Copyright © by The Journal of Bone and Joint Surgery, Incorporated
Arami et al.
Guiding Femoral Rotational Growth in an Animal Model http://dx.doi.org/10.2106/JBJS.L. 00819
Page 1 of 5

Fig. E-1
Figs. E-1A through E-1D Bone model. Figs. E-1A and E-1B Initial position. Figs. E-1C and E-1D Position at the end of correction, showing the rotational change.

Copyright © by The Journal of Bone and Joint Surgery, Incorporated
Arami et al.
Guiding Femoral Rotational Growth in an Animal Model http://dx.doi.org/10.2106/JBJS.L.00819
Page 2 of 5

Fig. E-2
Figs. E-2A and E-2B Intraoperative photographs. Fig. E-2A Anterior view at the completion of the procedure. Two plates have been inserted across the physis, in an oblique fashion relative to the physis and opposite to each other. Fig. E-2B Lateral view of the medial aspect of the knee. The needle marks the line of the physis. A plate is positioned in an oblique fashion relative to the physis.

Copyright © by The Journal of Bone and Joint Surgery, Incorporated
Arami et al.
Guiding Femoral Rotational Growth in an Animal Model http://dx.doi.org/10.2106/JBJS.L.00819
Page 3 of 5

Fig. E-3
Rotational profile measurement. On transverse-plane CT images, two measurements were made on the extracted femora: the angle between the posterior cervical line of the proximal aspect of the femur relative to a horizontal line (Fig. E-3A) and the angle between the posterior aspect of the femoral neck and a horizontal line (Fig. E-3B). The difference between the angles denotes the angle between the femoral neck and the distal femoral condyles.

The Mathematical Model

At Start

Sagittal Plane

At Time t

Arami et al.
Guiding Femoral Rotational Growth in an Animal Model
http://dx.doi.org/10.2106/JBJS.L. 00819
Page 5 of 5

Legend

α : the angle between the radii (r) connecting the screws and the center of rotation
β : the induced rotation angle
γ : the sagittal plane angle between the plate and the physis
b : the distance between the two screws on the plate
c: the projection of the distance between the two screws along the physis
h : the projection of the distance between the two screws perpendicular to the physis
δh : the difference in h (linear growth)
Subscripts ${ }_{0}$ and ${ }_{t}$ denote, respectively, the variable "At Start" and "At Time t "

Relationships in the Model

1. $\alpha=$ the angle between the radii connecting the screws to the center of rotation
2. $\beta=$ the induced rotation angle at time t
3. $\beta_{\mathrm{t}}=\alpha_{0}-\alpha_{\mathrm{t}}\left[=180-2(90-\alpha / 2)-\alpha_{\mathrm{t}}\right.$; see top view $]$
4. $\sin (\alpha / 2)=(b / 2) / r=b /(2 r)$ [see top view]
5. $\mathrm{b}^{2}=\mathrm{c}^{2}-\mathrm{h}^{2}$ [see side view]
6. $=>\sin (\alpha / 2)=\left(c^{2}-h^{2}\right)^{1 / 2} /(2 r)$
7. $=>\alpha=2 \arcsin \left[\left(c^{2}-h^{2}\right)^{1 / 2} /(2 r)\right]$
8. $=>\mathrm{d} \alpha / \mathrm{dh}=2\left[1-\left(\mathrm{c}^{2}-\mathrm{h}^{2}\right) /\left(4 \mathrm{r}^{2}\right)\right]\left[(1 / 2)\left(\mathrm{c}^{2}-\mathrm{h}^{2}\right)^{-1 / 2}(-2 \mathrm{~h}) /(2 \mathrm{r})\right]=-[\mathrm{h} /(\mathrm{br})] \cos ^{2}(\alpha / 2)$
9. $=>\mathrm{d} \alpha / \mathrm{dh}<0$
10. $=>\mathrm{d} \beta / \mathrm{dh}=-\mathrm{d} \alpha / \mathrm{dh}>0$

Conclusion \#1: The Induced Rotation Angle Increases with Bone Growth

11. $\mathrm{b}=\mathrm{c} \cos (\gamma)$ [see side view]
12. $=>\sin (\alpha / 2)=c \cos (\gamma) /(2 r)$
13. $=>\alpha=2 \arcsin [c \cos (\gamma) /(2 r)]$
14. $=>\mathrm{d} \alpha / \mathrm{dc}=2\left[1-(\mathrm{c} /(2 \mathrm{r}))^{2} \cos ^{2}(\gamma)\right]^{-1 / 2} \cos (\gamma) /(2 \mathrm{r})$
15. and: $\mathrm{d} \alpha / \mathrm{d} \gamma=2\left[1-(\mathrm{c} /(2 \mathrm{r}))^{2} \cos ^{2}(\gamma)\right]^{-1 / 2}(\mathrm{c} / 2 \mathrm{r})[-\sin (\gamma)]$
16. $0<\gamma<90^{\circ}$
17. $=>\mathrm{d} \alpha / \mathrm{dc}>0$
18. and: $\mathrm{d} \alpha / \mathrm{d} \gamma<0$

Conclusion \#2: The Longer the Plate, and the More Parallel the Plates Are to the Growth Plate Initially, the Higher the Final Induced Rotation Angle
19. as above [2]: $\beta_{\mathrm{t}}=\alpha_{0}-\alpha_{\mathrm{t}}$
20. and [3]: $\sin \left(\alpha_{t} / 2\right)=b_{t} /(2 r)$
21. thus, as $\mathrm{b}_{\mathrm{t}} \rightarrow 0$ (i.e., as the plate approaches the vertical, due to growth):
22. $\alpha_{t} \rightarrow 0$
23. and: $\beta_{t} \rightarrow \alpha_{0}$

Conclusion \#3: If Growth Continues Until the Plates are Parallel, the Final Induced Rotation Angle Will Be the Initial Angle [α_{0}] Between the Radii Connecting the Two Screws and the Center of Rotation

