
eAppendix 2. Structural nested model estimation. 

 

Below we introduce the structural nested model, all of the relevant notation, how to 

produce the confounding weights, and we then show the estimation algorighm that is used to 

produce the IV paramater estimates and 95% confidence intervals.1 We recommend using this in 

conjuction with the actual SAS code presented in eAppendix 1.  

 

The structural nested model 

 

The structural nested model is:  

 

h(EW1(Yij(a)|Ai=a, Ri)) – h(EW1(Yij(0)|Ai=a, Ri)) = avξ 

 

Yij(a) represents the potential outcome for the jth pupil in the ith school at some observed 

adherence level a. Ai represents either a categorical or continuous school-level adherence 

variable. For example, in the water available schools where we have three study arms we let 

Ai=0 when the ith school adequately adhered to zero of the three WaSH components, let Ai=1 

when the ith school adequately adhered to one or two components, and we let Ai=2 when the ith 

school adequately adhered to all three components. av represent a vector for the categorical 

adherence variable. Ri represents a categorical school-level randomization variable. For example, 

we let Ri represent a categorical variable denoting randomization to one of the three study arms 

in the water available group. EW1 represents a weighted expectation, which accounts for 

individual-level confounders using the weight Wij1. h represents a link function (e.g. h(p) = p; 

h(p) = log(p); h(p) = log(p/(1-p))). ξ represents a causal effect—for example a RD, logRR, or 

logOR corresponding to the link function that was used to transform the left parts of the model. 

 

Producing the weights 

 

We must first produce the overall weights (Wij). Wij is the product of confounding weight 

(Wij1) and the sampling weights (Wij2). Wij1 is the weight that is used to remove the association 

between individual-level confounders and randomization. Wij2 is the inverse of the probability of 

selection of each pupil into the study, and is necessary here because our study used a complex 

sample design. Wij1 and Wij are produced in SAS as shown:  

 

proc surveylogistic data=diarrhea; 

 class pupil_grade; 

 model R = pupil_grade / link=glogit; 

 output out=invweights predicted=predprobs; 

 weight Wij2; 

 strata stratum; 

 cluster psu; 

run; 

 

data weights; 

 set invweights; 

 Wij1 = .; 



 Wij1 =1/predprobs; 

 Wij = Wij1* Wij2;  

 if _LEVEL_ = R; 

run; 

 

The structural nested model estimation algorithm 

  

The estimating equations 

  

 To estimate the parameters of interest in the structural nested mean model, we used an 

iterative algorithm which applies Newton’s method. The two estimating equations are shown 

below:  

 

(Equation 1) ∑ ∑ W𝑖𝑗  D𝑖
T [Y𝑖𝑗  −  μ (A𝑖,  R𝑖;  η)] =  0𝑗𝑖   

 

(Equation 2) ∑ ∑ W𝑖𝑗  R𝑣𝑖
T  [h − 1 (ℎ(μ(A𝑖, R𝑖;  η)) – A𝑣𝑖ξ) –  α]  =  0𝑗𝑖    

 

 η represents the EW1(Yij |Ai, Ri), α represents the EW1(Yij(0)), ξ represents the causal effect 

of adherence on the outcome given Ai and Ri, and D is a function of Ai and Ri, defined as (Avi, 

Rvi, Ai*Ri)
T, Riv is a vector of dummy variables representing randomization to one of three arms, 

and all other variables are as previously defined. A SAS program which was designed for a three 

armed trial with two strata was obtained from Brumback,1 and was slightly modified to allow for 

variation in either the number of strata or the number of study arms. Generally, the steps to 

solving these estimating equations are shown below. 

 

 Solving the estimating equations 

 

Step 1. We first solve the estimating equation 1 using a fully parameterized model, to 

obtain an estimate of η for each participant. For instance, if our outcome followed a binomial 

distribution, we might use PROC GENMOD as shown:  

 

proc genmod data=sim.data0; 

 model Y= A1 A2 R1 R2 A1*R1 A1*R2 A2*R1 A2*R2/dist= bin link=logit; 

 weight Wij; 

 output out=sim.xbeta xbeta=linpred; 

run; 

 

Step 2. Letting h-1(.) = g(.), substitute η̂ from equation 1, for η in equation 2. Using 

Newton’s method, we linearize g(Di η̂ – Aviξ) about an initial (or current) estimate of ξ, ξt, where 

t indexes the iteration number. Equation 2 reduces to: 

 

(Equation 2a) ∑ ∑ W𝑖𝑗  R𝑣𝑖
T  [g(D𝑖 η̂ –  A𝑣𝑖ξ) –  α]  =  0 𝑗𝑖  

 

g(Di η̂– Aiξ) is approximated by (Yi* – Avi*ξt), where Yi* and Avi* are derived using 

Taylor series approximation. For instance, for the logistic structural nested model, g(x) ≡ 



exp(x)/(1+exp(x)), and we let Yi* ≡ g(Di η̂ – Aviξ
t)+ Avi*ξt, and Avi*≡ Avig(Di η̂ – Aviξ

t)(1– g(Di η̂ 

– Aviξ
t)). Equation (2) further reduces to:  

 

 (Equation 2b) ∑ ∑ W𝑖𝑗  R𝑣𝑖
T  [Y𝑖

∗ –  A𝑣𝑖
∗ ξ –  α]  =  0𝑗𝑖  

 

 For example, when using the logistic structural nested model Yi* and Avi* can be 

calculated within a data step in SAS using the linear predictor (output in step 1), the adherence 

variables (Avi), the outcome variable (Yi), and an initial estimate of the causal effect (ξt) using 

the code: 

 

lp=linpred-A1*squig1 - A2*squig2; 

expitlp=exp(lp)/(1+exp(lp));  

 Ystar = expitlp + (A1*squig1 + A2*squig2)*expitlp*(1-(expitlp));  

 Astar1 = (A1*expitlp)*(1-(expitlp));  

 Astar2 = (A2*expitlp)*(1-(expitlp)); 

 

 If we were instead using the log structural nested model, we would let g(x) ≡ exp(x), and 

we let Yi* ≡ g(Di η̂ – Aviξ
t)+ Avi*ξt, and Avi*≡ Avig(Di η̂ – Aviξ

t). Yi* and Avi* would then be 

calculated using the following code within a SAS data step: 

 

lp=linpred-A1*squig1 - A2*squig2; 

explp=exp(lp); 

Ystar = explp*(1+ A1*squig1 + A2*squig2); 

Astar1 = A1*explp; 

Astar2 = A2*explp; 

 

Step 3. Solve equation 2b using IV software using Yi* as the response variable, Ri as the 

instrument, and Ai* as the endogenous regressor, and obtain updated estimates of ξt. For 

example, using SAS’s PROC SYSLIN:  

 

proc syslin data=sim.iv 2sls; 

 endogenous Astar1 Astar2; 

 instruments R1 R2; 

 model Ystar =Astar1 Astar2; 

 weight Wij; 

run; 

 

 Step 4. Update the initial estimate of ξt. 

 

 Step 5. Repeat steps 2 to 4 iteratively, until all parameters converge on a fixed value of ξ.  

 

 Calculating the IV parameter of interest 

 

 Step 6. Researchers often only target the parameter ξ, which is either a logOR, a logRR 

(or log prevalence ratio), or a RD, each of which is conditional on both A and R. Of particular 

interest, may be to calculate a prevalence ratio that is conditional only on A. Specifically, the 



prevalence ratio comparing the prevalence of disease among adherers to what the prevalence of 

disease would have been had this same group not adhered: PR(a)= (EW1(Yij(a)|Ai=a)) / 

EW1(Yij(0)|Ai=a)). The numerator of interest from this prevalence ratio, i.e. EW1(Yij(a)|Ai=a), is 

easily calculated without the structural nested model. This can be done, for example, by 

regressing Yij on Ai in PROC REG (while using the Wij weight) and outputting the ‘parameter 

estimates’ for each participant. The denominator, EW1(Yij(0)|Ai=a), is a counterfactual and is 

calculated from the structural nested model parameters. Rather than the causal parameter (i.e. ξ), 

of particular interest from the structural nested model is h(EW1(Yij(0)|Ai=a, Ri,), which differs 

from our IV denominator of interest in that it is also conditional on R and also that a link 

function is applied to it. We can apply the inverse link function (e.g. the expit, or exponential 

function) to h(EW1(Yij(0)|Ai=a, Ri) to produce a counterfactual prevalence of disease for each 

participant in the study. To then make these conditional prevalences marginal on only A, we 

regress EW1(Yij(0)|Ai, Ri) on Ai, again using PROC REG (while using the Wij weight) and 

outputting the parameter estimates. The resulting prevalences, EW1(Yij(0)|Ai=a), represent the 

true potential outcome had a participant’s cluster counterfactually not adhered to the intervention 

(e.g. had it been assigned to R=0). The IV parameter of interest (e.g. a prevalence ratio) is this 

numerator divided by this denominator. 

 

 Variance estimation 

 

 Step 7. To estimate the variance, we use the jackknife estimator of the variance. This is a 

method where we systematically delete each primary sampling unit (school) and estimate the 

parameter of interest without that individual school, following steps 1-6 above repeatedly for all 

schools. The variance is then estimated by measuring the sum of the squared differences of each 

estimate from the overall parameter estimate, which is multiplied by a correction factor that 

accounts for the stratification. The jackknife estimator is: 

 

(Equation 3) vâr(𝜃) = ∑ ((𝐶ℎ −  1)/𝐶ℎ)
𝐻

ℎ=1
 ∑ (𝜃ℎ𝑐 − 𝜃)2𝐶ℎ

𝑐=1
, 

 

where 𝜃 represents the overall parameter estimate and  𝜃ℎ𝑐 represents the paramater estimate 

deleting the cth school which is in the hth stratum (district). 
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