Appendix 2
At each iteration k, we can choose prior parameters to control the type I error by assuming asymp-totic normality of the model (3) likelihood function. The asymptotic distribution of its maximum

likelihood estimate is,
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With [image: image10.emf]In the absence of association with the SNP v (i.e. βdvk  = 0) and
[image: image3.emf]for standardized SNP data (i.e. null mean and variance equal to 1) (7) reduces to:

[image: image4.emf]As described in [13], a move of βdvk  away from the origin during the hlasso optimization algorithm occurs whenever,
[image: image5.emf][image: image6.emf]where L′ (βdvk ) is the ﬁrst derivative of the regression model log-likelihood and g′ (βdvk = 0+) is the ﬁrst derivative of the log-prior density. So diﬀerentiating the log–likelihood deﬁned by (8) and substituting into (9) gives:

and thus βv will remain at the origin if

[image: image7.emf]
For a per-covariate type–I error rate of α we require the probability of (10) to be 1 − α at βdvk  = 0.

From the distribution of βdvk given in (8) this implies
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Where Φ−1  is the inverse normal distribution function, N the number of subjects and σ∗ the standard deviation of sd,i,k .
In the present work, in the right element of equation (11) we add to σ∗2 a metric ρ which the average over the i = 1, …,N subjects of the variance of the ϕ(k)dim1 , ϕ(k)dim2 and

ϕ(k) dim3 issued from the Metropolis-Hasting algorithm at iteration k. ρ is different between parameters and reflects the design information for the parameter d of the model. ρ is also changing along the iterations reflecting the convergence of the algorithm to the true value of the parameter. The more informative is the design the smaller ρ i.e. the Metropolis-Hasting algorithm acceptance rate is low enough.

with for Lasso,
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and for HLasso,


