Copyright © by The Journal of Bone and Joint Surgery, Incorporated Papadonikolakis et al. Failure of the Glenoid Component in Anatomic Total Shoulder Arthroplasty http://dx.doi.org/10.2106/JBJS.L.00552 Page 1 of 5

APPENDIX E-1 Methodological Details

The effect of each risk factor on the rate is summarized in Table E-2 as the regression coefficient (slope) for that risk in the meta-regression of the rate on the risk factor. A zero value of the slope signifies no association between the factor and the rate. A p value for the null hypotheses of no association and the 95% confidence interval for the slope are also presented.

The interpretation of the magnitude of the slope depends on the type of the risk factor. There are three situations: (1) The risk factor is a binary indicator, such as disclosure of conflict of interest (coded as either 0 or 1, indicating either the absence or the presence of the characteristic, respectively). In this case, the slope represents the difference in the mean rate between studies without and studies with the given characteristic. (2) The risk factor is either a proportion of study subjects with a given characteristic (e.g., the percentage of male subjects within a study) or the mean value for a study (e.g., mean age). The slope for this type of risk factor describes the expected (i.e., mean) difference in the rate between two studies that differ by a specified increment of the risk factor (e.g., a difference of 50% in male participation or a difference of ten years in age). (3) The risk factor is a set of proportions for a mutually exclusive set of subject characteristics. For example, we calculated the percentage of subjects with keeled glenoids, with pegged glenoids, and with metal-backed glenoids in each study. These three percentages add up to 100%. A proportion variable for one of the groups (e.g., keeled glenoids) is dropped from the meta-regression model, allowing this group to serve as the reference group. Each model is then characterized by two or more slopes (number of slopes = number of groups -1). Each slope for this type of risk factor describes the expected difference in the rate between two studies that differ by a specified percentage for a given group at the expense of the reference group while the percentages for the remaining groups remain constant. For example, the slope presented for the pegged glenoid type shows the expected difference between two studies that differ by 100% in the pegged glenoid proportion. Since all percentages add up to 100%, this is the expected difference in annualized rate between a study with only keeled glenoids and a study with only pegged glenoids. The slopes can be also presented for a smaller difference in the risk factor. For example, for the Walch class, there are five proportion variables that add up to 100%. Walch class A1 serves as the reference group. We do not present the slopes for a 100% difference in Walch class because there are no studies in which the class differs this much. Instead, the slopes are presented per 10% difference, which is a more typical difference in Walch class percentages between studies. The slopes in this situation represents the expected difference in annualized rate between two studies that differ by 10% in the percentage of a given group (e.g., Walch class A2) at the expense of the reference group (Walch class A1) while all of the other percentages (Walch classes B1, B2, and C) are constant in the two studies.

Copyright © by The Journal of Bone and Joint Surgery, Incorporated Papadonikolakis et al. Failure of the Glenoid Component in Anatomic Total Shoulder Arthroplasty http://dx.doi.org/10.2106/JBJS.L.00552 Page 2 of 5

Study	Study Year Range	Follow-up (yr)	N	Male (%)	Mean Age <i>(yr)</i>	Fellowship Trained	ASES	No. of Centers	Origin	LO
Arnold ⁵¹	2003-2007	3.6	35	57	70	Υ	Υ	1	U.S.	IV
Bartelt ²⁶	1986-2005	10	46	72	49	Υ	Υ	1	U.S.	I۱
Betts ⁵²	1979-1985	9.5	12	8	48	N	N	1	EU	I۱
Castagna ³⁷	1996-2005	6.3	35	46	63	N	N	1	EU	Į\
Churchill ⁵⁰	2002-2004	5.6	20	50	75	Υ	Υ	1	U.S.	Į\
Clement ³⁹	1991-1999	10	39	21	55	N	N	1	EU	I۱
Collin ²⁴	1995	10	56	NA	67	Υ	Υ	4	U.S.	II
Edwards ³⁶	2004-2005	2.2	53	53	69	Υ	Υ	1	U.S.	- 1
evang ³²	1994-2005	10	69	32	68	N	Ν	54	EU	ľ
Foruria ⁵³	1980-2000	5.5	50	32	82	Υ	Υ	1	U.S.	ľ
ox ⁸	1984-2004	15	1542	50	64	Υ	Υ	1	U.S.	ľ
ucentese ³⁵	2000-2007	4.2	22	14	69	Υ	Υ	1	EU	ľ
Groh ³³	2005-2007	2.8	83	56	67	NA	NA	1	U.S.	Į\
Kasten ³⁸	1997-2003	9	96	27	70	N	Ν	1	EU	ľ
Khan ²⁰	1996-1998	10	25	NA	79	N	Ν	1	EU	Į\
Rahme ⁴⁰	2001-2004	2	26	36	64	N	N	1	EU	I
Raiss ³⁴	1998-2002	7	21	NA	55	N	N	1	EU	Į\
Rice ⁵⁴	1995-1999	5	12	93	66	Υ	Υ	1	U.S.	ľ
Sperling ⁵⁵	1976-1991	20	187	29	57	Υ	Υ	1	U.S.	ľ
「ammachote ⁵⁶	1985-1991	15	100	65	68	Υ	Υ	1	U.S.	ľ
「aunton ²¹	1989-1994	10	83	60	68	Υ	Υ	1	U.S.	ľ
hrockmorton ²²	1991-2005	4.3	100	NA	69	Υ	Υ	1	U.S.	II
Valch ²⁵	1996-2003	10	333	32	69	Υ	N	4	EU	ľ
Valch ⁹	1996-2003	8.6	518	NA	68	Υ	N	10	EU	II
Wirth ¹⁸	2002-2004	3	44	56	66	Υ	Υ	2	U.S.	IV
oung ²³	1991-2003	15	226	19	67	Υ	N	9	EU	ľ

Copyright © by The Journal of Bone and Joint Surgery, Incorporated Papadonikolakis et al. Failure of the Glenoid Component in Anatomic Total Shoulder Arthroplasty http://dx.doi.org/10.2106/JBJS.L.00552 Page 3 of 5

	Design (%)				Diagnosis (%)					
Study	Keeled	Pegged	Metal	DJD	Trauma OA	RA	ON	Misc.	University	Private Practice
Arnold 2011 ⁵¹	0	100	0	100	0	0	0	0	Υ	N
Bartelt 2011 ²⁶	9	NA	NA	100	0	0	0	0	Υ	N
Betts 2009 ⁵²	0	0	100	0	0	100	0	0	N	Υ
Castagna 2010 ³⁷	100	0	100	77	14	9	0	0	N	Υ
Churchill 2010 ⁵⁰	0	100	0	100	0	0	0	0	N	Υ
Clement 2010 ³⁹	0	0	100	0	0	100	0	0	Υ	N
Collin 2011 ²⁴	82	0	0	100	0	0	0	0	Υ	Υ
Edwards 2010 ³⁶	49	51	0	100	0	0	0	0	N	Υ
Fevang 2009 ³²	NA	NA	NA	57	19	17	1	7	Υ	Υ
Foruria 2010 ⁵³	60	0	40	100	0	0	0	0	Υ	N
Fox 2009 ⁸	NA	NA	NA	64	11	16	4	6	Υ	N
Fucentese 2010 ³⁵	0	100	0	45	36	9	9	0	Υ	N
Groh 2010 ³³	0	100	0	92	5	0	2	1	N	Υ
Kasten 2010 ³⁸	100	0	0	79	9	2	7	2	Υ	N
Khan 2009 ²⁰	100	0	0	48	0	52	0	0	Υ	N
Rahme 2009 ⁴⁰	46	54	0	81	7	0	11	0	Υ	N
Raiss 2008 ³⁴	100	0	0	100	0	0	0	0	Υ	N
Rice 2008 ⁵⁴	100	0	0	100	0	0	0	NA	Υ	N
Sperling 2007 ⁵⁵	NA	NA	NA	0	0	100	0	0	Υ	N
Tammachote 2009 ⁵⁶	0	0	100	100	0	0	0	0	Υ	N
Taunton 2008 ²¹	0	0	100	89	6	0	5	1	Υ	N
Throckmorton 2010 ²²	50	50	0	100	0	0	0	0	Υ	N
Walch 2011 ²⁵	100	0	0	100	0	0	0	0	Υ	N
Walch 2012 ⁹	100	0	0	100	0	0	0	0	Υ	Υ
Wirth 2012 ¹⁸	0	100	0	100	0	0	0	0	Yes	No
Young 2011 ²³	100	0	0	100	0	0	0	0	Yes	Yes
Zilber 2008 ⁵⁷	NA	NA	NA	45	10	35	10	0	No	Yes

^{*}ASES = American Shoulder and Elbow Surgeons member, LOE = level of evidence, EU = European Union, NA = not available, DJD = degenerative joint disease, Trauma OA = posttraumatic osteoarthritis, RA = rheumatoid arthritis, and ON = osteonecrosis.

Copyright © by The Journal of Bone and Joint Surgery, Incorporated Papadonikolakis et al. Failure of the Glenoid Component in Anatomic Total Shoulder Arthroplasty http://dx.doi.org/10.2106/JBJS.L.00552 Page 4 of 5

	Asymptomatic Radioluc	cent Lines	Symptomatic Loos	sening	Revision		
Factor*	Rate Slope (95% CI)	P Value	Rate Slope (95% CI)	P Value	Rate Slope (95% CI)	P Valu	
Mid-range of study years, per 10 yr	0.8 (-2.6, 4.3)	0.6	-0.4 (-1.4, 0.7)	0.5	-0.8 (-1.6, 0.0)	0.06	
Ouration, per 5 yr	-2.0 (-4.7, 0.7)†	0.21†	0.1 (-0.8, 1.0)	0.8	0.3 (-0.3, 1.0)	0.3	
Crude rate, Y vs. N	3.8 (-1.1, 8.6)	0.13	-0.4 (-1.6, 0.8)	0.5	-0.5 (-1.3, 0.4)	0.3	
Keeled vs. pegged vs. metal Keeled Pegged, per 100% Metal-backed, per 100%	Reference 2.0 (-4.3, 8.3) -2.4 (-9.4, 4.5)	0.6 0.5 0.5	Reference 0.3 (-1.6, 2.2) 0.5 (-1.9, 3.0)	0.9 0.8 0.7	Reference -0.3 (-1.3, 0.7) 1.0 (-0.03, 2.0)	0.14 0.6 0.06	
Cemented, Y vs. N	2.8 (-2.6, 8.3)	0.3	-0.8 (-3.3, 1.6)	0.5	-0.8 (-1.8, 0.1)	0.08	
DJD, per 100%	1.9 (-4.4, 8.2)	0.6	-1.1 (-2.9, 0.7)	0.2	-1.1 (-2.6, 0.5)	0.2	
Posttraumatic arthritis, per 10%	0.3 (-2.5, 3.0)	0.9	0.4 (-0.3, 1.2)	0.3	0.4 (-0.3, 1.0)	0.3	
Rheumatoid arthritis, per 20%	-0.6 (-1.9, 0.7)	0.4	0.2 (-0.2, 0.5)	0.4	0.2 (-0.1, 0.5)	0.2	
Osteonecrosis, per 5%	1.5 (-1.6, 4.6)‡	0.3‡	0.5(-0.5, 1.4)	0.3	-0.2 (-0.8, 0.5)	0.6	
Misc. diagnoses, per 5%	-4.1 (-11.5, 3.4)	0.3	0.5 (-0.8, 1.9)	0.4	1.0 (0.0, 1.9)	0.04	
Male sex, per 50%	-1.6(-7.4, 4.1)	0.6	-1.6 (-3.1, -0.1)	0.04	-0.6 (-1.9, 0.8)	0.4	
Mean age, per 10 yr							
Multiple surgeons, Y vs. N	-1.2 (-6.0, 3.6)	0.6	0.6 (-0.5, 1.7)	0.3	0.6 (-0.3, 1.5)	0.2	
ellowship training, Y vs. N	-0.1(-4.9, 4.7)	1	-0.4 (-1.6, 0.9)	0.5	0.1 (-0.8, 1.1)	0.8	
ASES membership, Y vs. N	1.1(-3.5, 5.7)	0.6	-0.0 (-1.3, 1.2)	1	0.3 (-0.7, 1.2)	0.6	
Multicenter, Y vs. N	-1.6(-6.7, 3.6)	0.5	0.2 (-1.3, 1.6)	0.8	0.7 (-0.4, 1.8)	0.2	
Europe, Y vs. N	-1.1(-5.6, 3.3)	0.6	0.3 (-0.9, 1.5)	0.6	0.0 (-0.9, 1.0)	1	
Walch grade available, Y vs. N	0.6 (-3.9, 5.0)	0.8	-0.2 (-1.4, 0.9)	0.7	-0.3 (-1.2, 0.7)	0.6	
Jniversity, Y vs. N	-1.4 (-6.6, 3.8)	0.6	1.2 (-0.1, 2.5)	0.08	0.5 (-0.5, 1.5)	0.3	
Private, Y vs. N	-1.1(-5.7, 3.4)	0.6	-0.4 (-1.6, 0.9)	0.5	0.3 (-0.7, 1.2)	0.6	
Conflict of interest, 7 vs. N	4.7 (-0.1, 9.4)	0.06	0.2 (-1.2, 1.5)	0.8	0.2 (-0.8, 1.2)	0.7	
Valch class		0.046		0.04		0.9	
A1	Reference		Reference		Reference		
A2 vs. A1, per 10%	-3.0 (-5.6, -0.3)	0.03	-1.1 (-2.4, 0.2)	0.11	-0.5 (-2.4, 1.5)	0.6	
B1 vs. A1, per 10%	1.4(-1.1, 4.0)	0.3	0.3 (-0.8, 1.4)	0.6	-0.1 (-1.4, 1.3)	0.9	
B2 vs. A1, per 10% C vs. A1, per 10%	0.8 (-3.9, 5.5) -12.5 (-26.1, 1.0)	0.8 0.07	0.1 (-1.2, 1.5) -3.8 (-8.1, 0.4)	0.8 0.08	0.4 (-1.2, 1.9) -2.1 (-8.0, 3.8)	0.6 0.5	

^{*}DJD = degenerative joint disease, and ASES = American Shoulder and Elbow Surgeons. †Rahme 2009^{40} excluded; slope = -3.4 (-6.5, -0.3), p = 0.03 when included. †Rahme 2009^{40} excluded; slope = 3.9 (0.8, 7.1), p = 0.01 when included.

Copyright © by The Journal of Bone and Joint Surgery, Incorporated Papadonikolakis et al. Failure of the Glenoid Component in Anatomic Total Shoulder Arthroplasty http://dx.doi.org/10.2106/JBJS.L.00552 Page 5 of 5

Study	Glenoid	N	Mean Follow-up (yr)	Radiolucent Lines (%)	Annualized Rate (%/yr)	Odds Ratio (95% CI)	P Value
Edwards 2010 ³⁶			2.17				0.01
	Pegged	27		15	6.9	1.00 (ref.)	
	Keeled	26		46	21.2	4.93 (1.41, 20.29)	
hrockmorton 2010 ²²			4.27				0.2
	Pegged	50		26	6.1	1.00 (ref.)	
	Keeled	50		38	8.9	1.74 (0.75, 4.16)	
Rahme 2009 ⁴⁰			2.00				0.3
	Pegged	14		57	28.5	1.00 (ref.)	
	Keeled	12		75	37.5	2.25 (0.44, 13.63)	
Pooled in meta-analysis							0.01
	Pegged					1.00 (ref.)	
	Keeled					2.37 (1.21, 4.67)	