
COPYRIGHT © BY THE JOURNAL OF BONE AND JOINT SURGERY, INCORPORATED HINTERMANN ET AL. HINTEGRA REVISION ARTHROPLASTY FOR FAILED TOTAL ANKLE PROSTHESES http://dx.doi.org/10.2106/JBJS.L.00538 Page 1 of 12

Figs. E-1A through E-1F Revision arthroplasty with revision components in a sixty-four-year-old businessman and former high-level soccer player. **Figs. E-1A through E-1D** At 7.5 years after total ankle replacement, there is evidence of cysts on both the tibial and talar sides as a source of increasing pain.

Copyright © by The Journal of Bone and Joint Surgery, Incorporated Hintermann et al. HINTEGRA Revision Arthroplasty for Failed Total Ankle Prostheses http://dx.doi.org/10.2106/JBJS.L.00538 Page 2 of 12

Copyright © by The Journal of Bone and Joint Surgery, Incorporated Hintermann et al. HINTEGRA Revision Arthroplasty for Failed Total Ankle Prostheses http://dx.doi.org/10.2106/JBJS.L.00538 Page 3 of 12

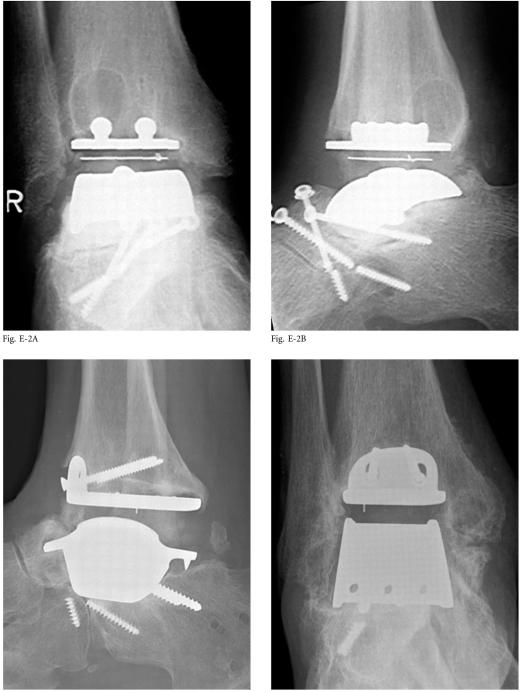


Fig. E-2C

Fig. E-2D

Figs. E-2A through E-2D Revision arthroplasty with a custom talar component in a fifty-two-year-old banker. **Figs. E-2A and E-2B** At 5.8 years after total ankle replacement for posttraumatic osteoarthrosis secondary to talar fracture, radiographs show subsidence of the talar component and cyst formation involving the distal aspect of the tibia. **Figs. E-2C and E-2D** Seven years after revision arthroplasty, the components were stable. The patient reported some periarticular pain after walks of more than two hours but was very satisfied with the overall result.

Copyright © by The Journal of Bone and Joint Surgery, Incorporated Hintermann et al. HINTEGRA Revision Arthroplasty for Failed Total Ankle Prostheses http://dx.doi.org/10.2106/JBJS.L.00538 Page 4 of 12

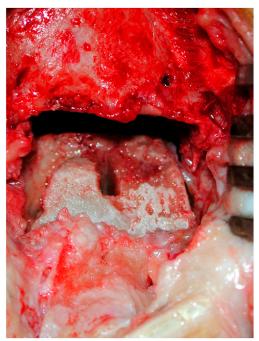


Fig. E-3A

Fig. E-3B

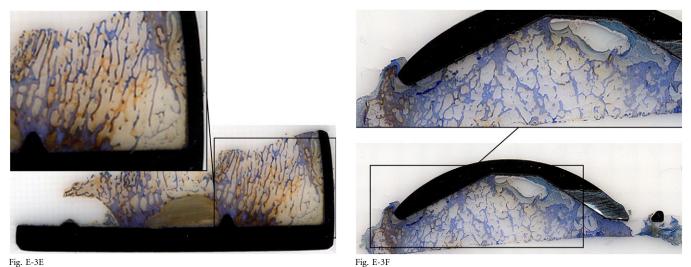


Fig. E-3C

Fig. E-3D

Figs. E-3A through E-3F Revision arthroplasty with standard components in a fifty-nine-year-old teacher. Fig. E-3A At 5.8 years after total ankle replacement with a STAR prosthesis, the patient had increasing pain while weight-bearing and at rest due to osteonecrosis on the talar side, as verified intraoperatively. Fig. E-3B There is evidence of some irregular bone beneath the talar component. Figs. E-3C and E-3D At seven years postoperatively, radiographs show stable components and the patient reported only minor pain after physical activities.

Copyright © by The Journal of Bone and Joint Surgery, Incorporated Hintermann et al. HINTEGRA Revision Arthroplasty for Failed Total Ankle Prostheses http://dx.doi.org/10.2106/JBJS.L.00538 Page 5 of 12

Fig. E-3E The patient died six months later of causes unrelated to the ankle. On the tibial side, histological analysis of the harvested implant showed some stress concentration of osseous trabeculae at the pyramidal peak and the bone cement that was used to fill a cyst during the revision arthroplasty. Some stress concentration also occurred anteriorly. The bone-implant interface was stable. **Fig. E-3F** On the talar side, the bone-implant contact area was regular, with some trabecular stress concentration occurring at the posterior and anterior aspects of the talus.

Copyright © by The Journal of Bone and Joint Surgery, Incorporated Hintermann et al. HINTEGRA Revision Arthroplasty for Failed Total Ankle Prostheses http://dx.doi.org/10.2106/JBJS.L.00538 Page 6 of 12

Fig. E-4A

Fig. E-4B

Fig. E-4C

Fig. E-4D

Figs. E-4A through E-4D Revision arthroplasty with correcting osteotomies to balance the revised ankle in a sixty-one-year-old policeman and former soccer player. **Figs. E-4A and E-4B** Failure of components 4.7 years after the primary arthroplasty, with tilting and subsidence of the tibial component and anterior extrusion of the talus. **Figs. E-4C and E-4D** An opening wedge osteotomy of the distal aspect of the tibia was performed to realign the ankle in the sagittal plane and to create bone stock for the standard tibial component. In addition, a shortening osteotomy of the fibula and a medial sliding osteotomy of the calcaneus were performed to balance the ankle joint in the frontal plane. An allograft was used to strengthen the distal aspect of the fibula on its inner side. The ankle was stable and well-balanced after three years, and the patient was satisfied with the result.

COPYRIGHT © BY THE JOURNAL OF BONE AND JOINT SURGERY, INCORPORATED HINTERMANN ET AL. HINTEGRA REVISION ARTHROPLASTY FOR FAILED TOTAL ANKLE PROSTHESES http://dx.doi.org/10.2106/JBJS.L.00538 Page 7 of 12

Study	Туре	N	TAR Prosthesis	Follow-up (yr)	Failures	Reasons for Failure (No. of Patients)	Time to Revision (yr)	Revision Procedure (No. of Patients)	Results of Revision
Ali et al., 2007 ⁴⁵	RS, SC	35	Buechel- Pappas	5 (0.3-12.5)	1 (3%)	Pain (1)	3	Revision TAR (1)	Converted to ankl arthrodesis 1 yea later due to CRPS
Anders et al., 2010	RS, SC	93	AES	3.5 (1.1-6.1)	7 (8%)	Loosening (1), infection (2), instability (2), fx (2)	NA	Revision TAR (1), ankle arthrodesis (6)	NA
Anderson et al., 2003 ⁴⁷	RS, SC	51	STAR	(3-8)	12	Loosening (7), PE fx (2), other (3)	2.8 (0.1-5.3)	Revision TAR (5), ankle arthrodesis (5), PE exchange (2)	3 revision TARs with excellent function, 1 with good function, 1 pt. died
Bonnin et al., 2011 ⁴⁸	PS, SC	98	Salto	8.9 (6.8-11.1)	12 (12%)	Loosening (6), PE fx (5), malposition (1)	NA	Revision TAR (1), ankle arthrodesis (6), PE exchange (5)	NA
Buechel et al., 2003 ⁴⁹	RS, SC	50	Buechel- Pappas	5 (2-10)	2 (4%)	Malposition of talar component (1), talar subsidence (1)	NA	Revision TAR (2)	NA
Carlsson et al., 2001 ⁵⁰	RS, SC	69	Bath and Wessex	NA	12 (17%)	Painful loosening (12)	4.3 (2.3-8.7)	Revision TAR (6), ankle arthrodesis (12)	NA
Christ and Hagena, 2005 ⁵¹	RS, SC	144	STAR	4.8	9 (6%)	Malalignment (2), loosening (1), impingement (1), instability (1), fx (1), deep infection (2)	NA	Revision TAR (7), ankle arthrodesis (2)	NA
Doets et al., 2006 ⁵²	PS, MC	93	LCS (19), Buechel- Pappas (74)	7.2 (0.4-16.3)	15 (16%)	Aseptic loosening (6), malalignment (6), deep infection (2), severe wound-healing problem (1)	NA	Revision TAR (1), ankle arthrodesis (14)	Revision TAR showed loosening and required eventual conversion to arthrodesis
⁻ evang et al., 2007 ⁵³	RS, MC	257	Norwegian TPR (32), STAR (216), AES (3), HINTEGRA (6)	4 (0-12)	27 (11%)	Aseptic loosening (13), instability (3), malalignment (7), deep infection (2), fx (1), pain (5), PE defect/wear (2), other (2)	2.3 (0.1-8)	Revision TAR (15), PE insert exchange (6), arthrodesis (6)	NA
Giannini et al., 2010 ⁵⁴	PS, MC	51	BOX	2.5 (2-4)	1 (2%)	Lateral impingement (1)	2	Revision TAR (1)	NA
Henricson and Ågren, 2007 ⁵⁵	RS, SC	193	STAR (109), Buechel- Pappas (62), AES (22)	4.2 (1-8)	41 (21%)	Infection (5), technical error (8), loosening (11), pain (4), instability (13)	(1.0-6.6)	Revision TAR (23), ankle arthrodesis (15), extraction of prostheses without arthrodesis (3)	2 good results, 19 fairly good, 2 poor with persisting pain and use of two crutches
Hobson et al., 2009 ⁵⁶	RS, SC	123	STAR	4 (2-8)	18 (15%)	NA	NA	Revision TAR (16), ankle arthrodesis (2)	NA
Hosman et al., 2007 ⁵⁷	nan et al., RS, 202 Agility (117), 2.3 (0.6-6.3) 14 (7%) Loosening (10), 1		1.9 (0.1-5.4)	Revision TAR (10), ankle arthrodesis (3), BKA (1)	NA				
Hurowitz et al., 2007 ⁵⁸	RS, SC	65	Agility	3.3 (2.0-5.9)	21 (32%)	Loosening (8), subsidence (5), malalignment (3), infection (3), osteolysis (1), post impingement (1)	NA	Revision TAR (17), ankle arthrodesis (2), osteochondral allograft (1), BKA (1)	NA

Copyright © by The Journal of Bone and Joint Surgery, Incorporated Hintermann et al. HINTEGRA Revision Arthroplasty for Failed Total Ankle Prostheses http://dx.doi.org/10.2106/JBJS.L.00538 Page 8 of 12

TABLE E-1 (c	ontinue	d)							
Study	Туре	N	TAR Prosthesis	Follow-up (yr)	Failures	Reasons for Failure (No. of Patients)	Time to Revision (yr)	Revision Procedure (No. of Patients)	Results of Revision
Karantana et al., 2010 ⁵⁹	RS, SC	52	STAR	6.7 (5.0-9.2)	8 (15%)	Stress fracture (2), stiffness (2), insert fx (2), talar subsidence (1), loosening (1)	NA	Revision TAR (6), ankle arthrodesis (2)	NA
Kitaoka and Patzer, 1996	RS, SC	160	Мауо	9 (2-17)	57 (36%)	Persistent pain and loosening (all)	4.4 (0.1-13.1)	Revision TAR (10), ankle arthrodesis (45), BKA (2)	NA
Knecht et al., 2004 ⁶¹	RS, SC	132	Agility	7.2 (2-14)	14 (11%)	Component fx (2), loosening (4), deep infection (1), talar collapse (2), varus malpositioning (1), subsidence/ migration (3), other (1)	5.8 (0.5-11.3)	Revision TAR (7), ankle arthrodesis (7)	NA
Kofoed and Sørensen, 1998 ⁶²	PS, SC	52	STAR	9 (6-14)	11 (21%)	Loosening (10), deep infection (1)	4.5 (0.8-8.8)	Revision TAR (5), ankle arthrodesis (6)	NA
Kopp et al., 2006 ⁶³	RS, SC	43	Agility	3.7 (2.2-5.3)	1 (2%)	Aseptic loosening (1)	NA	Revision TAR (1)	NA
Kumar and Dhar, 2007	RS, SC	50	STAR	3 (1.5-5)	3 (6%)	Malalignment (2), pain (1)	NA	Revision TAR (3)	Good results in 2 pt., arthrodesis using ring fixator in 1 pt.
Mendolia et al., 2005	RS, SC	69	Ramses	12 (10-14)	12 (10%)	Malalignment (4), loosening (3), instability (5)	NA	Revision TAR (5), ankle arthrodesis (7)	NA
Morgan et al., 2010 ⁶⁶	RS, SC	45	AES	4.8 (4.0-6.7)	2 (4%)	Loosening (2)	NA	Revision TAR (1), ankle arthrodesis (1)	NA
Murnaghan et al., 2005 ⁶⁷	RS, SC	22	STAR	2.2 (0.7-3.8)	2 (9%)	Malalignment (2)	NA	Revision TAR (2)	Good results
Nishikawa et al., 2004 ⁶⁸	RS, SC	21	TNK	6.0 (1.3-14.1)	3 (14%)	Loosening (3)	NA	Revision TAR (1), ankle arthrodesis (2)	Revision TAR was fused after 2 yr because of loosening
Reuver et al., 2010 ⁶⁹	RS, MC	59	Salto	3.0 (1.0-5.4)	7 (12%)	Loosening (5), deep infection (2)	NA	Revision TAR (3), ankle arthrodesis (4)	NA
Rodriguez et al., 2010 ⁷⁰	RS, SC	18	AES	3.3 (1.7-5.1)	1	Loosening with cysts (1)	NA	Revision TAR (1)	NA
Rudigier et al., 2004 ⁷¹	RS, MC	117	ESKA	(0-10)	8 (7%)	Deep infection (4), talar necrosis (1), prosthesis breakage (1), prosthesis malalignment (1), loosening with cysts (1)	NA	Revision TAR (4), ankle arthrodesis (4)	NA
Schutte and Louwerens, 2008 ⁷²	PS, SC	49	STAR	2.3 (1.0-5.6)	4 (8%)	Septic (2) and aseptic (2) loosening	NA	Revision TAR (1), ankle arthrodesis (3)	NA
Spirt et al., 2004 ⁷³	RS, SC	306	Agility	2.8 (0.3-6.3)	33 (10.8%)	NA	NA	Revision TAR (24), BKA (8), ankle arthrodesis (1)	NA
Vienne and Nothdurft, 2004 ⁷⁴	RS, SC	66	Agility	2.4 (1.5-3.6)	2 (3%)	NA	NA	Revision TAR (1), ankle arthrodesis (1)	NA
Wood and Deakin, 2003 ⁷⁵	PS, SC	200	STAR	3.8 (2.0-8.4)	14 (7%)	NA	NA	Revision TAR (3), ankle arthrodesis (11)	NA

Copyright © by The Journal of Bone and Joint Surgery, Incorporated Hintermann et al. HINTEGRA Revision Arthroplasty for Failed Total Ankle Prostheses http://dx.doi.org/10.2106/JBJS.L.00538 Page 9 of 12

Study	Туре	N	TAR Prosthesis	Follow-up (yr)	Failures	Reasons for Failure (No. of Patients)	Time to Revision (yr)	Revision Procedure (No. of Patients)	Results of Revision
Wood et al., 2008 ⁷⁶	PS, SC	200	STAR	7.3 (5-13)	24 (12%)	Major delay to wound-healing (1), intraop. fx (1), postop. fx (2), aseptic loosening (14), edge loading (5), PE fx (1)	NA	Revision TAR (4), ankle arthrodesis (20)	1 revision TAR failed after 5 yr and was converter to ankle arthrodesis
Wood <u>et</u> al., 2010 ⁷⁷	PS, SC	100	Mobility	3.6 (0.3-5.3)	5 (5%)	Insert luxation (1), loosening (1), talar subsidence (1), pain (1), varus deformity (1)	2.6 (0.5-3.8)	Revision TAR (1), ankle arthrodesis (2), insert exchange (2)	NA

TAR = total ankle replacement, RS = retrospective, SC = single-center, CRPS = chronic regional pain syndrome, fx = fracture, NA = not available, PE = polyethylene, PS = prospective, and MC = multicenter.

Copyright © by The Journal of Bone and Joint Surgery, Incorporated Hintermann et al. HINTEGRA Revision Arthroplasty for Failed Total Ankle Prostheses http://dx.doi.org/10.2106/JBJS.L.00538 Page 10 of 12

			Original Revis	ion		Repeat Revision					
No.	Sex	Age † (yr)	Original Prosthesis	Talar Component	Tibial Component	Cause of Failure	Time to Repeat Revision <i>(mo)</i>	Additional Procedures	Talar Component	Tibial Component	
1	М	54	HINTEGRA	None	Standard HASC	Loosening of both components	32	None	Standard HASC-NP	Not change	
2	F	77	HINTEGRA	Standard HASC-NP	None	Loosening of talar component	21	None	Custom-made HASC-NP	Not changed	
3	F	28	STAR	Custom-made	Revision HASC	Loosening of tibial component, valgus malalignment	25	Syndesmotic AD, SMOT tibia	Not changed	Not change	
4	М	43	HINTEGRA	None	Standard HASC	Loosening of talar component, progressive cyst formation	85	None	Standard HASC-NP	Not changed	
5	Μ	71	STAR	Standard HASC-NP	Standard HASC	Chronic pain syndrome and paralysis after spine surgery	57	Tibiotalar AD			
6	F	58	HINTEGRA	Standard HASC-NP	Standard HASC	Loosening of talar component	69	None	Revision	Standard	
7	F	46	HINTEGRA	Standard HASC-NP	None	Loosening of both components	68	Tibiotalar AD			
8	М	53	Mobility	Revision	Standard	Pain and stiffness, arthrofibrosis	24	Tibiotalar AD			
9	Μ	69	STAR	Revision	Standard	Loosening of talar component, subfibular impingement	32	None	Revision	Revision HASC	
10	Μ	48	HINTEGRA	Revision	Standard	Recurrent lateral instability with dislocation of PE insert	7	Tibiotalocalcaneal AD			
11	F	60	STAR	Standard	Standard	Loosening of talar component, osteonecrosis of talus	15	Naviculocuneiform AD	Revision	Not changed	
12	Μ	66	HINTEGRA	Standard	None	Varus malalignment	58	Shortening OT fibula, LSOT calcaneus, OT med. malleolus	Not changed	Standard	
13	М	72	HINTEGRA	None	Standard	Loosening of tibial component	39	ORIF med. malleolus	Not changed	Standard	
14	М	43	ESKA	Revision	Standard	Loosening of tibial component, valgus malalignment	12	MSOT calcaneus, SMOT tibia	Not changed	Standard	
15	М	30	Irvine	Revision	Standard	Deep infection	296	Heel cord lengthening, peroneal tendon transfer‡	Custom-made	Standard	
16	F	64	STAR	Standard	Standard	Loosening of tibial component	13	Shortening OT fibula	Not changed	Revision HASC	
17	М	83	HINTEGRA	Revision	Standard	Talar fracture after trauma	11	Tibiotalar AD			

*PE = polyethylene, HASC = hydroxyapatite single-coated, NP = no pegs, AD = arthrodesis, SMOT = supramalleolar osteotomy, OT = osteotomy, LSOT = lateral sliding osteotomy, ORIF = open reduction and internal fixation, and MSOT = medial sliding osteotomy. †At time of first revision arthroplasty. †14 days after prosthesis removal, gentamycin-Palacos spacer, antibiotics for 3 months.

Copyright © by The Journal of Bone and Joint Surgery, Incorporated Hintermann et al. HINTEGRA Revision Arthroplasty for Failed Total Ankle Prostheses http://dx.doi.org/10.2106/JBJS.L.00538 Page 11 of 12

No.	Sex	Age (yr)*	Time to Repeat Revision (mo)	Follow-up† <i>(mo)</i>	VAS	AOFAS	Range of Motion (deg)	Patient Satisfactior
1	М	54	32	72	3	88	34	Satisfied
2	F	77	21	66	3	50	20	Satisfied with reservations
3	F	28	25	60	0	92	35	Very satisfie
4	М	43	85	42	3	66	30	Satisfied
5	М	71	57	48	2	69†	NA#	Satisfied
6	F	58	69	42	1	81	30	Very satisfie
7	F	46	68	42	3	69‡	NA#	Satisfied wit reservations
8	М	53	24	58	3	75†	NA§	Satisfied wit reservations
9	М	69	32	72	0	91	36	Very satisfie
10	М	48	7	54	2	60§	NA§	Satisfied
11	F	60	15	58	1	80	28	Satisfied
12	М	66	58	36	2	77	24	Satisfied
13	М	72	39	41	0	87	31	Very satisfie
14	М	43	12	36	3	62	22	Satisfied wit reservations
15	М	30	296	26	2	83	24	Satisfied
16	F	64	13	32	1	78	21	Satisfied
17	М	83	11	36	1	64†	NA#	Satisfied
Mean \pm std. dev.	11M:6F	57 ± 16	51 ± 67	48 ± 14	$\textbf{1.8} \pm \textbf{1.1}$	75 ± 12	28 ± 6	

*At time of first revision arthroplasty. †Time after repeat revision. ‡Out of 92 (due to performed tibiotalar arthrodesis). §Out of 86 (due to performed tibiotalocalcaneal arthrodesis). #Not available due to performed tibiotalar or tibiotalocalcaneal arthrodesis.

COPYRIGHT © BY THE JOURNAL OF BONE AND JOINT SURGERY, INCORPORATED HINTERMANN ET AL. HINTEGRA REVISION ARTHROPLASTY FOR FAILED TOTAL ANKLE PROSTHESES http://dx.doi.org/10.2106/JBJS.L.00538 Page 12 of 12

References

45. Ali MS, Higgins GA, Mohamed M. Intermediate results of Buechel Pappas unconstrained uncemented total ankle replacement for osteoarthritis. J Foot Ankle Surg. 2007 Jan-Feb;46(1):16-20.

46. Anders H, Kaj K, Johan L, Urban R. The AES total ankle replacement: a mid-term analysis of 93 cases. Foot Ankle Surg. 2010 Jun;16(2):61-4.

47. Anderson T, Montgomery F, Carlsson A. Uncemented STAR total ankle prostheses. Three to eight-year follow-up of fifty-one consecutive ankles. J Bone Joint Surg Am. 2003 Jul;85(7):1321-9.

48. Bonnin M, Gaudot F, Laurent JR, Ellis S, Colombier JA, Judet T. The Salto total ankle arthroplasty: survivorship and analysis of failures at 7 to 11 years. Clin Orthop Relat Res. 2011 Jan;469(1):225-36.

49. Buechel FF Sr, Buechel FF Jr, Pappas MJ. Ten-year evaluation of cementless Buechel-Pappas meniscal bearing total ankle replacement. Foot Ankle Int. 2003 Jun;24(6):462-72.

50. Carlsson AS, Henricson A, Linder L, Nilsson JA, Redlund-Johnell I. A 10-year survival analysis of 69 Bath and Wessex ankle replacements. Foot Ankle Surg. 2001; 7(1):39-44.

51. Christ RM, Hagena F- W. Komplikationen und Revisionseingriffe nach OSG-Totalendoprothesen. Fuss Sprungg. 2005;3(2):112-21.

52. Doets HC, Brand R, Nelissen RG. Total ankle arthroplasty in inflammatory joint disease with use of two mobile-bearing designs. J Bone Joint Surg Am. 2006 Jun;88(6):1272-84.

53. Fevang BT, Lie SA, Havelin LI, Brun JG, Skredderstuen A, Furnes O. 257 ankle arthroplasties performed in Norway between 1994 and 2005. Acta Orthop. 2007 Oct;78(5):575-83.

54. Giannini S, Romagnoli M, O'Connor JJ, Malerba F, Leardini A. Total ankle replacement compatible with ligament function produces mobility, good clinical scores, and low complication rates: an early clinical assessment. Clin Orthop Relat Res. 2010 Oct;468(10):2746-53.

55. Henricson A, Ågren P-H. Secondary surgery after total ankle replacement: the influence of preoperative hindfoot alignment. Foot Ankle Surg. 2007;13(1):41-4.

56. Hobson SA, Karantana A, Dhar S. Total ankle replacement in patients with significant pre-operative deformity of the hindfoot. J Bone Joint Surg Br. 2009 Apr;91(4):481-6.
57. Hosman AH, Mason RB, Hobbs T, Rothwell AG. A New Zealand national joint registry review of 202 total ankle replacements followed for up to 6 years. Acta Orthop. 2007 Oct;78(5):584-91.

58. Hurowitz EJ, Gould JS, Fleisig GS, Fowler R. Outcome analysis of agility total ankle replacement with prior adjunctive procedures: two to six year followup. Foot Ankle Int. 2007 Mar;28(3):308-12.

59. Karantana A, Hobson S, Dhar S. The scandinavian total ankle replacement: survivorship at 5 and 8 years comparable to other series. Clin Orthop Relat Res. 2010 Apr;468(4):951-7.

60. Kitaoka HB, Patzer GL. Clinical results of the Mayo total ankle arthroplasty. J Bone Joint Surg Am. 1996 Nov;78(11):1658-64.

61. Knecht SI, Estin M, Callaghan JJ, Zimmerman MB, Alliman KJ, Alvine FG, Saltzman CL. The Agility total ankle arthroplasty. Seven to sixteen-year follow-up. J Bone Joint Surg Am. 2004 Jun;86(6):1161-71.

62. Kofoed H, Sørensen TS. Ankle arthroplasty for rheumatoid arthritis and osteoarthritis: prospective long-term study of cemented replacements. J Bone Joint Surg Br. 1998 Mar;80(2):328-32.

63. Kopp FJ, Patel MM, Deland JT, O'Malley MJ. Total ankle arthroplasty with the Agility prosthesis: clinical and radiographic evaluation. Foot Ankle Int. 2006 Feb;27(2): 97-103.

64. Kumar A, Dhar S. Total ankle replacement: early results during learning period. Foot Ankle Surg. 2007;13(1):19-23.

65. Mendolia G, Talus Group. The Ramses ankle replacement: design-surgical technique result, results in first 38 cases. The French orthopedic web journal. http://www. maitrise-orthop.com/viewPage_us.do?id=87. Accessed 2013 Feb 1.

66. Morgan SS, Brooke B, Harris NJ. Total ankle replacement by the Ankle Evolution System: medium-term outcome. J Bone Joint Surg Br. 2010 Jan;92(1):61-5.

67. Murnaghan JM, Warnock DS, Henderson SA. Total ankle replacement. Early experiences with STAR prosthesis. Ulster Med J. 2005 May;74(1):9-13.

68. Nishikawa M, Tomita T, Fujii M, Watanabe T, Hashimoto J, Sugamoto K, Ochi T, Yoshikawa H. Total ankle replacement in rheumatoid arthritis. Int Orthop. 2004 Apr:28(2):123-6.

69. Reuver JM, Dayerizadeh N, Burger B, Elmans L, Hoelen M, Tulp N. Total ankle replacement outcome in low volume centers: short-term followup. Foot Ankle Int. 2010 Dec:31(12):1064-8.

70. Rodriguez D, Bevernage BD, Maldague P, Deleu PA, Tribak K, Leemrijse T. Medium term follow-up of the AES ankle prosthesis: High rate of asymptomatic osteolysis. Foot Ankle Surg. 2010 Jun;16(2):54-60.

71. Rudigier J, Menzinger F, Grundei H. 14 Jahre Erfahrungen mit der zementfreien ESKA-Sprunggelenksendoprothese. Fuss Sprungg. 2004;2(2):65-75.

72. Schutte BG, Louwerens JW. Short-term results of our first 49 Scandanavian total ankle replacements (STAR). Foot Ankle Int. 2008 Feb;29(2):124-7.

73. Spirt AA, Assal M, Hansen ST Jr. Complications and failure after total ankle arthroplasty. J Bone Joint Surg Am. 2004 Jun;86(6):1172-8.

74. Vienne P, Nothdurft P. OSG-Totalendoprothese Agility: indikationen, operationstechnik und ergebnisse. Fuss Sprungg. 2004;2(1):17-28.

75. Wood PL, Deakin S. Total ankle replacement. The results in 200 ankles. J Bone Joint Surg Br. 2003 Apr;85(3):334-41.

76. Wood PL, Prem H, Sutton C. Total ankle replacement: medium-term results in 200 Scandinavian total ankle replacements. J Bone Joint Surg Br. 2008 May;90(5):605-9.

77. Wood PL, Karski MT, Watmough P. Total ankle replacement: the results of 100 Mobility total ankle replacements. J Bone Joint Surg Br. 2010 Jul;92(7):958-62.