<u>Appendix 1:</u> <u>CUSUM calculation</u>

 $a=ln(1-\beta/\alpha)$ $b=ln(1-\alpha/\beta)$ P=ln(p/1p0) Q=ln(1-p0/1-p1) s = Q/(P+Q) $h_0 = -b/(P+Q)h_1=a/(P+Q)$

p₀=acceptable failure rate p₁= unacceptable failure rate α =probability of Type 1 error β = probability of Type 2 error h₀= lower limit on CUSUM plot h₁= upper limit on CUSUM plot h₀ to h₁= Decision interval

Cusum plot starts at '0'. With each success the value decreases by a variable's' which equals to 0.05 in this study. With each failure it increases by the value of '1-s'. The decision interval within which the curve exists is defined between h_0 and h_1 +2.28 to -2.28. Calculations showed that 46 successful attempts with no failure were required for reaching the lower boundary limit of the CUSUM curve With each failure further successful attempts were required to ensure the curve reached lower boundary limit (- 2.28) on the graph.

