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eMethods 
 
Constrained P-spline smoothing 
 
In order to obtain stable estimates of both the smooth surface and the day-of-the-week effect, 
we include prior information on the reporting process as additional constraints: the surface is 
unimodal in the reporting delay dimension, is (nearly) zero at the predefined maximum delay, 
and has a presumed shape at the beginning of the outbreak. Furthermore, the regression 
coefficients 𝜷𝜷 are regularized to avoid extreme estimates in a sparse data setting. 
 
We show how these constraints are constructed an how they are applied as penalizations on 
the Negative Binomial log-likelihood function ℓ(𝐧𝐧 | 𝜶𝜶,𝜷𝜷, 𝜃𝜃). 
 
Constraint 1: controlling the roughness in two dimensions 
 
If there are no abrupt changes in the reporting process, we expect the true reporting intensity 
to be a smooth surface in time of symptoms onset and in the reporting delay dimension. We 
use this information to extrapolate the smooth surface outside the reporting trapezoid. 
 
The number of the univariate B-spline basis functions 𝐾𝐾𝑇𝑇 and 𝐾𝐾𝐷𝐷 should be sufficiently large to 
capture all variations in the trend surface. To prevent overfitting as the number basis functions, 
and therefore the number of coefficients, increases, we regularize the estimation of the 
unknown coefficients 𝜶𝜶 with a roughness penalty. These penalized B-splines are called P-
splines1 which can straightforwardly be extended in into two dimensions2. The P-spline method 
uses B-splines as the basis for the regression and modifies the log-likelihood by a difference 
penalty on the regression coefficients. For computational reasons, usually a quadratic penalty is 
taken. The penalized Negative Binomial log-likelihood function for the bivariate smoothing then 
becomes 
 

ℓ∗ = ℓ(𝐧𝐧 | 𝜶𝜶,𝜷𝜷,𝜃𝜃) − 1
2
𝜆𝜆𝑇𝑇𝜶𝜶′𝐃𝐃𝑇𝑇

′ 𝐃𝐃𝑇𝑇𝜶𝜶 −
1
2
𝜆𝜆𝐷𝐷𝜶𝜶′𝐃𝐃𝐷𝐷

′ 𝐃𝐃𝐷𝐷𝜶𝜶. (1) 
 
Matrices 𝐃𝐃𝑇𝑇 and 𝐃𝐃𝐷𝐷 are difference operator matrices working on vector 𝜶𝜶 in the direction of 
the time of symptoms onset and direction of the reporting delay, respectively. They are 
obtained by first calculating 𝑚𝑚th order difference operator matrices 𝐃𝐃𝑇𝑇

(𝑚𝑚𝑇𝑇) and 𝐃𝐃𝐷𝐷
(𝑚𝑚𝐷𝐷), having 

dimensions (𝐾𝐾𝑇𝑇 −𝑚𝑚𝑇𝑇) ×  𝐾𝐾𝑇𝑇 and (𝐾𝐾𝐷𝐷 −𝑚𝑚𝐷𝐷)  ×  𝐾𝐾𝐷𝐷 respectively, corresponding to the 



 
 

Page 2 
 

regression  coefficients of the univariate B-splines bases, and then expand these matrices using 
Kronecker products: 
 

𝐃𝐃𝑇𝑇 = 𝐈𝐈𝐾𝐾𝐷𝐷 ⊗ 𝐃𝐃𝑇𝑇
(𝑚𝑚𝑇𝑇) and 𝐃𝐃𝐷𝐷 = 𝐃𝐃𝐷𝐷

(𝑚𝑚𝐷𝐷)  ⨂𝐈𝐈𝐾𝐾𝑇𝑇. (2) 
 
Hence, 𝐃𝐃𝑇𝑇 and 𝐃𝐃𝐷𝐷 get dimensions (𝐾𝐾𝑇𝑇 −𝑚𝑚𝑇𝑇)𝐾𝐾𝐷𝐷  ×  𝐾𝐾𝑇𝑇𝐾𝐾𝐷𝐷 and (𝐾𝐾𝐷𝐷 −𝑚𝑚𝐷𝐷)𝐾𝐾𝑇𝑇  ×  𝐾𝐾𝑇𝑇𝐾𝐾𝐷𝐷 
respectively. 
 
An important feature of our method is that extrapolation is a natural consequence of the 
smoothing process. The choice of the difference order is critical here, since it determines the 
form of the extrapolation: by penalizing the first order differences of adjacent coefficients, a 
trend is extrapolated as a constant, while penalizing second order differences, a trend is 
extrapolated linearly3. For example, taking 𝑚𝑚𝑇𝑇 =  𝑚𝑚𝐷𝐷 = 2, our default choice, our method 
allows linear extrapolation (on a log-scale) of possible trends in both the time of symptoms 
onset (epidemic trends) and reporting delay (shape of the reporting delay distribution). 
 
Finally, the roughness is controlled by the smoothing parameters 𝜆𝜆𝑇𝑇 and 𝜆𝜆𝐷𝐷, which can be 
found by minimizing an information criterion. See the section on parameter estimation. 
 
Constraint 2: unimodal distribution of reporting delay times 
 
Because the surface can become unstable when information about the true number of 
reported symptomatic cases is missing, extrapolation is challenging. However, we have prior 
information on the reporting process. We know it has low intensities at both short delays and 
long delays, and shows a maximum in the reporting intensity somewhere in between. We may 
therefore assume that the intensity of the reporting process is unimodal in the reporting delay 
dimension and can expect that this unimodality will be valid outside the reporting trapezoid. 
  
Mathematically, a unimodality of the reporting delay distribution is reached by forcing a log-
concave shape of the smooth surface in the reporting delay dimension. This constraint can be 
enforced by introducing asymmetric penalties4,5. To ensure concavity on a log-scale we only 
allow negative second order differences of 𝜶𝜶 in the reporting delay dimension. The modified 
penalized log-likelihood function now becomes 
 

ℓ∗∗ = ℓ∗ − 𝜅𝜅𝑢𝑢𝜶𝜶′𝐃𝐃𝑢𝑢
′ 𝐕𝐕𝑢𝑢𝐃𝐃𝑢𝑢𝜶𝜶. (3) 

 
The penalty looks very much like the roughness penalty in equation (1). Matrix 𝐃𝐃𝑢𝑢 = 𝐃𝐃𝑢𝑢

(2)⨂𝐈𝐈𝐾𝐾𝑇𝑇 
is identical to the one in equation (2); a second order difference operator matrix working on 𝜶𝜶 
in the reporting delay dimension. The introduction of weight matrix 𝐕𝐕𝑢𝑢 = diag(𝐯𝐯𝑢𝑢) enforces 
the unimodality by 
 

𝐯𝐯𝑢𝑢 = �1 if 𝐃𝐃𝑢𝑢𝜶𝜶 ≥ 0
0 if 𝐃𝐃𝑢𝑢𝜶𝜶 < 0. (4) 
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Typically 𝜅𝜅𝑢𝑢 = 106, which results in a very high log-likelihood if the surface is not concave in the 
reporting delay dimension. This ensures concavity. In turn, the log-link function ensures log-
concavity and therefore unimodality. 
 
Constraint 3: boundary constraints 
 
The prior information on the reporting process can further be utilized in the form of boundary 
constraints. First, we know that the reporting intensity should go to (approach) zero at the 
maximum delay, because almost all cases should have been reported by then. Second, given 
the type of infection and the health reporting system, we already have an idea of what the 
delay mechanism will be. For example, for Influenza we expect delays in the order of days. 
 
A rough guess of a prior distribution for the reporting delay is sufficient to construct the 
boundary constraints. For example, from historical data on measles we know that the average 
reporting delay is approximately 10 days and almost all cases, say 99%, get reported within six 
weeks (42 days)6.  Furthermore, at 𝑡𝑡 = 1, day one of an outbreak, we can assume that at most 
one case can be expected. This constraint is important to obtain stable estimates of the trend 
surface, as only few observations are available. On the other hand, in case we are dealing with 
endemic data, more cases can be expected at 𝑡𝑡 = 1 and this constrained becomes less 
important as more information is available. Without having to know the exact numbers and 
under the assumption that reporting delay follows a Negative Binomial distribution (not to be 
confused with the distribution for 𝑛𝑛𝑡𝑡,𝑑𝑑), these numbers entirely define the value of 𝜇𝜇1,𝑑𝑑 for 
𝑑𝑑 = 0, … ,𝐷𝐷. At 𝑑𝑑 = 𝐷𝐷, the maximum delay, we set 𝜇𝜇𝑡𝑡,𝐷𝐷 = 𝜇𝜇1,𝐷𝐷 for 𝑡𝑡 = 1, … ,𝑇𝑇. The smooth 
surface is not allowed to be larger than these values. Mathematically, these boundary 
constraints can again be enforced with asymmetric penalties on 𝜶𝜶. 
 
Let 𝐠𝐠 be a vector of length 𝑇𝑇(𝐷𝐷 + 1) with the predefined maximum log-reporting intensities. 
We then must ensure that 𝐁𝐁𝜶𝜶 < 𝐠𝐠 at the locations where this constraint should be applied. We 
can now write the modified penalized log-likelihood function as 
 

ℓ∗∗∗ = ℓ∗∗ − 1
2
𝜅𝜅𝑏𝑏(𝐁𝐁𝜶𝜶 − 𝐠𝐠)′𝐕𝐕𝑏𝑏(𝐁𝐁𝜶𝜶 − 𝐠𝐠), (5) 

 
where 𝐕𝐕𝑏𝑏 = diag(𝐛𝐛𝐯𝐯𝑏𝑏) is a matrix with asymmetric weights specified as  
 

𝐯𝐯𝑏𝑏 = �1 if 𝐁𝐁𝜶𝜶 ≥ 𝐠𝐠
0 if 𝐁𝐁𝜶𝜶 < 𝐠𝐠, (6) 

 
and 𝐛𝐛 is a vector of length 𝑇𝑇(𝐷𝐷 + 1) with elements equal to 1 at the locations where the 
constraint should be applied, and 0 otherwise. Typically, 𝜅𝜅𝑏𝑏 = 106. A large penalty will be 
activated at all locations where 𝐁𝐁𝜶𝜶 ≥ 𝐠𝐠 ∧  𝐛𝐛 = 1. This will ensure that the smooth surface 
remains below the pre-specified intensities at the given locations, here at 𝑡𝑡 = 1 ∧  𝑑𝑑 = 0, … ,𝐷𝐷 
and 𝑡𝑡 = 1, … ,𝑇𝑇 ∧  𝑑𝑑 = 𝐷𝐷. 
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Constraint 4: avoiding extreme parameter estimates 
 
The final prior information is that very large values are impossible: the smooth surface and the 
size the day-of-the-week effects cannot be infinitely large or small. At the beginning of an 
outbreak, only little information on the day-of-the-week effect is provided by the data, which 
may result in large estimates. To obtain finite estimates of the day-of-the-week effects 𝜷𝜷, we 
add a ridge penalty with a small fixed parameter 𝜅𝜅𝑤𝑤 = 0.01. Furthermore, to make the 
estimation of the smooth surface numerically stable, a ridge penalty with a very small fixed 
smoothing parameter 𝜅𝜅𝑠𝑠 = 10−6 is added to the log-likelihood. The modified penalized log-
likelihood function then becomes 
 

ℓ∗∗∗∗ = ℓ∗∗∗ − 1
2
𝜅𝜅𝑤𝑤𝜷𝜷′𝜷𝜷 −

1
2
𝜅𝜅𝑠𝑠𝜶𝜶′𝜶𝜶. (7) 

 
Parameter estimation 
 
The smooth surface and the day-of-the-week effects are estimated simultaneously. We can 
write our method as a penalized generalized linear model, with a Negative Binomial error 
distribution, a log-link function, a model matrix and, additionally, a penalty matrix. We can 
therefore use the penalized version of the iterative weighted least squares (PIWLS) algorithm. 
Given the smoothing parameters 𝜆𝜆𝑇𝑇 and 𝜆𝜆𝐷𝐷 and overdispersion parameter 𝜃𝜃 in an outer loop, 
the regression coefficients 𝜶𝜶 and 𝜷𝜷 are found in an inner loop by iteratively solving the system 
 

(𝐔𝐔′𝐖𝐖𝐔𝐔 + 𝐏𝐏) �
𝜶𝜶
𝜷𝜷� = 𝐔𝐔′𝐖𝐖𝐖𝐖 + �

𝜅𝜅𝑏𝑏𝑩𝑩′𝐕𝐕𝑏𝑏𝐠𝐠
𝟎𝟎𝑘𝑘𝑤𝑤

�. (8) 

 
Here 𝐔𝐔 = [𝐁𝐁|𝐗𝐗] is the combined model matrix of the smooth surface and the day-of-the-week 
effects. 𝐖𝐖 = 𝜼𝜼 + 𝐖𝐖−1(𝐧𝐧 − 𝝁𝝁) is the working variable and 𝐖𝐖 = diag(𝐫𝐫𝐫𝐫) is the weight matrix. 
For the Negative Binomial likelihood, the weight vector is given by 𝐫𝐫 = 𝝁𝝁2/(𝝁𝝁 + 𝝁𝝁2/𝜃𝜃). 
 
We introduce additional weights 𝑟𝑟𝑡𝑡,𝑑𝑑 (𝐫𝐫 in vector notation), which take the value 1 if 𝑡𝑡 ≤ 𝑇𝑇 − 𝑑𝑑, 
i.e., the element lies within the reporting trapezoid, and 0 otherwise. The zero weights disable 
contributions to the log-likelihood function outside the reporting trapezoid, but the 
smoothness penalty automatically generates predictions there. 
 
Because we have separated the smooth surface from the day-of-the-week effects, the penalty 
matrix 𝐏𝐏 is a block diagonal matrix, given by 
 
𝐏𝐏 = blockdiag(𝜆𝜆𝑇𝑇𝐃𝐃𝑇𝑇

′ 𝐃𝐃𝑇𝑇 + 𝜆𝜆𝐷𝐷𝐃𝐃𝐷𝐷
′ 𝐃𝐃𝐷𝐷 + 𝜅𝜅𝑢𝑢𝐃𝐃𝑢𝑢

′ 𝐕𝐕𝑢𝑢𝐃𝐃𝑢𝑢 +  𝜅𝜅𝑏𝑏𝑩𝑩′𝐕𝐕𝑏𝑏𝑩𝑩 + 𝜅𝜅𝑠𝑠𝐈𝐈𝐾𝐾𝑇𝑇𝐾𝐾𝐷𝐷 , 𝜅𝜅𝑤𝑤𝐈𝐈𝐾𝐾𝑊𝑊). (9) 
 
The overdispersion parameter 𝜃𝜃 is found by maximizing the log-likelihood given the current 
estimates of 𝜶𝜶 and 𝜷𝜷. Smoothing parameters 𝜆𝜆𝑇𝑇 and 𝜆𝜆𝐷𝐷 are found by minimizing the Bayesian 
information criterion (BIC) using a greedy grid search algorithm7. The BIC is given by 
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𝐵𝐵𝐵𝐵𝐵𝐵 = −2ℓ∗∗∗∗ + 𝑒𝑒𝑑𝑑𝑒𝑒 log�∑ ∑ 𝑟𝑟𝑡𝑡,𝑑𝑑

𝐷𝐷
𝑑𝑑=0

𝑇𝑇
𝑡𝑡=1 �, (10) 

 
where effective degrees of freedom 𝑒𝑒𝑑𝑑𝑒𝑒8 is obtained by 
 

𝑒𝑒𝑑𝑑𝑒𝑒 = trace[(𝐔𝐔′𝐖𝐖𝐔𝐔 + 𝐏𝐏)−1𝐔𝐔′𝐖𝐖𝐔𝐔]. (11) 
 
Alternatively, the Akaike information criterion (AIC) could be used, but there is evidence that 
the AIC tends to undersmooth the data9. 
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eFigures 
 

 
eFigure 1. Day-of-the-week effects expressed as rate ratios including 95% confidence intervals. 
Nowcast date is August 10, 2013. Monday is taken as the reference day (RR = 1). 
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eFigure 2. PIT histograms showing the performance of nowcasts during the Measles outbreak. 
Columns: growth phase, peak phase and decline phase of the outbreak. Rows: penalization of 
the 1st order and 2nd order differences on the adjacent coefficients in the time of symptoms 
onset dimension. 
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