Copyright © 2013 by The Journal of Bone and Joint Surgery, Incorporated Liu et al. An Anatomic Study of the Epiphyseal Tubercle and... http://dx.doi.org/10.2106/JBJS.L.00474 Page 1 of 2

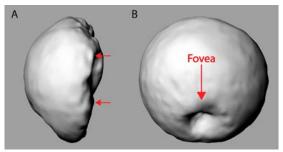
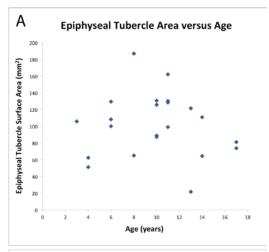



Fig. E-1

The capital femoral epiphysis was oriented by rotating the specimen on a lateral view until the anterior and posterior edges of the epiphysis (arrows) were aligned (**Fig. E-1A**) and then rotating it until the fovea was at the inferior aspect of the specimen (**Fig. E-1B**).

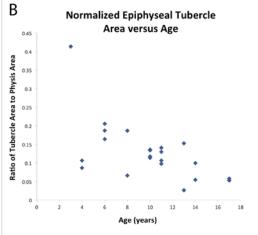


Fig. E-2
Although the approximate surface area of the epiphyseal tubercle demonstrated no clear trend in relation to age (**Fig. E-2A**), there was a clear decrease in relative size with increasing age when the tubercle area was normalized to the physeal surface area (**Fig. E-2B**); this pattern was similar to the one observed for the tubercle height.

Copyright © 2013 by The Journal of Bone and Joint Surgery, Incorporated Liu et al. An Anatomic Study of the Epiphyseal Tubercle and... http://dx.doi.org/10.2106/JBJS.L.00474 Page 2 of 2

TABLE E-1 Data for the Twenty-two Specimens

	Donor			Tubercle	Physis				
	Age	Donor		Height	Height	X Axis	Y Axis	Version	True Neck-Shaft
Specimen	(yr)	Sex	Side	(mm)	(mm)	Peak*	Peak*	(deg)	Angle (deg)
1	3	F	L	3.2	8.9			2	126
2	4	F	L	3.8	16.1			-4	120
2	4	F	R	4.1	15.7	0.16	0.12	-1	117
3	6	F	L	3.4	16.7	0.28	0.26	14	123
4	6	M	L	6.3	19.6	0.27	0.10	11	122
4	6	M	R	4.1	18.0			19	119
5	8	F	L	3.2	23.8	0.11	0.01	14	127
5	8	F	R	6.1	23.6	0.23	0.15	24	138
6	10	F	L	5.1	16.6	0.20	0.31	3	138
6	10	F	R	4.5	17.1	0.22	0.06	20	137
7	10	M	L	5.1	22.4	0.22	0.20	22	132
7	10	M	R	4.9	22.6	0.16	0.23	22	127
8	11	M	L	5.3	24.0	0.11	0.21	19	121
8	11	M	R	6.1	25.2	0.16	0.17	18	126
9	11	F	L	4.8	21.7	0.24	0.25	9	128
9	11	F	R	5.3	21.0	0.28	0.22	4	130
10	13	F	L	4.0	20.3	0.14	0.24	1	117
10	13	F	R	3.5	20.0	0.19	0.11	20	118
11	14	F	L	4.1	25.8	0.16	0.20	10	129
11	14	F	R	4.6	26.0	0.19	0.18	18	132
12	17	M	L	2.5	26.7	0.00	0.04	18	129
12	17	M	R	3.1	27.1	0.09	0.13	21	131

^{*}Normalized to the physis, as demonstrated in Figure 6-A. Coordinates for three specimens could not be obtained because of the difficulty in isolating a single peak point.