Copyright © 2013 by The Journal of Bone and Joint Surgery, Incorporated Bedi et al. Current Concepts Review Femoroacetabular Impingement http://dx.doi.org/10.2106/JBJS.K.01219 Page 1 of 8

Radiographic Finding	Considerations
Alpha angle	The alpha angle can be determined on an anteroposterior and a lateral radiograph of the hip. It is defined as the angle subtended between the midline of the femoral neck and a line connecting the center of the femoral head to the point along the head-neck junction that first deviates from the sphericity of the femoral head. An elevated value (>50°) may be consistent with a cam-type impingement morphology. Elevated values on the anteroposterior and lateral views indicate a superolateral and an anterior cam-type deformity, respectively.
Beta angle	The beta angle, as defined by Brunner et al. ¹³⁴ , is a reliable assessment of improvement in functional range of motion independent of the specific femoral or acetabular impingement lesions. The point of deviation from sphericity of the femoral head at the head-neck junction and the superior and lateral osseous margin of the acetabulum are defined. Lines from each of these points are drawn to the femoral head center, and the intersecting angle is measured between these two lines.
Center-edge angle	The center-edge angle of Wiberg is determined by the angle subtended between a vertical line (orthogonal to the line defined by the inferior aspect of the ischial tuberosities) and a line connecting the center of the femoral head and the lateral aspect of the acetabulum. A measurement of <25° may be consistent with dysplasia.
Crossover sign	The crossover sign has been associated with cephalad acetabular retroversion on an anteroposterior radiograph of the pelvis and is characterized by the anterior rim of the acetabulum projecting more laterally than the posterior rim. This relationship corrects more distally, resulting in the appearance of a "crossover" between the anterior and posterior wall on a well-positioned anteroposterior radiograph of the pelvis ⁸⁶ .
Femoral head-neck offset	Femoral head-neck offset is determined on a lateral view of the hip. A line is drawn through the center of the long axis of the femoral neck. A parallel line is drawn tangent to the anteriormost aspect of the femoral neck and another parallel line was drawn tangent to the anteriormost aspect of the femoral head. The distance between these lines defines the offset and is normally >10 mm. Loss of offset may be consistent with a femoral impingement morphology.
Tönnis angle	The Tönnis angle is determined by identifying the sourcil. The sourcil is the sclerotic, weight-bearing portion of the superior aspect of the acetabulum. The medial and lateral extents of the sourcil are connected with a line, and the angle subtended between this line and a horizontal line parallel to one connecting the inferior aspect of the ischial tuberosities is determined. An angle >10° may be consistent with dysplasia.

TABLE E-1 Important	Radiographic	Findings and	Considerations in the Evaluation of Femoroaceta	abular Impingement
F		0		

Copyright © 2013 by The Journal of Bone and Joint Surgery, Incorporated Bedi et al. Current Concepts Review Femoroacetabular Impingement http://dx.doi.org/10.2106/JBJS.K.01219 Page 2 of 8

Computed tomography (CT)	Location and morphology of a cam-type lesion, the alpha angle, the neck-shaft angle, the femoral
imaging	version, and the acetabular version at twelve o'clock through three o'clock can be defined on high-
	resolution CT imaging. Femoral version is defined by the angle of the femoral neck relative to the
	posterior condylar axis defined by axial CT images of the distal part of the femur. The center of the
	femoral neck can be defined by multiaxial radial sequences to define the central axis in the superior-
	inferior, medial-lateral, and anterior-posterior planes. Acetabular version can be measured with a three-
	dimensional CT technique, as recently validated and described by Dandachli et al. ¹³⁵ .
Magnetic resonance (MR)	MR imaging is also valuable and can characterize the location of the labral tear and definition of
imaging	chondral status of the femoral head and acetabular articular surfaces. MR imaging is also useful to
	define injury to the periarticular soft tissues as well as the presence of femoral and pelvic osseous stress
	reaction or fracture.

COPYRIGHT © 2013 BY THE JOURNAL OF BONE AND JOINT SURGERY, INCORPORATED BEDI ET AL. CURRENT CONCEPTS REVIEW FEMOROACETABULAR IMPINGEMENT http://dx.doi.org/10.2106/JBJS.K.01219 Page 3 of 8

			Follow-	Percent	Mean	
Study	Level of Evidence	Hips	up (yr)	Follow-up	Age (yr)	Unique Features
Siebenrock et al. ⁹⁰	Retrospective case series, Level IV	29	2.5	100%	23	Impingement due to acetabular retroversion
Beck et al. ⁵⁰	Retrospective case series	19	4.7	95%	36	NA
	(prospectively collected), Level IV					
Murphy et al. ¹²⁸	Retrospective case series, Level IV	23	5.2	100%	35.4	NA
Espinosa et al. ⁹³	Retrospective comparative study, Level III	60	2	100%	30	Labral debridement vs. labral refixation
Peters and	Retrospective case series	30	2.7	100%	31	NA
Erickson ⁸	(prospectively collected), Level IV					
Beaulé et al. ⁵⁴	Retrospective case series, Level IV	37	3.1	100%	40.5	NA
Ilizaliturri et al. ¹²⁵	Retrospective case series (prospectively collected), Level IV	14	2.5	100%	30.6	Impingement secondary to pediatric hip disorders
Ilizaliturri et al. ¹²⁶	Retrospective case series (prospectively collected), Level IV	19	2.4	95%	34	Cam-type impingement
Laude et al. ⁶⁹	Retrospective comparative study, Level III	100	4.9	94%	33.4	NA
Philippon et al. ⁷⁴	Retrospective case series, Level IV	112	2.3	80%	40.6	NA
Brunner et al. ⁵⁶	Retrospective case series, Level IV	53	2.4	100%	42	NA
Fabricant et al. ¹²⁴	Retrospective case series, Level IV	27	1.5	100%	<19	Adolescent athletes
Schilders et al. ¹³⁰	Retrospective comparative study,	101	2.44	100%	37	Labral debridement vs.
	Level III					refixation
Larson and	Retrospective comparative study,	75	1.6	100%	29	Labral debridement vs.
Giveans ⁶⁸	Level III					refixation
Peters et al. ⁷³	Retrospective case series, Level IV	96	2.2	100%	28	NA
Graves and Mast ⁶³	Retrospective case series, Level IV	48	3.2	100%	33	Surgical dislocation
Yun et al. ⁷⁹	Retrospective case series, Level IV	15	2.2	100%	35.8	Surgical dislocation
Bizzini et al. ⁵⁵	Retrospective case series, Level IV	5	2.5	100%	21.4	Athletes return to team practice after open surgical dislocation
Gedouin et al. ⁶²	Retrospective case series, Level IV	111	0.8	100%	31	NA

TABLE E-2 Participant Demographics for	Studies Evaluating Operative	e Treatment of Femoroacetabular Im	pingement*

Copyright © 2013 by The Journal of Bone and Joint Surgery, Incorporated Bedi et al. Current Concepts Review Femoroacetabular Impingement http://dx.doi.org/10.2106/JBJS.K.01219 Page 4 of 8

Horisberger et al. ⁶⁵	Retrospective case series, Level IV	20	3	100%	47.3	Arthroscopy not indicated with advanced osteoarthrosis
Philippon et al. ¹²⁹	Retrospective case series, Level IV	28	2	100%	27	NA
Singh and O'Donnell ¹⁰¹	Retrospective case series, Level IV	27	1.8	100%	27	NA
Byrd and Jones ⁵⁹	Retrospective case series, Level IV	207	1.4	100%	33	NA
Nepple et al. ²²	Retrospective comparative study, Level III	48	1.8	100%	35	Arthroscopic vs. combined
Nho et al. ¹²¹	Retrospective case series, Level IV	47	2.2	70%	22.8	High-level athletes
Byrd and Jones ⁶⁰	Retrospective case series, Level IV	200	1.6	100%	28.6	Athletes
Larson et al. ¹²⁷	Retrospective comparative study, Level III	227	2.2	100%	31.8	Poor outcomes with advanced joint-space narrowing
Naal et al. ¹¹⁸	Retrospective case series, Level IV	22	3.8	100%	19.7	Surgical dislocation for high- level athletes

*NA = not applicable.

COPYRIGHT © 2013 BY THE JOURNAL OF BONE AND JOINT SURGERY, INCORPORATED BEDI ET AL. CURRENT CONCEPTS REVIEW FEMOROACETABULAR IMPINGEMENT http://dx.doi.org/10.2106/JBJS.K.01219 Page 5 of 8

Study	Surgical Approach	Clinical Outcome Scores	Clinically Good or Excellent Outcome	Mean Change in Hip Score	Definition of Failure	Treatment Failure
Siebenrock et al. ⁹⁰	Open	Merle d'Aubigné score	28 hips (96%)	2.9 pts	Fair results/residual pain	1 (3%)
Beck et al. ⁵⁰	Open	Merle d'Aubigné score	13 hips (68%)	2.4 pts	Conversion to total hip arthroplasty	5 (26%)
Murphy et al. ¹²⁸	Open	Merle d'Aubigné score	NA	3.7 pts	Conversion to total hip arthroplasty	7 (23%)
Espinosa et al. ⁹³	Open	Merle d'Aubigné score	52 hips (87%); LRS group: 19 hips (76%); LRF group: 33 hips (94%)	LRS group: 3 pts; LRF group: 5 pts	Group I, poor results; group II, moderate results	1 (4%); 2 (6%)
Peters and Erickson ⁸	Open	HHS	NA	17 pts	Pain and/or progressive arthrosis	4 (13%)
Beaulé et al. ⁵⁴	Open	WOMAC, UCLA, SF- 12	N/A	WOMAC, 20.2 pts; UCLA, 2.7 pts; SF-12 physical, 8.3 pts; SF-12 mental, 4.8 pts	Unsatisfactory outcome, no clinical improvement and/or worsening WOMAC score	6 (16%)
Ilizaliturri et al. ¹²⁵	Arthroscopic	WOMAC	NA	9.6 pts	NA	0 (0%)

TABLE E-3 Clinical Outcomes Reported from Studies Evaluating Femoroacetabular Impingement*

COPYRIGHT © 2013 BY THE JOURNAL OF BONE AND JOINT SURGERY, INCORPORATED BEDI ET AL. CURRENT CONCEPTS REVIEW FEMOROACETABULAR IMPINGEMENT http://dx.doi.org/10.2106/JBJS.K.01219 Page 6 of 8

Ilizaliturri et al. ¹²⁶	Arthroscopic	WOMAC	NA	7 pts	Advanced osteoarthrosis, recommended total hip arthroplasty	1 (5%)
Laude et al. ⁶⁹	Combined (limited open/ arthroscopic)	NAHS	NA	29.1 pts	Conversion to total hip arthroplasty	11 (11%)
Philippon et al. ⁷⁴	Arthroscopic	MHHS, HOS activities of daily living, HOS Sport, NAHS	NA	MHHS, 24 pts; HOS activities of daily living, 17 pts; HOS Sport, 24 pts; NAHS, 14 pts	Conversion to total hip arthroplasty	10 (9%)
Brunner et al. ⁵⁶	Arthroscopic	SFS, NAHS, VAS	NA	SFS, 1.06 pts, NAHS, 31.3 pts, VAS, 4.1 pts	NA	NA
Fabricant et al. ¹²⁴	Arthroscopic	HHS, HOS	NA	HHS, 21 pts; HOS, 16 pts	NA	NA
Schilders et al. ¹³⁰	Arthroscopic	HHS, MHHS	NA	Group 1, 33 pts (HHS); Group 2, 26 pts (HHS); 7 pts greater (MHHS) in Group 1 compared with Group 2	NA	NA
Larson and Giveans ⁶⁸	Arthroscopic	HHS, SF- 12, VAS	Group 1, 66.7%; Group 2, 89.7%	Group 1: 25 pts (HHS), 19 pts (SF-12), 5 pts (VAS); Group 2: 32 pts (HHS), 24 pts (SF-12), 5 pts (VAS)	HHS <70, recommended conversion to total hip arthroplasty or repeat debridement	Group 1, 11.1%; Group 2, 7.7%
Peters et al. ⁷³	Open	HHS	NR	24 pts	Conversion to total hip arthroplasty, or lower HHS	6.3%

COPYRIGHT © 2013 BY THE JOURNAL OF BONE AND JOINT SURGERY, INCORPORATED BEDI ET AL. CURRENT CONCEPTS REVIEW FEMOROACETABULAR IMPINGEMENT http://dx.doi.org/10.2106/JBJS.K.01219 Page 7 of 8

Graves and Mast ⁶³	Open	Merle d' Aubigné score	NA	4 pts	NA	NA
Yun et al. ⁷⁹	Open	HHS	NR	17 pts	NR	0
Bizzini et al. ⁵⁵	Open	Time to return to hip range of motion, core muscle strength, return to competitive hockey	NA	NA	NA	NA
Gedouin et al. ⁶²	Arthroscopic	WOMAC	NA	23 pts	NA	NA
Horisberger et al. ⁶⁵	Arthroscopic	NAHS, Tönnis grade, VAS	NR	NAHS, 28 pts; VAS, 4 pts	NR	8.6% (9 total hip arthroplasty)
Philippon et al. ¹²⁹	Arthroscopic	MHHS	NR	25 pts	NR	NR
Singh and O'Donnell ¹⁰¹	Arthroscopic	MHHS, NAHS	NR	MHHS, 10 pts; NAHS, 15 pts	Continued hip pain or pain that required additional surgical intervention	0%
Byrd and Jones ⁵⁹	Arthroscopic	MHHS	NR	20 pts	NR	NR

Copyright © 2013 by The Journal of Bone and Joint Surgery, Incorporated Bedi et al. Current Concepts Review Femoroacetabular Impingement http://dx.doi.org/10.2106/JBJS.K.01219

Page 8 of 8

Nepple et al. ²²	Mini-open anterior with arthroscopic assistance	MHHS	Group 1, 74%; Group 2, 92%	Group 1, 8 pts; Group 2, 22 pts	MHHS <70	Group 1, 26%; Group 2, 4%
Nho et al. ¹²¹	Arthroscopic	HOS, MHHS	93%	HOS, 13 pts; MHHS, 20 pts	Inability to return to team practice	7%
Byrd and Jones ⁶⁰	Arthroscopic	MHHS	95%	21 pts	Conversion to total hip arthroplasty, inability to return to play (RTP)	0.5% to total hip arthroplasty; 5% professional RTP; 15% intercollegiate RTP
Larson et al. ¹²⁷	Arthroscopic	HHS, VAS, SF- 12	NA	HHS, 22.8 pts; SF-12, 20.9 pts; VAS, 4.5 pts. With osteoarthrosis: HHS, 3.7 pts; SF-12, 4.3 pts; VAS, 2.6 pts	No sustained improvement in HHS	12% failure rate, 33% failure rate with mild joint-space narrowing, and 82% failure rate with osteoarthrosis
Naal et al. ¹¹⁸	Open	HOS, SF- 12, UCLA, VAS	18 hips (82%)	NA	Unable to return to team practice	14%

*Pts = patients, NA = not applicable, LRS = labral resection, LRF = refixation, HHS = Harris hip score, UCLA = University of California, Los Angeles, hip score, SF-12 = Short Form-12, WOMAC = Western Ontario and McMaster Universities Osteoarthritis Index, NAHS = nonarthritic hip score, MHHS = Modified Harris hip score, HOS = hip outcome score, SFS = Sports Frequency Score, VAS = visual analog scale score, NR = not reported.