1, RREU2, 1/RREU1, 1/RREU2)
Rd = max(pD_EN(1,1),pD_EN(0,1),pD_EN(1,0),pD_EN(0,0)) \#Smoking Effect on outcome(lung cancer)
\(\mathrm{Rd}=\mathrm{Rd} / \min \left(\mathrm{pD} \_\mathrm{EN}(1,1), \mathrm{pD} \_\mathrm{EN}(0,1), \mathrm{pD} \_\mathrm{EN}(1,0), \mathrm{pD} \_\mathrm{EN}(0,0)\right)\)
Rc1=max(pC_VN(1,1,1),pC_VN(1,0,1),pC_VN(1,1,0),pC_VN(1,0,0))
Rc1=Rc1/min(pC_VN(1,1,1),pC_VN(1,0,1),pC_VN(1,1,0),pC_VN(1,0,0))
Rc0 \(=\) max \(\left(p C \_V N(0,1,1), p C \_V N(0,0,1), p C \_V N(0,1,0), p C \_V N(0,0,0)\right)\)
Rc0=Rc0/min(pC_VN(0,1,1),pC_VN(0,0,1),pC_VN(0,1,0),pC_VN(0,0,0))
\(\mathrm{Rc}=\max (\mathrm{Rc} 1, \mathrm{Rc} 0) \quad\) \#make sure apply relevant Rc : Rc 0 for \(\mathrm{C}=0\)
Rc=Rc0
```

$\mathrm{c}(\mathrm{Re}, \mathrm{Rd}, \mathrm{Rc} 1, \mathrm{Rc} 0, \mathrm{Rc})$
\#\#\#\#\#\#\# Calculate the Bound

$$
\begin{aligned}
& \mathrm{Bd}=\left(\mathrm{Re}^{*}(\mathrm{sqrt}(\mathrm{Rd}) * \operatorname{Rc}+1)+(\operatorname{sqrt}(\mathrm{Rd})+\mathrm{Rc})\right)^{*}\left((\mathrm{Rc} / \mathrm{sqrt}(\mathrm{Rd})+1)+\mathrm{Re}^{*}(1 / \mathrm{sqrt}(\mathrm{Rd})+\mathrm{Rc})\right) \\
& \mathrm{Bd}=\mathrm{Bd} /\left(\left(\left(\operatorname{sqrt}(\mathrm{Rd})^{*} \operatorname{Rc}+1\right)+\operatorname{Re}^{*}(\operatorname{sqrt}(\operatorname{Rd})+\operatorname{Rc})\right)^{*}\left(\operatorname{Re}^{*}(\operatorname{Rc} / \operatorname{sqrt}(\operatorname{Rd})+1)+(1 / \operatorname{sqrt}(\operatorname{Rd})+\mathrm{Rc})\right)\right)
\end{aligned}
$$

Bd \#\#NB: Bound for RR, if disease rare, approx Bound for OR
\#now, get Bd_H, use largest OR if not uniform
$\mathrm{R}=\mathrm{aa}^{*} \mathrm{dd} /\left(\mathrm{bb}{ }^{*} \mathrm{cc}\right) \quad$ \#Star with OR for SSRI, depression (V)
$\operatorname{ORCV} 1=\left(p C_{-} \mathrm{VN}(1,1,1) / \mathrm{pC}-\mathrm{VN}(0,1,1)\right) /\left(\mathrm{pC} _\mathrm{VN}(1,0,1) / \mathrm{pC}\right.$ - VN $\left.(0,0,1)\right)$

ORCN1 $=(\mathrm{pC}$ _VN $(1,1,1) / \mathrm{pC}$ _VN $(0,1,1)) /\left(\mathrm{pC} _\mathrm{VN}(1,1,0) / \mathrm{pC} \mathrm{VN}(0,1,0)\right)$
ORCN0 $=(\mathrm{pC}$ _VN $(1,0,1) / \mathrm{pC}$ _VN $(0,0,1)) /\left(\mathrm{pC} _\mathrm{VN}(1,0,0) / \mathrm{pC} \mathrm{VN}(0,0,0)\right)$
ORD $=\left(\mathrm{pD} _\mathrm{EN}(1,1) /\left(1-\mathrm{pD} _\mathrm{EN}(1,1)\right)\right) /\left(\mathrm{pD} _\mathrm{EN}(1,0) /\left(1-\mathrm{pD} _\mathrm{EN}(1,0)\right)\right)$
$\mathrm{R}=\max (\mathrm{R}, 1 / \mathrm{R}, \mathrm{ORCV} 1,1 / \mathrm{ORCV} 1$, ORCV0, $1 / \mathrm{ORCV} 0, ~ O R C N 1,1 / O R C N 1, ~ O R C N 0,1 / O R C N 0$,
ORD)
$\mathrm{OR} _\mathrm{H}=\left(\left(\mathrm{R}^{\wedge} 2+6^{*} \mathrm{R}+1\right)^{\wedge} 2\right) /\left(16^{*} \mathrm{R}^{*}(\mathrm{R}+1)^{\wedge} 2\right)$
$\mathrm{c}\left(\mathrm{OR} _\mathrm{H}, \mathrm{R}, \mathrm{aa}{ }^{*} \mathrm{dd} /(\mathrm{bb} * \mathrm{cc}), O R D, 1 / \mathrm{ORD}, \mathrm{ORCV} 1,1 / \mathrm{ORCV} 1, \mathrm{ORCV} 0,1 / \mathrm{ORCV} 0, \mathrm{ORCN} 1,1 / \mathrm{ORCN} 1\right.$, ORCN0, 1/ORCN0)
$\mathrm{c}(\mathrm{Re}, \mathrm{Rd}, \mathrm{Rc}, \operatorname{Rc} 1, \mathrm{Rc} 0, \mathrm{R}) \quad$ \#Parameters used to calculate Boutnd and Bd_H $\mathrm{c}\left(\mathrm{B} 1, \mathrm{OB} 1, \mathrm{~B} 0, \mathrm{OB} 0, \mathrm{Bd}, \mathrm{OR} \mathrm{_H}\right)$ \#Bias for stratum =1, for Stratum=0, Bound for stratum=0 and Bd_H
out=as.list($\mathrm{c}\left(\mathrm{B} 0,1 / \mathrm{Bd}, \mathrm{Bd}, 1 / \mathrm{OR} _H, \mathrm{OR} _\mathrm{H}\right)$)
names(out)=c("bias,C=0", "Lo Bound", "Up Bound", "Lo Bd_H", "Hi Bd_H")
out

References

[1] Ding P, VanderWeele TJ: Sensitivity analysis without assumptions. Epidemiology (Cambridge, Mass) 2016, 27:368.
[2] Byrd RH, Lu P, Nocedal J, Zhu C: A limited memory algorithm for bound constrained optimization. SIAM Journal on Scientific Computing 1995, 16:1190-208.
[3] Wolfram Research I: Mathematica. Version 11.2.0 ed. Champaign, IL, 2017.

