eAppendix to 'RE: Selecting optimal subgroups for treatment using many covariate'

B.B.L. Penning de Vries; Rolf H.H. Groenwold; Alex Luedtke

In what follows, we denote by I the indicator function and by Y^a the counterfactual or potential outcome that would be realised if, possibly contrary to fact, A were set to a. Superscripts are reserved for assigned treatment levels rather than powers. For example, $Y^{I(S)}$ is the counterfactual outcome Y^1 if statement S is true and is Y^0 otherwise. We consider treatment assignment rules that map the vector X of covariate vector L and an error term ε to the value of 0 or 1. We generally require that ε be independent of $(Y^1 - Y^0, L)$ and uniformly distributed between 0 and 1, so that for fixed $p \in [0,1]$, $I(\varepsilon < p)$ takes the Bernoulli distribution with parameter p and, as such, behaves like an independent (unfair) coin toss.

Lemma 1. Let \mathcal{X} be the support of $X := (L, \varepsilon)$ and suppose that $(Y^1 - Y^0) \perp \!\!\! \perp \varepsilon \mid L$. If $\mathcal{X}_0 \subseteq \mathcal{X}_1 \subseteq \mathcal{X}$ such that $(L, \varepsilon) \in \mathcal{X}_1 \Rightarrow \mathbb{E}[Y^1 - Y^0 \mid L] > 0$, then $\mathbb{E}[Y^{I(X \in \mathcal{X}_1)}] \geq \mathbb{E}[Y^{I(X \in \mathcal{X}_0)}]$. Also, for all $\mathcal{X}' \subseteq \mathcal{X}$, we have $\mathbb{E}[Y^{I(X \in \mathcal{X}' \wedge \mathbb{E}[Y^1 - Y^0 \mid L] > 0)}] \geq \mathbb{E}[Y^{I(X \in \mathcal{X}')}]$.

Proof. Define \mathcal{X}_0 and \mathcal{X}_1 as indicated above, so that

$$\begin{split} \mathbb{E}\big[Y^{I(X\in\mathcal{X}_1)}\big] &= \mathbb{E}\big[Y^{I(X\in\mathcal{X}_0\vee X\in\mathcal{X}_1\backslash\mathcal{X}_0)}\big] \\ &= \mathbb{E}[Y^0] + \mathbb{E}\big[(Y^1-Y^0)I(X\in\mathcal{X}_0\vee X\in\mathcal{X}_1\backslash\mathcal{X}_0)\big] \\ &= \mathbb{E}[Y^0] + \mathbb{E}\big[(Y^1-Y^0)I(X\in\mathcal{X}_0)\big] + \mathbb{E}\big[(Y^1-Y^0)I(X\in\mathcal{X}_1\backslash\mathcal{X}_0)\big] \\ &= \mathbb{E}\big[Y^{I(X\in\mathcal{X}_0)}\big] + \mathbb{E}\big[(Y^1-Y^0)I(X\in\mathcal{X}_1\backslash\mathcal{X}_0)\big]. \end{split}$$

If $\Pr(X \in \mathcal{X}_1 \backslash \mathcal{X}_0) > 0$, then

$$\begin{split} \mathbb{E}[(Y^1 - Y^0)I(X \in \mathcal{X}_1 \backslash \mathcal{X}_0)] &= \mathbb{E}[Y^1 - Y^0 | X \in \mathcal{X}_1 \backslash \mathcal{X}_0] \Pr(X \in \mathcal{X}_1 \backslash \mathcal{X}_0) \\ &= \mathbb{E}\{\mathbb{E}[Y^1 - Y^0 | L, \varepsilon] \big| X \in \mathcal{X}_1 \backslash \mathcal{X}_0\} \Pr(X \in \mathcal{X}_1 \backslash \mathcal{X}_0) \\ &= \mathbb{E}\{\mathbb{E}[Y^1 - Y^0 | L] | X \in \mathcal{X}_1 \backslash \mathcal{X}_0\} \Pr(X \in \mathcal{X}_1 \backslash \mathcal{X}_0), \end{split}$$

which is strictly positive, because the inner expectation is strictly positive on (any subset of) \mathcal{X}_1 . Also, if $\Pr(X \in \mathcal{X}_1 \setminus \mathcal{X}_0) = 0$, then $\mathbb{E}[(Y^1 - Y^0)I(X \in \mathcal{X}_1 \setminus \mathcal{X}_0)] = 0$. In either case, $\mathbb{E}[Y^{I(X \in \mathcal{X}_1)}] \geq \mathbb{E}[Y^{I(X \in \mathcal{X}_0)}]$.

As for the last statement, fix some $\mathcal{X}' \subseteq \mathcal{X}$, let $\mathcal{X}'' = \{X \subseteq \mathcal{X} : \mathbb{E}[Y^1 - Y^0 | L] > 0\}$ and observe

$$\begin{split} \mathbb{E}\big[Y^{I(X\in\mathcal{X}'\wedge\mathbb{E}[Y^1-Y^0|L]>0)}\big] &= \mathbb{E}\big[Y^{1-I(X\in\mathcal{X}\backslash\mathcal{X}'\vee X\in\mathcal{X}\backslash\mathcal{X}'')}\big] \\ &= \mathbb{E}[Y^1] + \mathbb{E}\big[(Y^0-Y^1)I(X\in\mathcal{X}\backslash\mathcal{X}'\vee X\in\mathcal{X}\backslash\mathcal{X}'')\big] \\ &= \mathbb{E}[Y^1] + \mathbb{E}\big[(Y^0-Y^1)I(X\in\mathcal{X}\backslash\mathcal{X}'\vee X\in(\mathcal{X}\backslash\mathcal{X}'')\backslash(\mathcal{X}\backslash\mathcal{X}'))\big] \\ &= \mathbb{E}[Y^1] + \mathbb{E}\big[(Y^0-Y^1)I(X\in\mathcal{X}\backslash\mathcal{X}')\big] + \mathbb{E}\big[(Y^0-Y^1)I(X\in\mathcal{X}'\backslash\mathcal{X}'')\big] \\ &= \mathbb{E}\big[Y^{X\in\mathcal{X}'}\big] + \mathbb{E}\big[(Y^0-Y^1)I(X\in\mathcal{X}'\backslash\mathcal{X}'')\big] \end{split}$$

with $\mathbb{E}[(Y^0 - Y^1)I(X \in \mathcal{X}' \setminus \mathcal{X}'')] = 0$ if $\Pr(X \in \mathcal{X}' \setminus \mathcal{X}'') = 0$ and, if $\Pr(X \in \mathcal{X}' \setminus \mathcal{X}'') > 0$,

$$\begin{split} \mathbb{E}[(Y^0 - Y^1)I(X \in \mathcal{X}' \backslash \mathcal{X}'')] &= \mathbb{E}[Y^0 - Y^1 | X \in \mathcal{X}' \backslash \mathcal{X}''] \Pr(X \in \mathcal{X}' \backslash \mathcal{X}'') \\ &= \mathbb{E}\{ - \mathbb{E}[Y^1 - Y^0 | L, \varepsilon] | X \in \mathcal{X}' \backslash \mathcal{X}''\} \Pr(X \in \mathcal{X}' \backslash \mathcal{X}'') \\ &= \mathbb{E}\{ - \mathbb{E}[Y^1 - Y^0 | L] | X \in \mathcal{X}' \backslash \mathcal{X}''\} \Pr(X \in \mathcal{X}' \backslash \mathcal{X}''). \end{split}$$

Because the inner expectation is strictly negative on (any subset of) $\mathcal{X} \setminus \mathcal{X}''$, we have $\mathbb{E}[(Y^0 - Y^1)I(X \in \mathcal{X}' \setminus \mathcal{X}'')] > 0$ if $\Pr(X \in \mathcal{X}' \setminus \mathcal{X}'') > 0$. Hence, $\mathbb{E}[Y^{I(X \in \mathcal{X}' \wedge \mathbb{E}[Y^1 - Y^0|L] > 0)}] \geq \mathbb{E}[Y^{X \in \mathcal{X}'}]$, as desired. \square

Lemma 2. Let \mathcal{X} be the support of $X := (L, \varepsilon)$ and let Cost be a deterministic, positive function of L such that $\mathbb{E}[Cost(L)] \in \mathbb{R}$. For some positive real $\tau \leq \mathbb{E}[Cost(L)]$, define \mathcal{G} to be the set of all deterministic functions $g: \mathcal{X} \to \{0,1\}$ such that $\mathbb{E}[Cost(L)g(X)] = \tau$. Suppose that $\varepsilon \perp L$ $(Y^1 - Y^0, L)$, that $\varepsilon \sim \text{Uniform}[0,1]$ and that $\mathbb{E}[Y^1 - Y^0|L]$ is defined almost surely. Let $h(L) = \mathbb{E}[Y^a - Y^0|L]/Cost(L)$ and define g^* such that

$$g^*((L,\varepsilon)) = \begin{cases} 1 & \text{if } h(L) > k, \\ 1 & \text{if } h(L) = k \land \varepsilon < p, \\ 0 & \text{if } h(L) < k \end{cases}$$

for all $(L, \varepsilon) \in \mathcal{X}$, and let $k = -\infty$ denote that h(L) > k is necessarily true. Then, there exist $k \in \mathbb{R} \cup \{-\infty\}$ and $p \in [0, 1]$ such that $g^* \in \mathcal{G}$.

Proof. If $\tau = \mathbb{E}[Cost(L)]$, then letting $k = -\infty$ and p = 0 gives the result. So assume that $\tau < \mathbb{E}[Cost(L)]$.

Now, let

$$f: k \mapsto \mathbb{E}[Cost(L)I(h(L) \ge k)]$$

and $K = \{k \in \mathbb{R} : f(k) < \tau\}.$

Note that f is upper semi-continuous (which can be seen to hold because f is left continuous with right limits and monotonically non-increasing). Since upper semi-continuity of f implies $\{x \in \mathbb{R} : f(x) < y\}$ is open for every $y \in \mathbb{R}$, we see that $\mathbb{R} \setminus K$ is closed.

To see that $\mathbb{R}\setminus K$ is nonempty, note that, by the dominated convergence theorem, $\lim_{k\to-\infty} f(k) = \mathbb{E}[Cost(L)] > \tau$. Hence, there exists $k_0 > -\infty$ such that $f(k_0) \geq \tau$, which in turn implies that $\mathbb{R}\setminus K$ is non-empty. Moreover, $\lim_{k\to\infty} f(k) = 0 < \tau$, and so there exists a k_1 such that $f(k_1) < \tau$. Hence, $\mathbb{R}\setminus K$ is bounded above.

Since $\mathbb{R}\backslash K$ is closed, non-empty, and bounded above, we see that $k := \sup \mathbb{R}\backslash K$ belongs to $\mathbb{R}\backslash K$, which implies that $f(k) \geq \tau$. The proof is complete if we can show that there exists a $p \in [0,1]$ such that $\tau = \mathbb{E}[Cost(L)g^*((L,\varepsilon))]$, where we note that g^* depends on the choice of p. To see that this is the case, first note that

$$\mathbb{E}[Cost(L)g^*((L,\varepsilon))] = \mathbb{E}[Cost(L)I(h(L) > k)] + p\mathbb{E}[Cost(L)I(h(L) = k)]$$
$$= (1 - p)\mathbb{E}[Cost(L)I(h(L) > k)] + pf(k)$$
$$= (1 - p)\lim_{k' \mid k} f(k') + pf(k).$$

Now, for any $k' \geq k$, it holds that $k' \in K$, implying that $f(k') < \tau$. Hence, $\lim_{k' \downarrow k} f(k') \leq \tau$. Combining this fact with the fact that $f(k) \geq \tau$, we see that there exists a $p \in [0,1]$ such that $(1-p)\lim_{k' \downarrow k} f(k') + pf(k) = \tau$. This completes the proof.

Remark. The constraint $\tau \leq \mathbb{E}[Cost(L)]$ in Lemma 2 is weaker than, and so may me replaced with, $\tau \leq \mathbb{E}[Cost(L)I(\mathbb{E}[Y^1 - Y^0|L] > 0)]$.

Theorem. Consider some positive real τ . In the setting of Lemma [2], except with \mathcal{G} defined to be the set of all deterministic functions $g: \mathcal{X} \to \{0,1\}$ such that $\mathbb{E}[Cost(L)g(X)] \leq \tau$, (i) there exist $k \in (0,\infty)$ and $p \in [0,1]$ such that $g^* \in \mathcal{G}$ and (ii)

$$g^* \in \operatorname*{arg\,max}_{g \in \mathcal{G}} \, \mathbb{E}\big[Y^{g(X)}\big].$$

Proof. Since $Y^{g(X)} = Y^0 + (Y^1 - Y^0)g(X)$ by consistency, we have

$$\begin{split} \mathbb{E}\big[Y^{g(X)}\big] &= \mathbb{E}\big[Y^0 + (Y^1 - Y^0)g(X)\big] \\ &= \mathbb{E}\big[Y^0\big] + \mathbb{E}\big[(Y^1 - Y^0)g(X)\big] \\ &= \mathbb{E}\big[Y^0\big] + \mathbb{E}\big\{\mathbb{E}\big[(Y^1 - Y^0)g(X)\big|g(X)\big]\big\} \\ &= \mathbb{E}\big[Y^0\big] + \mathbb{E}\big[Y^1 - Y^0\big|g(X) = 1\big]\mathbb{E}\big[g(X)\big] \\ &= \mathbb{E}\big[Y^0\big] + \frac{\mathbb{E}\big[Y^1 - Y^0\big|g(X) = 1\big]}{\mathbb{E}\big[Cost(L)g(X) = 1\big]}\mathbb{E}\big[Cost(L)g(X)\big]. \end{split}$$

Lemma $\boxed{1}$ suggests choosing among all $g \in \mathcal{G}$ such that $\mathbb{E}[Cost(L)g(X)] = \min\{\tau, \mathbb{E}[Cost(L)I(\mathbb{E}[Y^1 - Y^0|L] > 0)]\}$. Let \mathcal{G}' be the set of all such g. Since $\mathbb{E}[Y^0]$ and $\mathbb{E}[Cost(L)g(X)]$ are invariant under changes in $g \in \mathcal{G}'$,

$$\underset{g \in \mathcal{G}}{\arg\max} \ \mathbb{E}\big[Y^{g(X)}\big] \supseteq \underset{g \in \mathcal{G}'}{\arg\max} \ \frac{\mathbb{E}\big[Y^1 - Y^0 \big| g(X) = 1\big]}{\mathbb{E}[Cost(L)|g(X) = 1]}.$$

Part (i) now follows from Lemma 2. In the remainder of this proof, we show that (ii) holds also. It suffices to show that

$$g^* \in \operatorname*{arg\,max}_{g \in \mathcal{G}'} \frac{\mathbb{E}[Y^1 - Y^0 | g(X) = 1]}{\mathbb{E}[Cost(L) | g(X) = 1]}.$$

To show that the above expression is true, consider first any non-empty $\mathcal{X}_0, \mathcal{X}_1 \subseteq \mathcal{X}$ such that $\mathbb{E}[Cost(L)I(X \in \mathcal{X}_0)] = \mathbb{E}[Cost(L)I(X \in \mathcal{X}_1)] = \tau'$ for some $\tau' \in \mathbb{R}_+$. It holds that

$$\tau' = \mathbb{E}[Cost(L)I(X \in \mathcal{X}_0)]$$

$$= \mathbb{E}[Cost(L)I(X \in \mathcal{X}_0 \cap \mathcal{X}_1) + Cost(L)I(X \in \mathcal{X}_0 \setminus \mathcal{X}_1)]$$

$$= \mathbb{E}[Cost(L)|X \in \mathcal{X}_0 \cap \mathcal{X}_1] \Pr(X \in \mathcal{X}_0 \cap \mathcal{X}_1) + \mathbb{E}[Cost(L)|X \in \mathcal{X}_0 \setminus \mathcal{X}_1] \Pr(X \in \mathcal{X}_0 \setminus \mathcal{X}_1)$$

and, similarly,

$$\tau' = \mathbb{E}[Cost(L)|X \in \mathcal{X}_0 \cap \mathcal{X}_1] \Pr(X \in \mathcal{X}_0 \cap \mathcal{X}_1) + \mathbb{E}[Cost(L)|X \in \mathcal{X}_1 \setminus \mathcal{X}_0] \Pr(X \in \mathcal{X}_1 \setminus \mathcal{X}_0),$$

so that $\mathbb{E}[Cost(L)|X \in \mathcal{X}_0 \setminus \mathcal{X}_1] \Pr(X \in \mathcal{X}_0 \setminus \mathcal{X}_1) = \mathbb{E}[Cost(L)|X \in \mathcal{X}_1 \setminus \mathcal{X}_0] \Pr(X \in \mathcal{X}_1 \setminus \mathcal{X}_0)$. Therefore, for there exist $a \in \mathbb{R}$ and $b, c \in \mathbb{R}_+ \cup \{0\}$ such that $b + c \neq 0$ and for all $i \in \{0, 1\}$,

$$\begin{split} &\frac{\mathbb{E}[Y^1 - Y^0 | X \in \mathcal{X}_i]}{\mathbb{E}[Cost(L) | X \in \mathcal{X}_i]} \\ &= \frac{\mathbb{E}[Y^1 - Y^0 | X \in \mathcal{X}_i \cap \mathcal{X}_{1-i}] \Pr(X \in \mathcal{X}_{1-i} | X \in \mathcal{X}_i) + \mathbb{E}[Y^1 - Y^0 | X \in \mathcal{X}_i \backslash \mathcal{X}_{1-i}] \Pr(X \not\in \mathcal{X}_{1-i} | X \in \mathcal{X}_i)}{\mathbb{E}[Cost(L) | X \in \mathcal{X}_i \cap \mathcal{X}_{1-i}] \Pr(X \in \mathcal{X}_{1-i} | X \in \mathcal{X}_i) + \mathbb{E}[Cost(L) | X \in \mathcal{X}_i \backslash \mathcal{X}_{1-i}] \Pr(X \not\in \mathcal{X}_{1-i} | X \in \mathcal{X}_i)} \\ &= \frac{\mathbb{E}[Y^1 - Y^0 | X \in \mathcal{X}_i \cap \mathcal{X}_{1-i}] \Pr(X \in \mathcal{X}_{1-i} \cap \mathcal{X}_i) + \mathbb{E}[Y^1 - Y^0 | X \in \mathcal{X}_i \backslash \mathcal{X}_{1-i}] \Pr(X \in \mathcal{X}_i \backslash \mathcal{X}_{1-i})}{\mathbb{E}[Cost(L) | X \in \mathcal{X}_i \cap \mathcal{X}_{1-i}] \Pr(X \in \mathcal{X}_{1-i} \cap \mathcal{X}_i) + \mathbb{E}[Cost(L) | X \in \mathcal{X}_i \backslash \mathcal{X}_{1-i}] \Pr(X \in \mathcal{X}_i \backslash \mathcal{X}_{1-i})} \\ &= \frac{a + \mathbb{E}[Y^1 - Y^0 | X \in \mathcal{X}_i \backslash \mathcal{X}_{1-i}] \mathbb{E}[Cost(L) | X \in \mathcal{X}_i \backslash \mathcal{X}_{1-i}]^{-1}b}{c + b}. \end{split}$$

This readily shows that

$$\frac{\mathbb{E}[Y^{1} - Y^{0}|X \in \mathcal{X}_{0}]}{\mathbb{E}[Cost(L)|X \in \mathcal{X}_{0}]} > \frac{\mathbb{E}[Y^{1} - Y^{0}|X \in \mathcal{X}_{1}]}{\mathbb{E}[Cost(L)|X \in \mathcal{X}_{1}]} \Leftrightarrow \frac{\mathbb{E}[Y^{1} - Y^{0}|X \in \mathcal{X}_{0} \setminus \mathcal{X}_{1}]}{\mathbb{E}[Cost(L)|X \in \mathcal{X}_{0} \setminus \mathcal{X}_{1}]} > \frac{\mathbb{E}[Y^{1} - Y^{0}|X \in \mathcal{X}_{1} \setminus \mathcal{X}_{0}]}{\mathbb{E}[Cost(L)|X \in \mathcal{X}_{1} \setminus \mathcal{X}_{0}]}$$

$$\tag{1}$$

for any non-empty $\mathcal{X}_0, \mathcal{X}_1 \subseteq \mathcal{X}$ such that $\mathbb{E}[Cost(L)I(X \in \mathcal{X}_0)] = \mathbb{E}[Cost(L)I(X \in \mathcal{X}_1)] = \tau'$ for some $\tau' \in \mathbb{R}_+$.

Let $\mathcal{X}_0 = \{X \in \mathcal{X} : g^*(X) = 1\}$. Suppose, by way of contradiction, that there exists \mathcal{X}_1 such that $\mathbb{E}[Cost(L)I(X \in \mathcal{X}_0)] = \mathbb{E}[Cost(L)I(X \in \mathcal{X}_1)]$ and

$$\frac{\mathbb{E}[Y^1 - Y^0 | X \in \mathcal{X}_0]}{\mathbb{E}[Cost(L) | X \in \mathcal{X}_0]} < \frac{\mathbb{E}[Y^1 - Y^0 | X \in \mathcal{X}_1]}{\mathbb{E}[Cost(L) | X \in \mathcal{X}_1]},$$

so that, by (1),

$$\frac{\mathbb{E}[Y^1 - Y^0 | X \in \mathcal{X}_0 \setminus \mathcal{X}_1]}{\mathbb{E}[Cost(L) | X \in \mathcal{X}_0 \setminus \mathcal{X}_1]} < \frac{\mathbb{E}[Y^1 - Y^0 | X \in \mathcal{X}_1 \setminus \mathcal{X}_0]}{\mathbb{E}[Cost(L) | X \in \mathcal{X}_1 \setminus \mathcal{X}_0]}.$$
 (2)

Sets $\mathcal{X}_0 \setminus \mathcal{X}_1$ and $\mathcal{X}_1 \setminus \mathcal{X}_0$ are disjoint and $\mathbb{E}[Cost(L)I(X \in \mathcal{X}_0 \setminus \mathcal{X}_1)] = \mathbb{E}[Cost(L)I(X \in \mathcal{X}_1 \setminus \mathcal{X}_0)]$. In addition, for all non-empty subsets $\mathcal{X}'_0 \subseteq \mathcal{X}_0 \setminus \mathcal{X}_1$ and $\mathcal{X}'_1 \subseteq \mathcal{X}_1 \setminus \mathcal{X}_0$, we have, by construction of \mathcal{X}_0 and disjointedness, that

$$\inf \left\{ \frac{\mathbb{E}[Y^1 - Y^0 | L]}{Cost(L)} : X \in \mathcal{X}_0' \right\} \ge \sup \left\{ \frac{\mathbb{E}[Y^1 - Y^0 | L]}{Cost(L)} : X \in \mathcal{X}_1' \right\}. \tag{3}$$

Let $f(L) = \mathbb{E}[Y^1 - Y^0|L]$ and g(L) = Cost(L), so that h(L) = f(L)/g(L), and observe that

$$\frac{\mathbb{E}[f(L)|X \in \mathcal{X}'_{0}]}{\mathbb{E}[g(L)|X \in \mathcal{X}'_{0}]} = \mathbb{E}\left[\frac{f(L)}{g(L)} \frac{g(L)}{\mathbb{E}[g(L)|X \in \mathcal{X}'_{0}]} \middle| X \in \mathcal{X}'_{0}\right] \\
\geq \mathbb{E}\left[\inf\left\{\frac{f(L)}{g(L)} : X \in \mathcal{X}'_{0}\right\} \frac{g(L)}{\mathbb{E}[g(L)|X \in \mathcal{X}'_{0}]} \middle| X \in \mathcal{X}'_{0}\right] \\
= \inf\left\{\frac{f(L)}{g(L)} : X \in \mathcal{X}'_{0}\right\} \mathbb{E}\left[\frac{g(L)}{\mathbb{E}[g(L)|X \in \mathcal{X}'_{0}]} \middle| X \in \mathcal{X}'_{0}\right] \\
= \inf\left\{h(L) : X \in \mathcal{X}'_{0}\right\}. \tag{4}$$

Similarly, we have

$$\frac{\mathbb{E}[f(L)|X \in \mathcal{X}_1']}{\mathbb{E}[g(L)|X \in \mathcal{X}_1']} \le \sup \left\{ h(L) : X \in \mathcal{X}_1' \right\}.$$
 (5)

Taken together, (3), (4) and (5) imply

$$\frac{\mathbb{E}\{\mathbb{E}[Y^1 - Y^0|L]|X \in \mathcal{X}_0'\}}{\mathbb{E}[Cost(L)|X \in \mathcal{X}_0']} \ge \frac{\mathbb{E}\{\mathbb{E}[Y^1 - Y^0|L]|X \in \mathcal{X}_1'\}}{\mathbb{E}[Cost(L)|X \in \mathcal{X}_1']},$$

which, by assumption that $(Y^1 - Y^0, L) \perp \varepsilon$ (and, in turn, $(Y^1 - Y^0) \perp \varepsilon \mid L$ by weak union), implies

$$\frac{\mathbb{E}[Y^1 - Y^0 | X \in \mathcal{X}'_0]}{\mathbb{E}[Cost(L) | X \in \mathcal{X}'_0]} \ge \frac{\mathbb{E}[Y^1 - Y^0 | X \in \mathcal{X}'_1]}{\mathbb{E}[Cost(L) | X \in \mathcal{X}'_1]}.$$

In particular, this implies

$$\frac{\mathbb{E}[Y^1 - Y^0 \big| X \in \mathcal{X}_0 \backslash \mathcal{X}_1]}{\mathbb{E}[Cost(L) \big| X \in \mathcal{X}_0 \backslash \mathcal{X}_1]} \ge \frac{\mathbb{E}[Y^1 - Y^0 \big| X \in \mathcal{X}_1 \backslash \mathcal{X}_0]}{\mathbb{E}[Cost(L) \big| X \in \mathcal{X}_1 \backslash \mathcal{X}_0]}.$$

However, in view of (2), this poses a contradiction. Hence, for all $g \in \mathcal{G}'$, we have

$$\frac{\mathbb{E}[Y^1-Y^0|g^*(X)=1]}{\mathbb{E}[Cost(L)|g^*(X)=1]} \geq \frac{\mathbb{E}[Y^1-Y^0|g(X)=1]}{\mathbb{E}[Cost(L)|g(X)=1]},$$

so that $g^* \in \underset{g \in \mathcal{G}}{\operatorname{arg \, max}} \mathbb{E}[Y^{g(X)}]$, as desired.

The counterexample to the following proposition suggests that the a greedy approach need not optimize mean potential outcomes with multiple treatment levels and cost or resource constraints.

Proposition. Let \mathcal{A} be a finite set that includes 0 and denote by \mathcal{X} the support of $X := (L, \varepsilon)$. For $a \in \mathcal{A}\setminus\{0\}$, let $Cost_a$ be a deterministic, positive function of L such that $\mathbb{E}[Cost_a(L)] \in \mathbb{R}$. Let I denote the indicator function and define \mathcal{G} to be the set of all deterministic functions $g: \mathcal{X} \to \mathcal{A}$ such that $\mathbb{E}[Cost_a(L)I(g(X) = a)] = \tau_a$ for all $a \in \mathcal{A}\setminus\{0\}$ and some positive reals $\tau_a \leq \mathbb{E}[Cost_a(L)]$. Suppose $(Y^1 - Y^0) \perp L \in [L, \mathbb{E}[Y^1 - Y^0|L] \in \mathbb{R}$ and $\varepsilon|L \sim \text{Uniform}[0, 1]$. Let $h_a(L) = \mathbb{E}[Y^a - Y^0|L]/Cost_a(L)$ for all $a \in \mathcal{A}\setminus\{0\}$ and define g^* such that

$$g^*((L,\varepsilon)) = \begin{cases} \min \left\{ \underset{a \in \mathcal{A} \setminus \{0\}: \mathcal{P}(a,L)}{\arg \max} \ h_a(L) \right\} & \text{if } \mathcal{P}(a,L) \text{ for some } a \in \mathcal{A} \setminus \{0\}, \\ 0 & \text{otherwise} \end{cases}$$

for all $(L, \varepsilon) \in \mathcal{X}$ and where $\mathcal{P}(a, L)$ is true if and only if $h_a(L) > k_a \vee [h_a(L) = k_a \wedge \varepsilon < p]$. Then, (i) there exist $k_a \in \mathbb{R} \cup \{-\infty\}$ and $p_a \in [0, 1]$ for $a \in \mathcal{A} \setminus \{0\}$ such that $g^* \in \mathcal{G}$ and (ii)

$$g^* \in \underset{g \in \mathcal{G}}{\operatorname{arg\,max}} \ \mathbb{E}[Y^{g(X)}].$$

Counterexample. Let $\mathcal{A} = \{0, 1, 2\}$ and suppose L is binary with $\Pr(L = 1) = 1/2$. Suppose also that $Cost_a(L) = 1$ and that $\tau_a = 1/4$ for all $a \in \mathcal{A} \setminus \{0\}$. Suppose further that

$$\mathbb{E}[Y^a|L] = \begin{cases} 0 & \text{if } a = 0, \\ 5 & \text{if } a = 1 \land L = 0, \\ 4 & \text{if } a = 1 \land L = 1, \\ 4 & \text{if } a = 2 \land L = 0, \\ 1 & \text{if } a = 2 \land L = 1, \end{cases} \text{ so that } h_a(L) = \begin{cases} 5 & \text{if } a = 1 \land L = 0, \\ 4 & \text{if } a = 1 \land L = 1, \\ 4 & \text{if } a = 2 \land L = 0, \\ 1 & \text{if } a = 2 \land L = 1. \end{cases}$$

Suppose now that $g^* \in \mathcal{G}$. Then, $k_1 = 5$, $k_2 = 1$ and $p_1 = p_2 = 1/2$. Indeed, if $k_1 > 5$, then $\mathcal{P}(1,L)$ is false for all L and, so, $\mathbb{E}[g^*(X) = 1] = 0 \neq \tau_1$. If $k_1 < 5$, then $\mathcal{P}(1,L)$ is true for all L and $\mathbb{E}[g^*(X) = 1] = \mathbb{E}[g^*(X) = 1|L = 0]/2 + \mathbb{E}[g^*(X) = 1|L = 1]/2 = 1 \neq \tau_1$. If $k_1 = 5$, then $\mathcal{P}(1,L)$ is true if and only if L = 0 and $\varepsilon < p$, so $\mathbb{E}[g^*(X) = 1] = \Pr(L = 0, \varepsilon < p) = \Pr(L = 0) \Pr(\varepsilon < p) = p/2$ and $p/2 = \tau_1 = 1/4$ if and only if p = 1/2. Similar arguments establish that $k_2 = 1$ and $p_2 = 1/2$ if $g^* \in \mathcal{G}$.

Hence,

$$\begin{split} \mathbb{E}\big[Y^{g^*(X)}\big] &= \mathbb{E}\big[Y^0 + (Y^1 - Y^0)I(g^*(X) = 1) + (Y^2 - Y^0)I(g^*(X) = 2)\big] \\ &= \mathbb{E}\big[Y^0\big] + \mathbb{E}\big[Y^1 - Y^0\big|g^*(X) = 1\big]\tau_1 + \mathbb{E}\big[Y^2 - Y^0\big|g^*(X) = 2\big]\tau_2 \\ &= \mathbb{E}\big[Y^1 - Y^0\big|L = 0, \varepsilon < 1/2\big]\tau_1 + \mathbb{E}\big[Y^2 - Y^0\big|L = 1, \varepsilon < 1/2\big]\tau_2 \\ &= \mathbb{E}\big[Y^1 - Y^0\big|L = 0\big]\tau_1 + \mathbb{E}\big[Y^2 - Y^0\big|L = 1\big]\tau_2 \\ &= 5/4 + 1/4 = 1.5. \end{split}$$

Now, define $\tilde{g}: \mathcal{X} \to \mathcal{A}$ such that

$$\tilde{g}((L,\varepsilon)) = \begin{cases} 1 & \text{if } L = 1 \wedge \varepsilon < 1/2, \\ 2 & \text{if } L = 0 \wedge \varepsilon < 1/2, \\ 0 & \text{otherwise,} \end{cases}$$

so that $\mathbb{E}[\tilde{g}(X) = 1] = \tau_1$ and $\mathbb{E}[\tilde{g}(X) = 2] = \tau_2$. But

$$\mathbb{E}[Y^{\tilde{g}(X)}] = \mathbb{E}[Y^0] + \mathbb{E}[Y^1 - Y^0 | \tilde{g}(X) = 1] \tau_1 + \mathbb{E}[Y^2 - Y^0 | \tilde{g}(X) = 2] \tau_2$$

$$= \mathbb{E}[Y^1 - Y^0 | L = 1] \tau_1 + \mathbb{E}[Y^2 - Y^0 | L = 0] \tau_2$$

$$= 4/4 + 4/4 = 2.$$

Hence, $\mathbb{E}[Y^{\tilde{g}(X)}] > \mathbb{E}[Y^{g^*(X)}]$ and $\tilde{g} \in \mathcal{G}$ and, so, $g^* \not\in \underset{g \in \mathcal{G}}{\operatorname{arg max}} \mathbb{E}[Y^{g(X)}]$.