
Supplementary Digital Content

eFigure 1. Schematic of the Integrated Science Assessment development process. The boxes in blue indicate the EPA's process (top to bottom). The boxes in green depict input from the Clean Air Scientific Advisory Committee and the general public. The boxes in orange describe the EPA's approach to study quality in 2015 (left) and 2020 (right). The 2015 approach has an inward-pointing orange arrow, indicating study quality considerations that go into the evaluation of literature. The 2020 approach has an outward-pointing orange arrow, indicating the exclusion of literature deemed "critically deficient". Adapted from the 2015 Preamble to the Integrated Science Assessments^a and the 2020 ISA for Ozone and Photochemical Oxidants^b.

eTable 1. Study quality criteria outlined by Goodman et al.^c for weight-of-evidence analysis of short-term ozone exposure and asthma severity. Comments refer to context provided by studies in the epidemiology literature.

Criterion	Study	+1	-1	Comments
	Design			
Study design		Panel studies	Time-series	Panel studies and case-
		Case-crossover	studies	crossover studies are
		studies		also subject to biases,
				and magnitude and
				direction of bias depend
				on how specifically a
				study is implemented. ^{d,e}
Study size	Panel	>= 50 cases	< 50 cases	Presumably, criteria
	studies	and/or >= 500	and/or	related to sample size
		measurements	< 500	are intended to ensure
			measurements	that results are
	Case-	>= 100 cases	< 100 cases	statistically significant.
	crossover			However, the
	studies			epidemiology
	Time-	>= 1 year	< 1 year	community widely
	series			accepts that statistical
	studies			significance is often
			Not reported	overinterpreted as
				proving or disproving a
				hypothesis, when
				assumptions built into
				statistical tests invalidate
				such judgments. ^f
Selection	Panel	>= 70%	<70%	Reliance on strict
bias	studies	compliance in	compliance in	selection criteria does
		health outcome	health outcome	not make sense when
		measurements or	and authors did	there are many varieties
		authors addressed	not address	of selection bias that can
		missing data (e.g.,	missing data	have different effects on
		by determining if		the study outcomes. ^g
		pattern in missing		Bias depends on the
		data was random)		structure of the data, not
	Case-	Time-stratification	Unidirectional	whether or not the data
	crossover	or bidirectional	method	were missing at random.
	studies	method		

	Time-	N/A	N/A	
	series			
	studies			T I 1. 1
Exposure	Panel	Monitor < 10 km	Monitor > 10	These criteria assume
assessment	studies		km	that distance from a
	Case-	Grid cell < 10 km	Grid cell > 10	monitor is the only factor
	crossover	or	km or	that affects exposure
	studies	Monitor < 10 km	Monitor > 10	measurement errors, and it assumes a cutoff value
		Augusta	km	
	Time-	Average of	Monitor > 10	which might not be
	series	multiple monitors	km	appropriate for all air
	studies	Monitor < 10 km		pollutants, since spatial
			Insufficient	variability differs among
			information	air pollutants as a function of their
			provided	
				atmospheric chemistry and sources. ^h
Outcome	Panel	Symptoms or	Symptoms	Discrepancies between
assessment	studies	spirometry	reported by	discharge diagnoses and
		measurements by	subjects or	hospital databases
		medical	caretakers	indicates bias due to
		professionals	Lung function	diagnostic error among
			tests without	medical personnel. Strict
			clinical	criteria do not prevent
			supervision	bias in outcome
	Case-	ICD codes clearly	ICD codes not	assessment. ⁱ
	crossover	specified	clearly specified	
	studies			
	Time-	ICD codes clearly	ICD codes not	
	series	specified	clearly specified	
	studies			
Statistical	Panel	Generalized	Other models	Model choice depends
approach	studies	estimating		on the input dataset and
		equations		the research question. If
		Linear mixed		the model design allows
		models		for addressing certain
		Generalized linear		types of bias, such as day
		models		of the week, it might be
	Case-	Conditional	Other models	appropriate. Within
	crossover	logistic regression		those constraints,
	studies			different options may be

	Time- series studies	Generalized estimating equations Poisson regression	Other models	appropriate. ^{j,k,l} For example, at times generalized additive models may be used in time-series studies. ¹ Not all conditional logistic regression models are valid for case-crossover studies. ^c
Confounding		Considered at least one factor for each category: Temporal trends Temperature Relative humidity or dew point temperature "Other" (day of week, time spent outdoors, holidays, school schedules, occurrence of flu or other respiratory disease)	Study did not consider at least one confounder from each category	Potential confounders to be tested in the model should depend on the specific research questions ^m rather than following a prescribed list.
Adjustment for pollen		Included pollen	Did not include pollen	There is low correlation of tree and weed pollen with PM _{2.5} and O ₃ , suggesting that pollen is not likely a confounder of the relationship between either PM _{2.5} or O ₃ with health effects. ⁿ
Multiple lag times		Evaluated multiple lag times	Did not evaluate multiple lag times	Omission of lags may be a source of bias, but the choice and inclusion of lags also depends on the research question. For example, proper selection of lags is important for studies of

			birth outcomes and child health.° In some cases, lags can introduce bias.°
Sensitivity analyses	One or more sensitivity analyses	No sensitivity analysis	Sensitivity analyses can provide useful tests for uncontrolled confounding but are often based on assumptions that cannot be tested. ^q

eReferences

- a. U.S. EPA. Preamble to the Integrated Science Assessments. Research Triangle Park, NC: Office of Research and Development; 2015.
- b. U.S. EPA. Integrated Science Assessment for Ozone and Related Photochemical Oxidants. Research Triangle Park, NC: Office of Research and Development; 2020. EPA/600/R-20/012.
- c. Goodman JE, Zu K, Loftus CT, Lynch HN, Prueitt RL, Mohar I, Pacheco Shubin S, Sax SN. Short-term ozone exposure and asthma severity: Weight-of-evidence analysis. Environ Res. 2018;160:391-397.
- d. Lumley T, Levy D. Bias in the case-crossover design: implications for studies of air pollution. Environmetrics. 2000;11:689-704.
- e. Wolkewitz M, Allignol A, Harbarth S, de Angelis G, Schumacher M, Beyersmann J. Time-dependent study entries and exposures in cohort studies can easily be sources of different and avoidable types of bias. J Clin Epidemiol. 2012;65:1171-1180.
- f. Greenland S, Senn SJ, Rothman KJ, Carlin JB, Poole C, Goodman SN, Altman DG. Statistical tests, *P* values, confidence intervals, and power: a guide to misinterpretations. Eur J Epidemiol. 2016;31:337-350.
- g. Hernán MA, Hernández-Díaz S, Robins JM. A structural approach to selection bias. Epidemiol. 2004;15:615-625.
- Richmond-Bryant J, Long TC. Influence of exposure measurement error on results from epidemiologic studies of different designs J Exp Sci Environ Epidemiol. 2019;10.1038/s41370-019-0164-z.
- i. Delfino RJ, Becklake MR, Hanley JA. Reliability of hospital data for populationbased studies of air pollution. Arch Environ Health. 1993;48:140-146.
- j. Peng R, Dominici F, Louis TA. Model choice in time series studies of air pollution and mortality. J R Statist Soc. A. 2006;169:179-203.

- k. Janes H, Sheppard L, Shepherd K. Statistical analysis of air pollution panel studies: An illustration. Annals Epidemiol. 2008;18:792-802.
- Dominici F, McDermott A, Zeger SL, Samet JM. On the use of generalized additive models in time-series studies of air pollution and health. Am J Epidemiol. 2002;156:193-203.
- m. Lash TL, Fox MP, MacLehose RF, Maldonado G, McCandless LC, Greenland S. Good practices for quantitative bias analysis. 2014;1969-1985. DOI://10.1093/ije/dyu149.
- n. Goodman JE, Loftus CT, Liu X, Zu K. Impact of respiratory infections, outdoor pollen, and socioeconomic status on associations between air pollutants and pediatric asthma hospital admissions. PlosONE. DOI://10.1371/journal.pone.0180522.
- o. Wilson A, Chiu YM, Hsu HL, Wright RO, Wright RJ, Coull BA. Potential for bias when estimating critical windows for air pollution in children's health. Am J Epidemiol. 2017;186:1281-1289.
- p. White LF, Yu J, Jerrett M, Coogan P. Temporal aspects of air pollutant measures in epidemiologic analysis: a simulation study. Sci Rep. 2016;19691. DOI://10.1038/srep19691.
- q. Ding P, VanderWeele TJ. Sensitivity analysis without assumptions. Epidemiol. 2016;27:368-377.