
Supplemental Materials for “Amount of brain edema correlates

with neurological recovery in pediatric cerebral malaria”

1 Model, MCMC, and Diagnostics

We consider a joint model of three outcomes, NSQ status (1 for developing NSQ; 0 otherwise), CSF mea-
surements in log scale, and time in coma. We connect the three outcomes via a latent variable Ui for each
patient i and consider the following model:

logit(P (NSQ = 1)) = α0 + α1 × Ui

log(CSF ) ∼ Normal(Ui + β0 + (β1 + κ× Ui)× time, σ2
e)

log(Time in coma) = Normal(λ0 + λ1 × Ui, σ
2
c )

Ui ∼ Normal(0, σ2
u)

Note in our model, the positive latent variable Ui corresponds to a tendency to have higher CSF mea-
surement at baseline t = 0. It is difficult to directly obtain the maximum-likelihood estimator for model
parameters; instead, we consider using a Bayesian approach. For each of the model parameters, we put a
very weak, almost non- informative prior. Specifically, we have the following:

• σ2
u ∼ Inverse Gamma(0.01, 0.01);

• σ2
e ∼ Inverse Gamma(0.01, 0.01);

• σ2
c ∼ Inverse Gamma(0.01, 0.01);

• α0 ∼ Normal(0, 100);

• α1 ∼ Normal(0, 100);

• λ0 ∼ Normal(0, 100);

• λ1 ∼ Normal(0, 100);

• κ ∼ Normal(0, 100);

• β0 ∼ Normal(0, 20);

• β1 ∼ Normal(0, 20);

To take into account of the case-control study design, we weight each treated and control subject by
(1/probability of being included in the study). We run four chains for a long time (20000 iterations for
warmup and 22000 in total) and look at the mixing of these four chains. The particular diagnostic statistic
of interest is the potential scale reduction factor on split chains R̂. Note this test statistic is 1 at convergence.
According to the recommendation in Gelman et al.(2014), it is generally satisfying with setting R̂ = 1.1 as
a threshold. Figure 1 shows a histogram of the R̂ statistics for all parameters (including all the random
effects). Note the majority of R̂ values is very close to 1, indicating the four chains mix very well. We can
also look at the mixing of the chains more directly via the traceplots. See Figure 2. From these convergence
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diagnostics, we are confident the chains have reached a stationary distribution and we can conduct inference
based on the samples from the posterior.

Figure 1: Histogram of the potential scale reduction factor on split chains R̂
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Figure 2: Traceplot for parameters of interest
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2 Inference

To conduct inference, we plot the posterior distributions of parameters of interest. See Figure 3 below. Table
2 tabulates the 95% equal-tailed posterior credibility interval for each parameter. Of particular interest is
α1. Note its 95% posterior credibility interval is [−3.59, 0.01].

The implication is that a larger latent variable Ui corresponds to a smaller probability that a patient
develops NSQ. On the other hand, a larger Ui corresponds to a larger CSF measurement in log scale at
baseline t = 0.

Figure 3: Posterior distributions of parameters of primary interest
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Table 1: Summary statistics for the posterior distribution

mean sd 2.5% 97.5%
α0 0.02 0.22 -0.40 0.45
α1 -1.35 0.93 -3.59 0.01
λ0 3.72 0.12 3.48 3.96
λ1 -0.10 0.36 -0.83 0.57
κ -0.02 0.03 -0.07 0.05
β0 2.42 0.06 2.30 2.54
β1 0.04 0.02 -0.01 0.09

3 Prediction

To help prognosis, we want to leverage our model in the following way: given a patient still in coma at time t∗

(log scale), and his/her log(CSF) measurements at certain timepoints, e.g. t = 0 and t = 1, we would like to
leverage our model and make predictions of the probability that the patient develops NSQ. To compute the
conditional distribution P (NSQ = 1 | tcoma > t∗, log(CSF)t=0 = C0, ..., log(CSF)t=k = Ck), it is essential
to first draw samples from the posterior distribution P (U | tcoma > t∗, log(CSF)t=0 = C0, ..., log(CSF)t=k =
Ck)).

Note we can compute the conditional probability

P (tcoma > t∗, log(CSF)t=0 = C0, ..., log(CSF)t=1 = C1 | U)

=P (tcoma > t∗ | U)× P (log(CSF)t=0 = C0 | U)× · · · × P (log(CSF)t=k = Ck | U)

as follows:

• Draw samples from the posterior of λ0, λ1, and σ2
c . Simulate tcoma according to the log-normal model

and approximate P (tcoma > t∗|U);

• Draw samples from the posterior of β0 and σ2
e . Calculate P (log(CSF)t=i = Ci|U = u) by averaging

over the randomness in β0 and σ2
e ;

• Obtain the conditional probability P (tcoma > t∗ | U) ·
∏k

i=0 P (log(CSF)t=i = Ci | U)

On the other hand, we can compute P (U = u) by averaging over the randomness in σ2
u. Finally, we can

compute the unnormalized posterior probability by

p(u) = P (tcoma > t∗, log(CSF)t=0 = C0, ..., log(CSF)t=k = Ck | U = u) · P (U = u).

Since U is only one-dimensional, we can first compute the unnormalzied posterior probability on a fine grid
and then normalize. Once we have the posterior distribution for U , we can compute the posterior distribution
of P (NSQ = 1 | tcoma > t∗, log(CSF)t=0 = C0, ..., log(CSF)t=1 = C1 | U) by averaging over the randomness
in U , α0, and α1.

For each patient who is still in coma at time t∗ (number of hours in the log scale) and a history of log(CSF)
measurements: (t0, c0), (t1, c1), ..., (tk, ck) (ti is in the unit of day and ci is in log scale), we can produce the
posterior distribution of the probability that this patient develops NSQ. This allows a doctor to monitor
the patient’s status in real time and help best relocate the precious resources in cerebral malaria-endemic
regions.

4 Illustration

To illustrate, suppose a patient is still in coma at time t∗ = 55 hours, and we have made two measurements,
one at baseline (t = 0) with log(CSF) = 2, the other measurement at t = 24 hours with log(CSF) = 3. For
such a patient, we run our algorithm and predict in real time his probability of developing NSQ. See Figure
4a for the posterior distribution of this probability. The posterior mean is 0.494 with a 95% equal-tailed
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credibility interval being [0.264, 0.714]. To draw a contrast, suppose another patient, who is also in coma at
time t∗ = 33 hours with two log(CSF) measurements equal to 2.5 and 1.5 at t = 0 and t = 1 respectively.
For such a patient, Figure 4b shows the posterior distribution of his/her probability of developing NSQ.
The posterior mean is 0.596 for this patient with a 95% equal-tailed credibility interval being [0.395, 0.853].
In practice, a doctor may look at these two graphics and pay more attention and possibly allocate more
resources towards the first patient.

5 Sensitivity Analysis

In this section, we perform a sensitivity analysis by further incorporating age and gender in the model:

logit(P (NSQ = 1)) = α0 + αa × agei + αg × genderi + α1 × Ui

log(CSF ) ∼ Normal(Ui + β0 + βa × agei + βg × genderi + (β1 + κ× Ui) ∗ time, σ2
e)

log(Time in coma) = Normal(λ0 + λa × agei + λg × genderi + λ1 × Ui, σ
2
c )

Ui ∼ Normal(0, σ2
u)

Table 2: Summary statistics for the posterior distribution of some key parameters of interest: before and
after age and gender are adjusted for.

Before After
Mean SD 2.5% 97.5% Mean SD 2.5% 97.5%

α0 0.02 0.22 -0.40 0.45 0.38 0.49 -0.55 1.37
α1 -1.35 0.93 -3.59 0.01 -1.20 0.98 -3.41 0.21
λ0 3.72 0.12 3.48 3.96 3.76 0.27 3.24 4.30
λ1 -0.10 0.36 -0.83 0.57 -0.04 0.37 -0.81 0.67
κ -0.02 0.03 -0.07 0.05 -0.03 0.03 -0.07 0.05
β0 2.42 0.06 2.30 2.54 2.16 0.13 1.90 2.43
β1 0.04 0.02 -0.01 0.09 0.04 0.02 0.00 0.09

Note the posterior distributions of the intercepts α0 and β0 change a bit, which is as expected as age and
gender are now adjusted for. The posterior distributions of coefficients on the latent factor, i.e., α1, κ, β1,
and λ1, remain very similar.

References

[1] Andrew Gelman, David Dunson, Donald Rubin, Hal S. Stern, and John B. Carlin Bayesian Data Analysis,
CRC Press, Taylor & Francis Group, 3rd edition, 2014.

6



0

1

2

3

4

0.00 0.25 0.50 0.75 1.00
Probability of developing NSQ

de
ns

ity

for a patient still in coma at 55 hours and the specified log(CSF) history

Posterior distribution of the probability of developing NSQ

(a)

0

1

2

3

0.00 0.25 0.50 0.75 1.00
Probability of developing NSQ

de
ns

ity

for a patient still in coma at 33 hours and the specified log(CSF) history

Posterior distribution of the probability of developing NSQ

(b)

Figure 4

7


