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In what follows, we denote by I the indicator function and by Y® the counterfactual or potential
outcome that would be realised if, possibly contrary to fact, A were set to a. Superscripts are
reserved for assigned treatment levels rather than powers. For example, YZ(5) is the counterfactual
outcome Y'! if statement S is true and is Y otherwise. We consider treatment assignment rules that
map the vector X of covariate vector L and an error term ¢ to the value of 0 or 1. We generally
require that & be independent of (Y! —Y? L) and uniformly distributed between 0 and 1, so that for
fixed p € [0,1], I(¢ < p) takes the Bernoulli distribution with parameter p and, as such, behaves like
an independent (unfair) coin toss.

Lemma 1. Let X be the support of X := (L,¢) and suppose that (Y' —YO) Il e|L. If Xy C X C X
such that (L,e) € Xy = E[Y' = YO|L] > 0, then R[Y!(X€X)] > E[YI(X€X0)] . Also, for all X' C X,
we have E[YI(XEX’/\E[W—Y0|L]>0)] > E[yI(XGX’)]'

Proof. Define Xy and A} as indicated above, so that
E[yI(XEXl)] _ [Y[(XEXo\/XEAﬁ\XO)]

YO +E[(Y' - YOI(X € AV X € X\AD))

YO+ E[(Y - YOI(X € )]+ E[(Y! - YOI(X € X1\ A)]

YIXEW] L R[(Y! — YO I(X € X1\ X))

[
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If Pr(X € X1\Ap) > 0, then

E[(Y!' - YOI(X € X\X)] =E[Y! =YX € 2\ A Pr(X € 21\ Ap)
=E{E[Y' - Y°|L, ]| X € X1\ AL} Pr(X € A1\&))
=E{E[Y' - Y°|L]| X € X1\ X} Pr(X € X1\&),

which is strictly positive, because the inner expectation is strictly positive on (any subset of) Xj.
Also, if Pr(X € &;1\Ap) = 0, then E[(Y! — YO)I(X € A;\Ap)] = 0. In either case, E[Y/(X€X)] >
E[y[(XGXO)]‘

As for the last statement, fix some &’ C X, let X" = {X C X : E[Y! — Y°|L] > 0} and observe

E[YI(XEX’/\E[Yl YO\L]>0] [YI—I(XGX\X’\/XGX\X”)]

Y4 E(YY-YHI(X e X\X' vV X € X\X"))

Y +E[(Y?-YHI(X € X\X' V X € (X\X")\(X\X))]
YHHE[(Y?-YHI(X e X\X)] +E[(Y° - YHI(X € x"\X")]

VXY LR[(Y) — YD I(X € &\

I
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with E[(Y? — Y1) I(X € X\X")] = 0 if Pr(X € X'\X") = 0 and, if Pr(X € X\x") > 0,

E[(Y? - YHI(X e X\X")) =E[Y° - Y| X € X\X"]Pr(X € X"\ X")
=E{-E[Y'-YL,e|X € &"\x"} Pr(X € X\X")
=E{ -E[Y'-YYL]|X € A"\X"} Pr(X € X\X").

Because the inner expectation is strictly negative on (any subset of) X\ X", we have E[(Y?-Y!1)I(X €
X\X")] > 0if Pr(X € X'\X") > 0. Hence, E[y!(XeX' AEYVI=YOILI>0)] > Ry Xe€X] ag desired. O
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Lemma 2. Let X be the support of X := (L,e) and let Cost be a deterministic, positive function
of L such that E[Cost(L)] € R. For some positive real T < E[Cost(L)], define G to be the set
of all deterministic functions g : X — {0,1} such that E[Cost(L)g(X)] = 7. Suppose that ¢ AL
(Y! —YY L), that ¢ ~ Uniform[0,1] and that E[Y! — YO|L] is defined almost surely. Let h(L) =
E[Y® —YP|L]/Cost(L) and define g* such that

1 if h(L) > k,
((L,¢)) 1 if h(L) =k ANe <p,
0 if h(L) <k
for all (L,e) € X, and let k = —oo denote that h(L) > k is necessarily true. Then, there exist

ke RU{—oo} and p € [0,1] such that g* € G.

Proof. If 7 = E[Cost(L)], then letting k = —oo and p = 0 gives the result. So assume that 7 <
E[Cost(L)].
Now, let
[k~ E[Cost(L)I(h(L) > k)]
and K ={keR: f(k) <7}

Note that f is upper semi-continuous (which can be seen to hold because f is left continuous with
right limits and monotonically non-increasing). Since upper semi-continuity of f implies {z € R :
f(z) <y} is open for every y € R, we see that R\ K is closed.

To see that R\ K is nonempty, note that, by the dominated convergence theorem, limy_, o, f(k) =
E[Cost(L)] > 7. Hence, there exists kg > —oo such that f(kg) > 7, which in turn implies that R\ K
is non-empty. Moreover, limg_,, f(k) = 0 < 7, and so there exists a k; such that f(k;) < 7. Hence,
R\ K is bounded above.

Since R\ K is closed, non-empty, and bounded above, we see that k := sup R\ K belongs to R\ K,
which implies that f(k) > 7. The proof is complete if we can show that there exists a p € [0, 1] such
that 7 = E[Cost(L)g*((L,€))|, where we note that ¢g* depends on the choice of p. To see that this is
the case, first note that

E[Cost(L)g*((L,e))] = E[Cost(L)I(h(L) > k)] + pE[Cost(L)I(h(L) = k)]
= (1 —p)E[Cost(L)I(h(L) > k)] + pf(k)
=(1-p)lim FOE) +pf (k).
Now, for any k" > k, it holds that ' € K, implying that f(k’) < 7. Hence, limy  f(K') < 7.

Combining this fact with the fact that f(k) > 7, we see that there exists a p € [0,1] such that
(1 —p)limy i f(K') + pf(k) = 7. This completes the proof. O

Remark. The constraint 7 < E[Cost(L)] in Lemma [2]is weaker than, and so may me replaced with,
7 <E[Cost(L)I(E[Y' —Y°L] > 0)].

Theorem. Consider some positive real 7. In the setting of Lemma |2 except with G defined to be
the set of all deterministic functions g : X — {0,1} such that E[Cost(L)g(X)] < 7, (i) there exist
k€ (0,00) and p € [0,1] such that g* € G and (ii)

g* € argmax E[y 9],
9€g
Proof. Since Y9X) = Y0 4 (Y1 — Y9)g(X) by consistency, we have
E[Y/X] =E[Y° + (Y! - Y%)g(X)]

—E[Y°] +E[(Y' - YO)Q(X)]
=E[Y°] +E{E[(Y" - Y*)g(X)|g(X)]}
—E[Y*] + E[Y! - Y9)g(X) = 1]E[g(X

E[Y! - Y0|g(X)
E[Cost(L)|g(X)

1
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=E[Y°] + ]] E[Cost(L)g(X)].



Lemma IH suggests choosing among all g € G such that E[Cost(L)g(X)] = min {7, E[Cost(L)I(E[Y! -
YYL] > 0)]}. Let G’ be the set of all such g. Since E[Y?] and E[Cost(L)g(X)] are invariant under
changes in g € G/,

argmax E[Y9)] D arg max
s BT 2 e Bl ot Dlo(X)

E[Y! - Y0lg(X) = 1]
1]
Part (i) now follows from Lemma [2| In the remainder of this proof, we show that (ii) holds also.
It suffices to show that

E[Y! — YO[g(x) = 1
1]

g" € arg max
gegr E[Cost(L)|g(X)

To show that the above expression is true, consider first any non-empty Xp, X1 € X such that
E[Cost(L)I(X € Xp)] = E[Cost(L)I(X € X1)] = 7’ for some 7" € R,. It holds that

7 = E[Cost(L)I(X € X))
E[Cost(L)I(X € Xo N A1) + Cost(L)I(X € Ap\X1)]
E[Cost(L)| X € Xy N X1 Pr(X € Xy N &) + E[Cost(L)| X € Xp\X1] Pr(X € Ap\4&))

and, similarly,
— E[COSt(L)’X e AN Xl] PI‘(X e AN Xl) + E[COSt(L)‘X S Xl\Xo] PI'(X S Xl\Xo),

so that E[Cost(L)|X € X\X1] Pr(X € Ap\X1) = E[Cost(L)|X € X1\Xp] Pr(X € X1\Ap). Therefore,
for there exist a € R and b, ¢ € Ry U {0} such that b+ ¢ # 0 and for all ¢ € {0,1},

E[Y!-Y'X € x]
E[Cost(L)| X € X;]
EY'-YX e XinX ;] Pr(X € X1|X € &) +E[Y! - YO X € X,\X1_;] Pr(X & X1_| X € &)
r(X € X)X € &) + E[Cost(L)| X € X;\X1_;]Pr(X € X1 _;|X € X))
(X e X1, NX)+E[Y! - Y9X € X\ X1_i] Pr(X € Xi\X1_;)
E[Cost(L)|X € XN X1—;] Pr(X € X1_; N X;) + E[Cost(L)| X € X;\X1_;] Pr(X € X;\X1-)
a+E[Y! - YOX € X\ |E[Cost(L)|X € X;\X1_i]~1b
c+b '

N E[COSt(L)|X e XN lei]
EY'-YoX eXinX_,

P
P
P
P

This readily shows that

E[Yl-Y'XeX] EY'-Y°Xex] E[¥'-Y°XeX\x] E[Y!-Y'X e\
E[Cost(L)|X € X _ E[Cost(L)|X € X1]  E[Cost(L)|X € Xo\X1] ~ E[Cost(L)|X € X1\ Xo]
(1)

for any non-empty Xy, X1 C X such that E[Cost(L)I(X € Xp)] = E[Cost(L)I(X € Xy)] = 7' for some
e R+.

Let Xy = {X € X : ¢"(X) = 1}. Suppose, by way of contradiction, that there exists X; such that
E[Cost(L)I(X € Xy)] = E[Cost(L)I(X € X1)] and

E[Y! - YO|X € %] _E[Y!-YO|X € 2]
E[Cost(L)|X € Xy)] ~ E[Cost(L)|X € 1]’

so that, by ,

E[Yl — YOIX S Xo\Xl] E[Yl — YO’X S Xl\Xo] 9
E[Cost(L)| X € Xo\X1] ~ E[Cost(L)|X € X\ Xo] @)




Sets Xp\AX1 and A7\ are disjoint and E[Cost(L)I(X € Xp\X1)] = E[Cost(L)I(X € X1\Ap)]. In
addition, for all non-empty subsets A C Xp\ A7 and X] C X1\ X, we have, by construction of Ay and
disjointedness, that

E[Y!—YO|L)

1_ 0
inf {E[Y - Cost(L)

: [t >
Cosi(L) X e XO} > sup{

:Xeﬂ} (3)

Let f(L) =E[Y! - YP|L] and g(L) = Cost(L), so that h(L) = f(L)/g(L), and observe that

s e ~Elan mae <Y
> afur {07 % e gt e 4
= {7 X e Bl S X e 4
— inf {h(L) X e Xé} (@)
Similarly, we have
Eﬁégg i ;ﬂ < sup {h(L) X e X{}. (5)

Taken together, , and imply

E(E[' - YO|Z]1X € 4§} E{E[Y' - Y°|L]|X € X}
E[Cost(L)|X € X}] —  El[Cost(L)| X € X]]

which, by assumption that (Y1 —Y? L) I ¢ (and, in turn, (Y! —Y?) 1L ¢|L by weak union), implies

E[Y!-Y'X € X - EY!-Y'X € x{]
E[Cost(L)|X € X}] ~ E[Cost(L)|X € &]]

In particular, this implies

E[Y' - Y0X € X\ - E[Y' - Y%X € X1\ X)]
E[COSt(L)’X S Xo\Xl] - E[COSt(L)’X S Xl\Xo] .

However, in view of , this poses a contradiction. Hence, for all g € G’, we have

E[Y! - YOlg*(X) =1] _ E[Y' - ¥°lg(x) = 1]
E[Cost(L)|g"(X) = 1] = E[Cost(L)|g(X) = 1]

so that g* € arg max E[YQ(X)], as desired. O
g€eg
The counterexample to the following proposition suggests that the a greedy approach need not
optimize mean potential outcomes with multiple treatment levels and cost or resource constraints.

Proposition. Let A be a finite set that includes 0 and denote by X the support of X := (L,e). Fora €
A\{0}, let Cost, be a deterministic, positive function of L such that E[Cost,(L)] € R. Let I denote
the indicator function and define G to be the set of all deterministic functions g : X — A such that
E[Costo(L)I(9(X) = a)] = 74 for all a € A\{0} and some positive reals T, < E[Costq(L)]. Suppose
(Y1 —YO) 1 e|L, E[Y1— YO|L] € R and e|L ~ Uniform|0, 1]. Let ho(L) = E[Y® — Y°|L] /Cost,(L)
for all a € A\{0} and define g* such that

. min{ arg max ha(L)} if P(a, L) for some a € A\{0},
9°((L;e)) = a€A\{0}P(a.L)

0 otherwise



for all (L,e) € X and where P(a, L) is true if and only if ha(L) > ko V [ha(L) = ko A e < p|. Then,
(1) there exist k, € RU{—o0} and p, € [0,1] for a € A\{0} such that g* € G and (ii)

g* € argmax E[YQ(X)].
g€eg

Counterezample. Let A ={0,1,2} and suppose L is binary with Pr(L = 1) = 1/2. Suppose also that
Coste(L) =1 and that 7, = 1/4 for all a € A\{0}. Suppose further that

0 if a=0, oo _
5 ita=1nL=0 L e iniot
E[Y*|L] =4 4 ifa=1AL=1, sothat he(L)= o S
A ifa=2AL=0 4 ita=2NL=0,
) AT - 1 ifa=2AL=1.

ifa=2AL=1,

Suppose now that ¢g* € G. Then, k; = 5, ko = 1 and p; = po = 1/2. Indeed, if k; > 5, then
P(1,L) is false for all L and, so, E[¢*(X) =1] =0 # ;. If k; <5, then P(1, L) is true for all L and
Elg*(X) = 1] = E[¢g"(X) = 1|/L = 0]/2+ E[¢*(X) = 1|L =1]/2 =1 # 7. If k; =5, then P(1,L) is
true if and only if L =0 and € < p, so E[¢*(X) = 1] = Pr(L =0,e < p) = Pr(L = 0)Pr(e < p) = p/2
and p/2 = 71 = 1/4 if and only if p = 1/2. Similar arguments establish that ko = 1 and ps = 1/2 if
g eqg.

Hence,

YO+ (Y =YOI(g"(X) =1) + (Y = Y)I(g"(X) = 2)]
YO +E[Y!-Y°¢"(X) =1]n +E[Y? - Y°|g*(X) = 2]
V' -V L=0,e<1/2]n +E[Y?-Y L =1,e<1/2]m
V' -Y°|L=0ln +E[Y?-Y°L=1]n
=5/4+1/4=15.

Now, define g : X — A such that

1 ifL=1Ane<1/2,
g(Le) =4 2 if L=0Ae<1/2,
0 otherwise,

so that E[g(X) =1] =7 and E[g(X) = 2] = 7». But

E[Yg(X)] = E[Yo] —|—E[Y1 _ Y0|§(X) _ 1}7_1 —I—E[YQ . Y0|§(X) _ 2}7_2
=E[Y' - YL =1]n +E[Y? - Y°|L = 0]
=4/44+4/4=2.

Hence, E[Y9X)] > E[Y9 ()] and § € G and, so, g* ¢ argmax E[Y9(X)]. O
&Y



