
eAppendix1 Quantification of bias due to classification error in a
confounding variable

1 Conditional model

Under the assumptions and notation described in section of the main article and by the
law of total expectation, the expected value of the outcome Y given the covariates A and L∗

is,

E[Y |A,L∗] = EL|A,L∗ [E[Y |A,L∗, L]] = EL|A,L∗ [α + βA+ γL]

= α + βA+ γ E[L|A,L∗]
= α + βA+ γφaL∗

= {α + γφ00}+ {β + γ(φ10 − φ00)}A
+ {γ(φ01 − φ00)}L∗ + γ(φ11 − φ10 − φ01 + φ00)AL∗,

which relies on the assumption that L∗ is non-differentially misclassified with respect to the
outcome (i.e., L∗ |= Y |L) and includes an interaction between A and L∗. Further, φal∗ is
the probability that confounding variable L is one, given that treatment A is a and that
misclassified confounding variable L∗ is l∗, or,

φal∗ = P (L = 1|A = a, L∗ = l∗)

=
P (A|L = 1, L∗ = l∗)P (L = 1|L∗ = l∗)

P (A = a|L∗ = l∗)

=
P (A = a|L = 1)P (L = 1|L∗ = l∗)

P (A = a|L∗ = l∗)

=
P (A = a|L = 1)P (L∗=l∗|L=1)P (L=1)

P (L∗=l∗)

P (A = a|L∗ = l∗)

=
P (A = a|L = 1)P (L∗ = l∗|L = 1)P (L = 1)

P (A = a|L∗ = l∗)P (L∗ = l∗)

=
λ(1− π1)(1−a)πa1(1− p1)(1−l∗)pl

∗
1

(1− π∗l∗)(1−a)π∗l∗
a(1− `)(1−l∗)`l∗

.

Here ` = P (L∗ = l∗) = p0(1 − λ) + p1λ and π∗l∗ is the probability of receiving treatment
A given that the misclassified confounding variable L∗ = l∗. Note that the above is only
defined if 0 < ` < 1 and 0 < π∗l∗ < 1. To satisfy that 0 < ` < 1, we use our assumption that
0 < λ < 1, and additionally, we assume that if p0 = 1 then p1 6= 1, and if p0 = 0 then p1 6= 0
(and vice versa). Under the assumption that 0 < ` < 1, it follows that,

π∗l∗ = P (A = 1|L∗ = l∗)

= ΣlP (A = 1|L∗ = l∗, L = l)P (L = l|L∗ = l∗)

= ΣlP (A = 1|L = l)P (L = l|L∗ = l∗)
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= ΣlP (A = 1|L = l)
P (L∗ = l∗|L = l)P (L = l)

P (L∗ = l∗)

= Σlπl
(1− pl)(1−l∗)pl

∗

l (1− λ)1−lλl

(1− `)1−l∗`l∗
,

we find that 0 < π∗l∗ < 1, if, again, 0 < λ < 1, and if p0 = 1 then p1 6= 1, and if p0 = 0 then
p1 6= 0 (and vice versa) and 0 < πl < 1 (positivity assumption).

The bias in the regression based estimator of the effect of A is γ(φ10−φ00) if the interaction
between A and L∗ is included in the model. However, in this model, the coefficient for A
now represents the treatment effect given that L∗ is null. Typically, only main effects of A
and L∗ are included in a regression model of Y conditional on A and L∗:

EAL∗|A,L∗{E[Y |A,L∗]} = {α + γφ00}+ {β + γ(φ10 − φ00)}A+ {γ(φ01 − φ00)}L∗

+ γ(φ11 − φ10 − φ01 + φ00)E[AL∗|A,L]

= {α + γφ00 + δu0}+ {β + γ(φ10 − φ00) + δuA}A
+ {γ(φ01 − φ00) + δuL∗}L∗,

where u0, uA, and uL∗ are the coefficients of the linear model E[AL∗|A,L∗] = u0+uAA+uL∗L∗

and δ = γ(φ11 − φ10 − φ01 + φ00). Here,

uA =
Var(L∗)Cov(A,AL∗)− Cov(A,L∗)Cov(L∗, AL∗)

Var(L∗)Var(A)− Cov(A,L∗)2
,

uL∗ =
Var(A)Cov(L∗, AL∗)− Cov(A,L∗)Cov(A,AL∗)

Var(L∗)Var(A)− Cov(A,L∗)2
,

u0 = AL∗ − uAA− uL∗L∗,

where AL∗, A, and L∗ denote the mean of A times L∗, A, and L∗, respectively.
If we want to express uA and uL∗ in terms of λ, π0, π1, p0, and p1, we can write a linear

model for A conditional on L∗ denoting that P (A = 1|L∗ = l∗) = π∗l∗ and using standard
regression theory to get an expression for Cov(A,L∗):

E[A|L∗] = π∗0 + (π∗1 − π∗0)L∗, π∗1 − π∗0 =
Cov(A,L∗)

Var(L∗)
, thus Cov(A,L∗) = (π∗1 − π∗0)Var(L∗),

where Var(L∗) = `(1− `). Since E[AL∗|L∗ = 0] = 0 and E[AL∗|L∗ = 1] = E[A|L∗ = 1] = π∗1,
it follows,

E[AL∗|L∗] = π∗1L
∗, π∗1 =

Cov(AL∗, L∗)

Var(L∗)
, thus Cov(AL∗, L∗) = π∗1 Var(L∗).

Equivalently, since E[AL∗|A = 0] = 0 and E[AL∗|A = 1] = E[L∗|A = 1], it follows that,

E[AL∗|A] = E[L∗|A = 1]A =
P (A = 1|L∗ = 1)P (L∗ = 1)

P (A = 1)
A,
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E[L∗|A = 1] =
π∗1`

ω
,

π∗1`

a
=

Cov(AL∗, A)

Var(A)
, thus Cov(AL∗, A) =

π∗1`

ω
Var(A).

Here, Var(A) = ω(1 − ω), and Var(L∗) = `(1 − `). Denoting that ω = P (A = 1) =
π∗0(1− `) + π∗1`. Combining the different expressions gives,

uA =
π∗1`/ωVar(A)Var(L∗)− π∗1(π∗1 − π∗0)Var(L∗)2

Var(A)Var(L∗)− (π1 − π0)2 Var(L∗)2

=
π∗1`/ωVar(A)− π∗1(π∗1 − π∗0)Var(L∗)

Var(A)− (π1 − π0)2 Var(L∗)

= `× π∗1(1− ω)− π∗1(π∗1 − π∗0)(1− `)
ω(1− ω)− (π∗1 − π∗0)2`(1− `)

= `× π∗1 − π∗
2

1

(π∗1 − π∗
2

1 )`+ (π∗0 − π∗
2

0 )(1− `)
,

uL∗ =
π∗1 Var(A)Var(L∗)− π∗1`/ω(π∗1 − π∗0)Var(A)Var(L∗)

Var(L∗)Var(A)− ((π∗1 − π∗0)Var(L∗))2

=
π∗1ω − π∗1`(π∗1 − π∗0)

ω − (π∗1 − π∗0)2 Var(L∗)/(1− ω)

=
π∗1π

∗
0(1− π∗21 )`+ π∗1π

∗
0(1− π∗20 )(1− `)

(π∗1 − π∗
2

1 )`+ (π∗0 − π∗
2

0 )(1− `)
u0 = AL∗ − uAA− uL∗L∗.

The intercept, the coefficient for A and the coefficient for L∗ of the conditional regression
model for Y given A and L∗ which includes only main effects of A and L∗ are, respectively:

α + γφ00 + δu0,

β + γ(φ10 − φ00)
(

1− `× { π∗1 − π∗
2

1

(π∗1 − π∗
2

1 )`+ (π∗0 − π∗
2

0 )(1− `)
}
)

+γ(φ11 − φ01)
(
`× { π∗1 − π∗

2

1

(π∗1 − π∗
2

1 )`+ (π∗0 − π∗
2

0 )(1− `)
}
)
,

and γ(φ01 − φ00) + δuL∗ .

2 Marginal structural model estimated using inverse probability
weighting

Under the assumptions described in section of the main article, an MSM-IPW under
model (2) is estimated by fitting a linear regression model for A on Y , where each subject i is
weighted by 1 over the probability of that subject’s observed exposure given the misclassified
confounding variable L∗. Hence, an MSM-IPW proceeds by solving the weighted regression
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model,

n∑
i=1

1

P (Ai|L∗i )
(Yi − αmsm − βAi) = 0 and

n∑
i=1

Ai
P (Ai|L∗i )

(Yi − αmsm − βAi) = 0.

Solving these equations for αmsm and β result in the following estimators:

α̂msm = Y w∗ − β̂msmAw∗ and β̂ =

∑n
i=1

1
P (Ai|Li)

(Yi − Y w∗)(Ai − Aw∗)∑n
i=1

1
P (Ai|Li)

(Ai − Aw∗)2
,

where,

Y w∗ =

∑n
i=1 Yi/P (Ai|L∗i )∑n
i=1 1/P (Ai|L∗i )

and Aw∗ =

∑n
i=1Ai/P (Ai|L∗i )∑n
i=1 1/P (Ai|L∗i )

.

Let n∗al be the number of subjects with A = a and L∗ = l∗ and nal be the number of subjects
with A = a and L = l. In a population of n subjects,

n∗00 = nP (A = 0, L∗ = 0) = nP (A = 0|L∗ = 0)P (L∗ = 0)

= n
l∑
P (A = 0|L = l, L∗ = 0)P (L = l|L∗ = 0)P (L∗ = 0)

= n
l∑
P (A = 0|L = l)P (L = l|L∗ = 0)P (L∗ = 0)

= n
l∑
P (A = 0|L = l)P (L = l)P (L∗ = 0|L = l)

= n00(1− p0) + n01(1− p1),

which relies on the assumption that L∗ is non-differentially misclassified with respect tot the
exposure (i.e., L∗ |= A|L). Equivallently,

n∗01 = n00p0 + n01p1, n∗10 = n10(1− p0) + n11(1− p1) and n∗11 = n10p0 + n11p1.

Hence,

n∑
i=1

1/P (Ai|L∗i ) =
n∑
i=1

1∑
l[P (Ai|L∗i , L = l)P (L = l|L∗i )]

=
n∑
i=1

1∑
l[P (Ai|L = l)P (L = l|L∗i )]

=

n∗
00∑ 1∑

l[(1− πl)P (L = l|L∗ = 0)]
+

n∗
01∑ 1∑

l[(1− πl)P (L = l|L∗ = 1)]
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+

n∗
10∑ 1∑

l[πlP (L = l|L∗ = 0)]
+

n∗
11∑ 1∑

l[πlP (L = l|L∗ = 1)]
.

Here,

n∗
00∑ 1∑

l[(1− πl)P (L = l|L∗ = 0)]
=

n00(1− p0) + n01(1− p1)

(1− π0)P (L = 0|L∗ = 0) + (1− π1)P (L = 1|L∗ = 0)
=

=
n00(1− p0) + n01(1− p1)

(1− π0)P (L∗=0|L=0)(1−λ)
P (L∗=0)

+ (1− π1)P (L∗=0|L=1)λ
P (L∗=0)

=

=
n00(1− p0) + n01(1− p1)

n00

nP (L∗=0)
(1− p0) + n01

nP (L∗=0)
(1− p1)

=
1

1/(nP (L∗ = 0))

= nP (L∗ = 0) = n(1− `),
n∗
01∑ 1∑

l[(1− πl)P (L = l|L∗ = 1)]
= nP (L∗ = 1) = n`,

n∗
10∑ 1∑

l[πlP (L = l|L∗ = 0)]
= nP (L∗ = 0) = n(1− `),

n∗
11∑ 1∑

l[πlP (L = l|L∗ = 1)]
= nP (L∗ = 1) = n`.

From these expressions it follows that,

n∑
i=1

1/P (Ai|L∗i ) = 2n(1− `) + 2n` = 2n.

Further,

n∑
i=1

E[Yi]/P (Ai|L∗i ) =

n∗
00∑ E[Yi]∑

l[(1− πl)P (L = l|L∗ = 0)]
+

n∗
01∑ E[Yi]∑

l[(1− πl)P (L = l|L∗ = 1)]

+

n∗
10∑ E[Yi]∑

l[πlP (L = l|L∗ = 0)]
+

n∗
11∑ E[Yi]∑

l[πlP (L = l|L∗ = 1)]

=

n∗
00∑ α + γP (L = 1|A = 0, L∗ = 0)∑

l[(1− πl)P (L = l|L∗ = 0)]
+

n∗
01∑ α + γP (L = 1|A = 0, L∗ = 1)∑

l[(1− πl)P (L = l|L∗ = 1)]

+

n∗
10∑ α + β + γP (L = 1|A = 1, L∗ = 0)∑

l[πlP (L = l|L∗ = 0)]
+

n∗
11∑ α + β + γP (L = 1|A = 1, L∗ = 1)∑

l[πlP (L = l|L∗ = 1)]
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= nα(1− `) + nγ(1− `)φ00 + nα`+ nγφ01 + n(α + β)(1− `) + nγ(1− `)φ10

+ n(α + β)`+ nγφ11

= 2nα + nβ + nγ(1− `)(φ00 + φ10) + nγ`(φ01 + φ11),

and,

n∑
i=1

Ai/P (Ai|Li) =

n∗
10∑ 1∑

l[πlP (L = l|L∗ = 0)]
+

n∗
11∑ 1∑

l[πlP (L = l|L∗ = 1)]

= n(1− p0)(1− λ) + n(1− p1)λ+ np0(1− λ) + np1λ = n.

Combining these expressions leads to,

E[Y w∗ ] = α + β/2 + γ/2(1− `)(φ00 + φ10) + γ/2`(φ01 + φ11) and Aw∗ = n/2n = 1/2,

and,

n∑
i=1

(Ai − Aw∗)2

P (Ai|L∗i )
=

n∗
00∑ (−1/2)2∑

l[(1− πl)P (L = l|L∗ = 0)]

+

n∗
01∑ (−1/2)2∑

l[(1− πl)P (L = l|L∗ = 1)]

+

n∗
10∑ (1− 1/2)2∑

l[πlP (L = l|L∗ = 0)]

+

n∗
11∑ (1− 1/2)2∑

l[πlP (L = l|L∗ = 1)]

= 1/4×
n∑
i=1

1/P (Ai|L∗i ) = n/2.

n∑
i=1

E[(Yi − Y w∗)](Ai − Aw̃)

P (Ai|L∗i )
=

n∗
00∑ β/4− γ/2φ00 + γ/4(1− `)(φ00 + φ10) + γ/4`(φ01 + φ11)∑

l[(1− πl)P (L = l|L∗ = 0)]

+

n∗
01∑ β/4− γ/2φ01 + γ/4(1− `)(φ00 + φ10) + γ/4`(φ01 + φ11)∑

l[(1− πl)P (L = l|L∗ = 1)]

+

n∗
10∑ β/4 + γ/2φ10 − γ/4(1− `)(φ00 + φ10)− γ/4`(φ01 + φ11)∑

l[πlP (L = l|L∗ = 0)]

+

n∗
11∑ β/4 + γ/2φ11 − γ/4(1− `)(φ00 + φ10)− γ/4`(φ01 + φ11)∑

l[πlP (L = l|L∗ = 0)]

= n(1− `)(β/4− γ/2φ00 + γ/4(1− `)(φ00 + φ10) + γ/4`(φ01 + φ11))

+ n`(β/4− γ/2φ01 + γ/4(1− `)(φ00 + φ10) + γ/4`(φ01 + φ11))
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+ n(1− `)(β/4 + γ/2φ10 − γ/4(1− `)(φ00 + φ10)− γ/4`(φ01 + φ11))

+ n`(β/4 + γ/2φ11 − γ/4(1− `)(φ00 + φ10)− γ/4`(φ01 + φ11))

= n/2(β(1− `) + β`− γ(1− `)φ00 − γ`φ01 + γ(1− `)φ10 + γ`φ11)

= n/2(β + γ(1− `)(φ10 − φ00) + γ`(φ11 − φ01).

The above mentioned leads to the following expression for the expected estimated value of
the effect of A, based on the MSM-IPW,

E[β̂] = β + γ(φ10 − φ00)(1− `) + γ(φ11 − φ01)` and E[α̂msm] = α + γ/2× [2(1− `)φ00 + 2`φ01)]

= α + γφ00(1− `) + γφ01`.
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eAppendix2 Illustration: quantitative bias analysis of classification
error in a confounding variable

Using an example study of blood pressure lowering therapy, we illustrate how the bias
expressions in section of the main article can be used to perform a quantitative bias analysis
for misclassification of a confounding variable. For our illustration we use data of the National
Health And Nutritional Examination Survey (NHANES) [36, 37]. Specifically, we study the
average treatment effect of diuretic use (A = 1) in comparison to beta blocker use (A = 0) on
systolic blood pressure (Y ) using two approaches: by inverse weighting with the propensity
for diuretic or beta blocker use given self-reported categorical body mass index (BMI) (L∗),
and using a conditional linear regression with adjustment for self-reported categorical BMI.
This supplement comprises background material that complements the motivating example
in the main article. Additionally, equations are derived to inform the quantitative bias
analysis.

NHANES. The NHANES survey consists of questionnaires, followed by a standardized
health examination in specially equipped mobile examination centers. In the 2011-2014
sample 19,151 participants were physically examined. Of the 19,151 physically examined
people, 12,185 participants aged over 16 were asked to fill out a questionnaire, including
questions on self-reported weight and height, used to calculate self-reported BMI. For this
illustration, we used complete data on 585 users of diuretics and 824 users of beta blockers
(excluding non-users and people using both).

Parameters estimated in NHANES. In the NHANES data, it was found that the
prevalence of self-reported overweight/obese was 0.77 (`), the probability of receiving treat-
ment given that one self-reports to be underweight/normal weight is 0.32 (π∗0), the probability
of receiving treatment given that one self-reports to be overweight/obese is 0.44 (π∗1). Finally,
the association between L∗ and Y , given that A = 0 estimated in a conditional regression
model including an interaction between A and L* was -6.63.

BMI measured by trained technicians. In the NHANES, anthropometric measures
were also taken by trained health technicians. By using these measures to calculate BMI
category, we found that the specificity of self-reported BMI category was 0.94 (p1), and the
sensitivity was 0.92 (p0 = 0.08). The average treatment effect (95 % CI) of diuretics use in
comparison to beta blocker use on mean blood pressure was -3.59 (-5.84; -1.35) estimated
using MSM-IPW (by inverse weighting with the propensity for diuretic or beta blocker use
given categorical BMI). Given that a subject is not overweight/obese, the fitted weights
were 1.48 and 3.09 for beta blocker and diuretics use, respectively. Given that a subject
is overweight/obese, the fitted weights were 1.77 and 2.30, respectively. In comparison, if
self-reported categorical BMI was used, the fitted weights slightly differed: 1.46, 3.17, 1.79
and 2.26, respectively. Consequently, estimates of the average treatment effect differed,
depending on the BMI measure that was used to calculate the inverse probability weights
(-3.59 using categorical BMI versus -3.52 using categorical self-reported BMI (Table 3, main
article)).

Performing a quantitative bias analysis. To inform a quantitative bias analysis,
one needs to specify the bias parameters for sensitivity (p1) and specificity (1 − p0) using

37



external validation data, internal validation data, or an educated guess. From the data, one
can estimate the prevalence of misclassified confounding variable L∗ (i.e., `), the probability
of receiving treatment given that L∗ is null (i.e., π∗0) and the probability of receiving treatment
given that L∗ is one (i.e., π∗1). We calculate the probability of receiving treatment given that
L is null or one (i..e, π0, and π1, respectively) using the data and the assumed values of p0

and p1. Since,

π∗0 =
π0(1− p0)(1− λ) + π1(1− p1)λ

(1− `)
, and π∗1 =

π0p0(1− λ) + π1p1λ

`
,

it follows that if p0 = 1, π1 = π∗0 and if p1 = 0, π0 = π∗1 (using that 0 < ` < 1, as used in
eAppendix1 section 1). Further, if p0 = 1 and 0 < p1 < 1, we obtain,

π1 = π∗0, and π0 =
π∗0p1λ− π∗1`

(1− λ)
.

Additionally, if p1 = 0 and 0 < p0 < 1, we obtain

π0 = π∗1, and π1 =
π∗0(1− `)− π∗1(1− p0)(1− λ)

λ
.

If we assume that p0 6= 1 and p1 6= 0 and use our assumption that 0 < λ < 1, it follows that,

π0 =
π∗0(1− `)− π1(1− p1)λ

(1− p0)(1− λ)
, π1 =

π∗1`− π0p0(1− λ)

p1λ
. (eA2.1)

By rewriting the expression for π1 using the expression for π0, it follows that,

π1 =
π∗1`− π0p0(1− λ)

p1λ

=
π∗1`−

π∗
0(1−`)−π1(1−p1)λ

(1−p0)(1−λ)
p0(1− λ)

p1λ

=
π∗1`− (π∗0(1− `)− π1(1− p1)λ) p0

(1−p0)

p1λ

=
π∗1`− π∗0(1− `) p0

(1−p0)
+ (1−p1)p0

(1−p0)
λπ1

p1λ

=
π∗1`− π∗0(1− `) p0

(1−p0)

p1λ
+

(1− p1)p0

(1− p0)p1

π1

=
π∗1`− π∗0(1− `) p0

(1−p0)

p1λ
+

(1− p1)p0

(1− p0)p1

π1.
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Consequently,

(1− (1− p1)p0

(1− p0)p1

)π1 =
π∗1`− π∗0(1− `) p0

(1−p0)

p1λ
,

π1 =

π∗
1`−π∗

0(1−`) p0
(1−p0)

p1λ

(1−p0)p1−(1−p1)p0
(1−p0)p1

=
π∗1`− π∗0(1− `) p0

(1−p0)

p1λ
× (1− p0)p1

(1− p0)p1 − (1− p1)p0

. (eA2.2)

From expression (eA2.2) we now obtain a value for π1, which we use to obtain a value for π0

from expression (eA2.1). We calculate the prevalence of L (i.e., λ) by,

λ = p0, if p0 = p1 and λ =
`− p0

p1 − p0

otherwise.

Subsequently, the expressions for π0, π1 and λ can be used to obtain estimates for φal∗
using the expression in eAppendix1, section 1. Lastly, an estimate for γ can be obtained by
fitting a conditional regression model on Y given A and L∗, including an interaction between
A and L∗. The coefficient for L∗ from this model is then divided by (φ01 − φ00) to get an
estimate for γ, holding that φ01 6= φ00. The inequality φ01 6= φ00 holds if p0 6= p1, in the case
that p0 = p1, γ is not identifiable from the data (and thus, bias is not identifiable). The bias
expressions (3) and (4) in the main text of the article can subsequently be used to calculate
bias in the average treatment effect estimator.
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