E-Appendix

It is important to derive a mathematical approximation for graft surface viability. Consider a model uniplanar surface comprised of close packed circles of equal radius (r). For any three adjoining circles, an intercenter area is defined as the equilateral triangle (of base $2 r$) with a point at the center of each circle (Fig. E-1, A). The intercenter area is taken as providing a reasonable sample surface area of the graft for consideration of percent surface viability. The intercenter area is given by $2 . \cos 30 \cdot \mathrm{r}^{2}$.

Within each intercenter area, there is an extrinsic area outwith the circles (shaded area, Fig. E-1, B) equal to $r^{2}(2 \cdot \cos 30-\pi / 2)=0.161 r^{2}$. The extrinsic area thus represents 9.31% of the intercenter area.

This model represents the axial view of a mosaicplasty surface and therefore allows an approximate calculation of the percent graft surface area compromised by absence of graft and marginal cell death. Assuming a simple close-packed model,
compromised area $=$ extrinsic area + area of marginal cell death (Fig. E-1, C)
Using the above formula, a relation may be plotted expressing the compromised area as a function of the margin of cell death. The experimentally derived margin of cell death may be used to derive the percent of compromised area.

