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eAppendix 1: Relating a segment-level definition of total person-distance 
with a person-level definition 

In the main text, we state that, assuming the same cohort definition is used, the total 

amount of exposed and unexposed person-distance is the same whether the total is defined by 

summing over segments without considering individual people—as in Equation (1) in the main 

text—or by summing over people. To illustrate this relation, we consider a group of people, 𝑖 =

 1, … , 𝐼, who traveled any distance while at risk for the outcome in the study area and time 

period. The study area is again defined by the set of 𝑀 segments, 𝑚 = 1,2, … , 𝑀, of time-

invariant length 𝐿𝑚, 0 ≤ 𝐿𝑚 < ∞ of a binary exposure condition, 𝐸𝑚 = 1 or 𝐸𝑚 = 0. The 

number of times individual i travels over segment m in either direction in the study period is 

denoted as 𝑁𝑖,𝑚. Individual i's person-distance in exposure category e is thus 𝐷𝑖,𝑒 = ∑ 𝐿𝑚
𝑀
𝑚=1 ∗

𝑁𝑖,𝑚|𝐸𝑚 = 𝑒. Summing over individuals yields the total person-distance in the cohort in 

exposure category e: 

 𝐷𝑒 = ∑ ∑ 𝐿𝑚
𝑖=𝑖,𝑚=𝑀
𝑖=𝑖,𝑚=1 ∗ 𝑁𝑖,𝑚|𝐸𝑚 = 𝑒𝑖=𝐼

𝑖=1 .      (S1.1) 

Summation is commutative (the order does not matter), so Equation (S1.1) can be 

alternatively expressed as the sum of the times segment m was ridden by these I individuals, 

summed over segments: 

𝐷𝑒 = ∑ ∑ 𝐿𝑚 ∗ 𝑁𝑖,𝑚|𝐸𝑚 = 𝑒𝑖=𝐼,𝑚=𝑚
𝑖=1,𝑚=𝑚

𝑀
𝑚=1 .      (S1.2) 

 Segment length, 𝐿𝑚, is a constant in the inner sum in Equation (S1.2) so can be drawn 

out by the constant-multiple rule: 

𝐷𝑒 = ∑ [(𝐿𝑚|𝐸𝑚 = 𝑒) ∗ ∑ 𝑁𝑖,𝑚|𝐸𝑚 = 𝑒𝑖=𝐼,𝑚=𝑚
𝑖=1,𝑚=𝑚 ]𝑀

𝑚=1 .    (S1.3) 

Finally, the quantity ∑ 𝑁𝑖,𝑚
𝑖=𝐼,𝑚=𝑚
𝑖=1,𝑚=𝑚  is the total number of times any individual travels 

over segment m while in the cohort, as denoted by 𝑁𝑚 in the main text. Substituting 𝑁𝑚 for 
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∑ 𝑁𝑖,𝑚
𝑖=𝐼,𝑚=𝑚
𝑖=1,𝑚=𝑚 , Equation (S1.3) becomes [𝐷𝑒 =  ∑ 𝐿𝑚

𝑀
𝑚=1 ∗ 𝑁𝑚|𝐸𝑚 = 𝑒], which is Equation (1) 

from the main text. 

eAppendix 2: Person-event sampling 
As noted in the main text, the at-risk-measure sampling technique may also be used to 

sample person-events, for example those occurring at intersections1 between segments. The goal 

is to estimate the incidence rate ratio (IRR) in this cohort between a transient exposure and an 

acute outcome. The general form of the IRR is 𝐼𝑅𝑅 =

𝑒𝑥𝑝𝑜𝑠𝑒𝑑 𝑐𝑎𝑠𝑒𝑠

𝑢𝑛𝑒𝑥𝑝𝑜𝑠𝑒𝑑 𝑐𝑎𝑠𝑒𝑠
𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑎𝑡−𝑟𝑖𝑠𝑘 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 𝑒𝑥𝑝𝑜𝑠𝑒𝑑

𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑎𝑡−𝑟𝑖𝑠𝑘 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 𝑢𝑛𝑒𝑥𝑝𝑜𝑠𝑒𝑑

. 

Here, the measure of the at-risk experience is person-events, so the IRR is defined as 

𝑒𝑥𝑝𝑜𝑠𝑒𝑑 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑒𝑣𝑒𝑛𝑡𝑠

𝑢𝑛𝑒𝑥𝑝𝑜𝑠𝑒𝑑 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑒𝑣𝑒𝑛𝑡𝑠
𝑒𝑥𝑝𝑜𝑠𝑒𝑑 𝑝𝑒𝑟𝑠𝑜𝑛−𝑒𝑣𝑒𝑛𝑡𝑠 𝑎𝑡 𝑟𝑖𝑠𝑘 

𝑢𝑛𝑒𝑥𝑝𝑜𝑠𝑒𝑑 𝑝𝑒𝑟𝑠𝑜𝑛−𝑒𝑣𝑒𝑛𝑡𝑠 𝑎𝑡 𝑟𝑖𝑠𝑘

. We again focus on estimating the denominator, 

𝑒𝑥𝑝𝑜𝑠𝑒𝑑 𝑝𝑒𝑟𝑠𝑜𝑛−𝑒𝑣𝑒𝑛𝑡𝑠 𝑎𝑡 𝑟𝑖𝑠𝑘 

𝑢𝑛𝑒𝑥𝑝𝑜𝑠𝑒𝑑 𝑝𝑒𝑟𝑠𝑜𝑛−𝑒𝑣𝑒𝑛𝑡𝑠 𝑎𝑡 𝑟𝑖𝑠𝑘
, assuming all outcome events, i.e., cases, are sampled. The notation 

closely parallels that of the main text. The main difference is that there is no length dimension, 

𝐿𝑚, to consider. 

We define the cohort by person-events at risk during a time period in a study area. For 

concreteness, suppose person-events at risk are intersection crossings. People may freely enter 

and leave the cohort; only their events at risk while in the study area and timeframe is considered 

part of the cohort. The study area is defined by a set of 𝑀 dimensionless intersections, 𝑚, 𝑚 =

1,2, … , 𝑀, classified by a binary exposure condition, 𝐸𝑚 = 1 or 𝐸𝑚 = 0. The number of times 

any individual crosses intersection m while at risk for the outcome is denoted by 𝑁𝑚, 𝑁𝑚 =

0,1,2, . . , ∞. The total person-events (intersection crossings) in the cohort in exposure category e 

is 

 𝑁𝑒 =  ∑ 𝑁𝑚
𝑀
𝑚=1 |𝐸𝑚 = 𝑒,        (S2.1) 
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Suppose, again, some people who ever pass through the study area during the timeframe 

sometimes use a mobile sensor or smartphone app to record their activity as they travel over the 

segments and cross the intersections. For anonymity, their activity is summarized by intersection 

before it is made available for research (e.g., https://metro.strava.com/; accessed January 3rd, 

2020). The number of times any individual crosses intersection m in the time period while using 

the sensor, and thus in the sample, is denoted by 𝑛𝑚: 𝑛𝑚 = 0,1,2, … , 𝑁𝑚, for 𝑚 =  1, 2, … , 𝑀. 

The sample is an element of the sample description space, Ω = {𝑛1, 𝑛2, … , 𝑛𝑀: 𝑛𝑚 =

0,1,2, … , 𝑁𝑚; 𝑚 = 1,2, … , 𝑀}, in which every 𝑛𝑚 takes one of its possible values. At every 

intersection 𝑚, the sampling fraction, 𝑓𝑚, is the ratio of the number of times the intersection is 

crossed in the sample, 𝑛𝑚, to the corresponding total in the cohort, 𝑁𝑚: 𝑓𝑚 = 
𝑛𝑚

𝑁𝑚
; 0 ≤ 𝑓𝑚 ≤ 1. If 

and only if 𝑓𝑚 = 0, then segment m is not sampled. The total sampled person-events in exposure 

category e is  

𝑛𝑒 =  ∑ 𝑁𝑚 ∗ 𝑓𝑚
𝑀
𝑚=1 |𝐸𝑚 = 𝑒.        (S2.2) 

We now show a condition sufficient for the ratio of exposed to unexposed sampled 

person-events, 
𝑛1

𝑛0
, to consistently estimate that of the cohort, 

𝑁1

𝑁0
. The condition is that the ratio of 

expected values of exposed to unexposed person-distance in the sample equals that of the cohort: 

 
𝐸[∑ 𝑁𝑚∗𝑓𝑚

𝑀
𝑚=1 |𝐸𝑚=1]

𝐸[∑ 𝑁𝑚∗𝑓𝑚
𝑀
𝑚=1 |𝐸𝑚=0]

=
𝐸[∑ 𝑁𝑚

𝑀
𝑚=1 |𝐸𝑚=1]

𝐸[∑ 𝑁𝑚
𝑀
𝑚=1 |𝐸𝑚=0]

.       (S2.3) 

As noted in the main text, this condition, Equation (S2.3), can be re-arranged to be 

Equation (5) from the main text: 

𝐸[𝑁𝑚∗𝑓𝑚|𝐸𝑚=1]

𝐸[𝑁𝑚|𝐸𝑚=1]
=

𝐸[𝑁𝑚∗𝑓𝑚|𝐸𝑚=0]

𝐸[𝑁𝑚|𝐸𝑚=0]
.       (5) 

https://metro.strava.com/
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In words, this condition states that the ratio of the expected number of sampled person-

events to the expected total person-events in the exposed category is the same as that of the 

unexposed category. 

eAppendix 3. Correcting for inverse-probability-of-selection weighting 
using a summary bias breaker 

Here, we consider an alternative strategy to correct for selection bias in addition to 

inverse-probability-of-selection weighting (IPSW). The alternative uses a summary ‘bias 

breaker.’2 A practical advantage of estimating a summary bias parameter compared with IPSW is 

that it obviates the possibly data-intensive task of estimating segment-specific sampling 

fractions. Rather than estimating each value of 𝐷𝑒 in an absolute sense, a summary bias breaker, 

𝑓𝐷,𝑆,0

𝑓𝐷,𝑆,1
, can be estimated to satisfy the equation: 

(
𝑑1

𝑑0
)

𝑎𝑑𝑗
=

𝑑1

𝑑0
∗

𝑓𝐷,𝑆,0

𝑓𝐷,𝑆,1
,          (S3.1)  

where (
𝑑1

𝑑0
)

𝑎𝑑𝑗
 is the bias-adjusted ratio of exposed to unexposed person-distance, 

𝑓𝐷,𝑆,1 =
∑ 𝐿𝑚

𝑆
𝑚=1 ∗𝑁𝑚∗𝑓𝑚|𝐸𝑚=1

∑ 𝐿𝑚
𝑆
𝑚=1 ∗𝑁𝑚|𝐸𝑚=1

, and 𝑓𝐷,𝑆,0 =
∑ 𝐿𝑚

𝑆
𝑚=1 ∗𝑁𝑚∗𝑓𝑚|𝐸𝑚=0

∑ 𝐿𝑚
𝑆
𝑚=1 ∗𝑁𝑚|𝐸𝑚=0

.  By definition, 
𝑑1

𝑑0
=

𝑓𝐷,1∗𝐷1

𝑓𝐷,0∗𝐷0
=

𝑓𝐷,1

𝑓𝐷,0
∗

𝐷1

𝐷0
, so 

𝐷1

𝐷0
=

𝑑1

𝑑0
∗

𝑓𝐷,0

𝑓𝐷,1
, and if 

𝑓𝐷,𝑆,0

𝑓𝐷,𝑆,1
≈

𝑓𝐷,0

𝑓𝐷,1
, then (

𝑑1

𝑑0
)

𝑎𝑑𝑗
≈

𝐷1

𝐷0
. The key assumption is that 

𝑓𝐷,𝑆,0

𝑓𝐷,𝑆,1
, 

obtained from the validation subset, generalizes to that of the cohort, 
𝑓𝐷,0

𝑓𝐷,1
. To check or correct 

violations of this assumption, 
𝑓𝐷,𝑆,0

𝑓𝐷,𝑆,1
 could be standardized with respect to factors whose 

distribution differs between the subset and the full cohort and which may influence differences 

between 
𝑓𝐷,𝑆,0

𝑓𝐷,𝑆,1
 and 

𝑓𝐷,0

𝑓𝐷,1
. The summary bias-breaker approach may not always be feasible. In our 

empirical example described in the main text, the validation subset was entirely within the 

exposed stratum of non-residential roadways, so a summary sampling fraction in the unexposed, 
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𝑓𝐷,𝑆,0, could not have been calculated, precluding this approach. If data to adjust for selection 

bias are not available in a validation subset, another option would be to draw the bias breaker in 

Equation (S3.1) from literature.3  

eAppendix 4. Details of the event-trial logistic-regression model used to 
estimate the sampling fraction 

The dependent variable of the event-trial logistic regression model is 
𝑛𝑚,𝑡

𝑁𝑚,𝑡
, the number of 

rides on segment m in month t in Strava divided by the corresponding value measured by the 

Eco-Counter®, described in the main text. On average, data from the nine counters were 

available in 17.3 of the 23 study months to comprise a total of 156 segment-month observations. 

The independent variables are: 

𝑛_3𝑐𝑎𝑡𝑚,𝑡 + 𝑝𝑟𝑜𝑝_𝑐𝑜𝑚𝑚𝑢𝑡𝑒_3𝑐𝑎𝑡𝑚,𝑡  + 𝑦𝑒𝑎𝑟𝑡 + 𝑠𝑒𝑎𝑠𝑜𝑛𝑡 +  

𝑛_3𝑐𝑎𝑡𝑚,𝑡 ∗  𝑝𝑟𝑜𝑝_𝑐𝑜𝑚𝑚𝑢𝑡𝑒_3𝑐𝑎𝑡𝑚,𝑡  +  

𝑛_3𝑐𝑎𝑡𝑚,𝑡 ∗ 𝑦𝑒𝑎𝑟𝑡 + 

 𝑝𝑟𝑜𝑝_𝑐𝑜𝑚𝑚𝑢𝑡𝑒_3𝑐𝑎𝑡𝑚,𝑡 ∗ 𝑦𝑒𝑎𝑟𝑡  +  

 𝑝𝑟𝑜𝑝_𝑐𝑜𝑚𝑚𝑢𝑡𝑒_3𝑐𝑎𝑡𝑚,𝑡 ∗ 𝑠𝑒𝑎𝑠𝑜𝑛𝑡  +  

𝑦𝑒𝑎𝑟𝑡 ∗ 𝑠𝑒𝑎𝑠𝑜𝑛𝑡 

Variable definitions: 

• 𝑛_3𝑐𝑎𝑡𝑖,𝑗 denotes the number of rides reported in Strava on segment i in month j, 

categorized into 3 groups: [0, 40), [40, 250), and [250, 3960]. 

• 𝑝𝑟𝑜𝑝_𝑐𝑜𝑚𝑚𝑢𝑡𝑒_3𝑐𝑎𝑡𝑚,𝑡 denotes the proportion of rides reported to be commutes in 

Strava on segment i in month j, categorized into 3 groups: 0, (0, 0.5), and [0.5, 0.1]. Rides 

were classified as commutes by Strava if the ride’s start and end are were more than 1 

kilometer apart4 or if the individual tagged it as a commute in the app. The distribution of 

this variable is described in Table 1 of the main text. 



7 

 

• 𝑦𝑒𝑎𝑟𝑡 is either 2017 or 2018, as counter data were not available during the 2016 months 

under study. 

• 𝑠𝑒𝑎𝑠𝑜𝑛𝑡 classifies the month into 4 possible categories of 3 each. Winter is December, 

January, and February. The remaining seasons follow sequentially. 

Model performance: 

The additive residuals (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒) are plotted against the estimated 

sampling fraction by counter number in eFigure 1. Most residuals are near zero but have a small 

negative bias (median = -0.003, mean = -0.02), on average. 

 

eFigure 1. The additive residuals (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒) plotted against the 

estimated sampling fraction by counter number (n, observations=156). 
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eAppendix 5. Definition of area-level socioeconomic status: a three-level 
variable considering the presence of a university and the median home 
value 
 

In the example in the main text, we consider confounding by an area-level indicator of 

socioeconomic status. We define that variable here. We observed a relatively high pseudo-

incidence rate (term from p. 1135) of police-reported bicycle crashes near universities and, to a 

lesser extent, in areas of lower median home value, so we examined whether the estimated IRR 

between exposure and incidence of crashes may be confounded by these factors. We stratified 

crashes and bicycle-distance by a three-level variable (abbreviated MHV) indicating if a 

university was present in the census block-group and, if not, indicating whether the block-

group’s median home value was above or below $400,000 per the 2017 5-year American 

Community Survey. We then standardized the exposure ratio and the IRR with respect to the 

marginal distribution of MHV in the unweighted bicycle-distance using a weighted geometric 

mean. The spatial distribution of MHV is depicted in the map below (eFigure 2): 
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eFigure 2. The spatial distribution of the potential confounding variable indicating 

whether a university is present (purple) and, if not, whether the median home value is, according 

to the 2017 5-year American Community Survey, above (orange) or below (turquoise) $400,000. 
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