Appendix 1:

CUSUM calculation

$a=\ln (1-\beta / \alpha)$
$\mathrm{b}=\ln (1-\alpha / \beta)$
$\mathrm{P}=\ln (\mathrm{p} / 1 \mathrm{p} 0)$
$\mathrm{Q}=\ln (1-\mathrm{p} 0 / 1-\mathrm{p} 1)$
$\mathrm{s}=\mathrm{Q} /(\mathrm{P}+\mathrm{Q})$
$\mathrm{h}_{0}=-\mathrm{b} /(\mathrm{P}+\mathrm{Q}) \mathrm{h}_{1}=\mathrm{a} /(\mathrm{P}+\mathrm{Q})$
$\mathrm{p}_{0}=$ acceptable failure rate
$\mathrm{p}_{1}=$ unacceptable failure rate
$\alpha=$ probability of Type 1 error
$\beta=$ probability of Type 2 error
$\mathrm{h}_{0}=$ lower limit on CUSUM plot
$\mathrm{h}_{1}=$ upper limit on CUSUM plot
h_{0} to $\mathrm{h}_{1}=$ Decision interval

Cusum plot starts at ' 0 '. With each success the value decreases by a variable' s ' which equals to 0.05 in this study. With each failure it increases by the value of ' 1 -s'. The decision interval within which the curve exists is defined between h_{0} and $h_{1}+2.28$ to -2.28 . Calculations showed that 46 successful attempts with no failure were required for reaching the lower boundary limit of the CUSUM curve With each failure further successful attempts were required to ensure the curve reached lower boundary limit (-2.28) on the graph.

The Cusum curves for the candidates are indicated in the line chart. The CUSUM is indicated on the X axis, the number of attempts is indicated on the Y axis. Each of the small horizontal line along the Z axis on the individual curve represents an attempt at intubation. With each successful attempt, the cusum progressively decreases by ' s ' until it crosses the lower boundary level whereupon competence is achieved (eg candidates $1 \& 2$). When there is an unsuccessful attempt, the CUSUM increases by 1 -s as seen in candidates $5 \& 6$.

