Copyright © by The Journal of Bone and Joint Surgery, Incorporated McDonald et al. Disorders of the Proximal and Distal Aspects of the Biceps Muscle http://dx.doi.org/10.2106/JBJS.L.00221 Page 1 of 5

Author	Year	Mechanism and Proposed Injury Pattern
Bey et al. ¹⁴	1998	Inferior humeral head subluxation with traction on biceps
		causing type-II SLAP tear (cadaveric study)
Burkhart and Morgan ¹⁵	1998	Peel-back mechanism causing type-II SLAP tear (arthroscopic
		observational study)
Pradhan et al. ¹⁶	2001	Repetitive overhead throwing, late cocking causing SLAP tear
		(cadaveric study)
Burkhart et al. ¹⁷	2003	Change in arc of rotation associated with posterior capsular
		contracture causing pathologic posterosuperior migration of
		the humeral head in late cocking (review of arthroscopic
		findings)
Kuhn et al. ¹⁸	2003	Repetitive overhead throwing, late cocking causing type-II
		SLAP tear (cadaveric study)
Clavert et al. ¹⁹	2004	Fall on outstretched hand with shearing mechanism causing
		type-II SLAP tear (cadaveric study)
Shepard et al. ²⁰	2004	Repetitive overhead throwing, late cocking causing type-II
		SLAP tear (cadaveric study)
Grossman et al. ²¹	2005	Peel-back mechanism causing type-II SLAP tear (cadaveric
		study)

TABLE E-1 Proposed SLAP Tear Injury Mechanism

Copyright © by The Journal of Bone and Joint Surgery, Incorporated McDonald et al. Disorders of the Proximal and Distal Aspects of the Biceps Muscle http://dx.doi.org/10.2106/JBJS.L.00221 Page 2 of 5

TABLE E-2 SLAP Lesion Classificati	on
------------------------------------	----

SLAP Type	Subtype	Description
I (Snyder et al.) ¹²		Degenerative and frayed superior labrum
		Intact attachment of biceps root to glenoid
II (Snyder et al.) ¹²		Degenerative and frayed superior labrum
		Stripping of superior labrum and biceps from glenoid
		Unstable biceps anchor
		Most common type of SLAP lesion (77 of 140 cases) ¹³
	Morgan et al. ²⁷	Anterior, posterior, combined anterior and posterior
	Choi and Kim ²⁸	Articular cartilage injury and loose bodies
III (Snyder et al.) ¹²		Unstable bucket-handle tear in the superior labrum
		Peripheral portion fixed to glenoid
		Intact biceps tendon
IV (Snyder et al.) ¹²		Unstable bucket-handle tear in the superior labrum with a
		tear that extends into the biceps tendon
V (Maffet et al.) 22		Bankart lesion with superior extension to biceps attachment
		or a SLAP lesion with anterior inferior extension
VI (Maffet et al.) ²²		Labral flap with a SLAP tear
VII (Maffet et al.) ²²		Middle glenohumeral ligament lesion with extension into biceps attachment associated with anterior dislocation
VIII (Powell et al.) 23		Type-II SLAP lesion with posterior extension
VIII (Mohana-		Associated with acute trauma following posterior dislocation
Borges et al.) ²⁶		
IX (Powell et al.) 23		Type-II SLAP lesion with a circumferential labral tear
IX (Mohana-Borges		Global labral abnormalities likely due a traumatic event
$et al.)^{26}$		
X (Powell et al.) 23		Type-II SLAP lesion with associated posterior-inferior labral
		separation
X (Mohana-Borges		Rotator interval extension with articular-sided abnormalities
$et al.)^{26}$		

COPYRIGHT © BY THE JOURNAL OF BONE AND JOINT SURGERY, INCORPORATED MCDONALD ET AL. DISORDERS OF THE PROXIMAL AND DISTAL ASPECTS OF THE BICEPS MUSCLE http://dx.doi.org/10.2106/JBJS.L.00221 Page 3 of 5

				Outcome	
Author	Year	Patients/Groups	Technique	Measure [†]	Outcomes
Yoneda et	1991	10/1	Metal staple	Pain rating	8/10 good to excellent, 1
al. ⁶¹				system	fair, 1 poor
Samani et	2001	25/1	Bioabsorbable	UCLA 63,64 ,	22/25 good to excellent, 2
al. ⁶²			tack	ASES ⁶⁵	fair, 1 poor
O'Brien et	2002	31/1	Bioabsorbable	L'Insalata et	23/31 good to excellent, 6
al.66			tack	al. ⁶⁷ , ASES ⁶⁵	fair, 2 poor
Kim et al. ⁶⁸	2002	34/1	Suture anchor	UCLA ^{63,64}	32/34 good to excellent, 2
					fair, 0 poor
Ide et al. ⁶⁹	2005	40/1	Suture anchor	Modified	36/40 good to excellent, 4
				Rowe ⁷⁰	fair, 0 poor
Cohen et	2006	39/1	Bioabsorbable	L'Insalata et	27/39 good to excellent, 7
al./1			tack	al. ⁶⁷ , ASES ⁶⁵	fair, 5 poor
Coleman et	2007	50/2: isolated	Bioabsorbable	L'Insalata et	35/50 good to excellent, 9
al. ⁷²		type-II SLAP	tack	al. ⁶⁷ , ASES ⁶⁵	fair, 6 poor
		repair vs. SLAP			
		repair with			
	..	acromioplasty			
Enad et	2007	27/1	Suture anchor	$UCLA^{05,04}$,	24/27 good to excellent, 3
	2007			ASES ⁶³	fair, 0 poor
Enad and V_{4}	2007	36/2: isolated	Suture anchor	$UCLA^{65}$,	33/36 good to excellent, 3
Kurtz		type-II SLAP		ASES	fair, 0 poor
		repair vs. SLAP			
		repair with			
		nathology repair			
Verma et	2007	19/1. Workers'	Suture anchor	VAS nain	Pain decrease from 7.0 to
al 75	2007	Compensation	Suture allenor	SST^{76} SF-36	3 5
ai.		natients		551,5150	
		patients			Improvements in most SST
					sections
					SF-36 improvement only in
					pain and role-physical
					category
					8/19 returned to work at
					same level as before injury.
					16/19 able to return to work
Yung et	2008	16/1	Suture anchor	UCLA ^{03,04}	5/16 excellent, $7/16$ good,
al.''					4/16 poor

TABLE E-3 Repair Outcomes for Type-II SLAP Tears*

COPYRIGHT © BY THE JOURNAL OF BONE AND JOINT SURGERY, INCORPORATED MCDONALD ET AL. DISORDERS OF THE PROXIMAL AND DISTAL ASPECTS OF THE BICEPS MUSCLE http://dx.doi.org/10.2106/JBJS.L.00221 Page 4 of 5

Boileau et al. ⁷⁸	2009	25/2: isolated type-II SLAP repair vs. biceps tenodesis	Suture anchor	Constant and Murley shoulder score ⁷⁹	SLAP repair: 4/10 satisfied; tenodesis: 13/15 satisfied
et al. ⁸⁰	2009	4//1	Suture anchor	al. ⁶⁷ , ASES ⁶⁵	41/47 good to excellent
Kanatli et al. ⁸¹	2011	35/2: isolated type-II SLAP repair vs. SLAP repair with concomitant repair of full- thickness rotator cuff tear	Suture anchor	UCLA ^{63,64} , range of motion	28/31 good to excellent, 3 fair, 0 poor. No difference in UCLA score or range of motion. SLAP repair gave better subgroup scores for function and satisfaction than SLAP repair with rotator cuff repair
Park and Glousman ⁸²	2011	12/1	Suture anchor	ASES ⁶⁵ , return to work, return to sports	Mean ASES, 72.5. On average, the cohort returned to work at 57.8% of the preinjury level and to sports at 42.3% of the preinjury level
Neuman et al. ⁸³	2011	30/1: Overhead athletes patient group	Suture anchor	ASES ⁶⁵ , KJOC ⁸⁴	21/30 very satisfied, 7 satisfied, 2 unsatisfied
Provencher et al. ⁸⁵	2011	179/1	Suture anchor	WOSI ⁸⁶ , SANE ⁸⁷ , ASES ⁶⁵	66/179 (36.8%) failed by 36 months; residual proximal biceps symptoms a causal factor

*Updated from Gorantla et al.⁶⁰. †UCLA = University of California Los Angeles score, ASES = American Shoulder and Elbow Surgeons score, VAS = visual analog scale, SST = Simple Shoulder Test, SF-36 = Short Form-36 quality-of-life questionnaire, KJOC = Kerlan-Jobe Orthopaedic Clinic upper-extremity score, WOSI = Western Ontario Shoulder Instability index, and SANE = Single Assessment Numeric Evaluation score. Copyright © by The Journal of Bone and Joint Surgery, Incorporated McDonald et al. Disorders of the Proximal and Distal Aspects of the Biceps Muscle http://dx.doi.org/10.2106/JBJS.L.00221 Page 5 of 5

	r			<u> </u>	
		No. of S	houlders		
		Tenoto	Tenode		
		my	sis	Tenodesis	Significant Difference in
Author	Year	Group	Group	Technique	Outcomes
Osbahr et al. ¹²⁰	2002	80	80	Not described	None
Boileau et al. ¹¹⁸	2007	39	33	Arthroscopic proximal	None
Paulos et al. ¹²¹	2007	10	39	Wedge tenodesis	None
Franceschi et al. ¹²²	2007	11	11	Biceps sutured into rotator cuff repair	None
Koh et al. ¹²³	2010	45	45	Arthroscopic proximal	None
Wittstein et al. ¹²⁴	2011	19	16	Arthroscopic proximal	Tenotomy group had decreased supination strength

|--|