Appendix E-1

Model Design

The starting point of the model is infection at the site of a total hip arthroplasty. Following the model from left to right, the tree divides from its root and continues to branch at nodes, each of which represents an opportunity for a patient to enter into one or more health states that a patient might experience during the course of treatment. Each branch of the tree has a corresponding health state and has an associated utility value. As the patient proceeds through the model (s)he will end up in either a terminal state (e.g., death) where (s)he will remain for the life of the model, or (s)he will move into a recursive health state (e.g., reinfection) and begin a subsequent cycle through the model.

One of the key structures of our Markov model is the tunnel that we created for the four-month waiting period between the two procedures of the two-stage revision. During the literature review, we noted that 3.4% (eleven) of 321 patients did not go on to complete the second stage ${ }^{5-15}$. One hundred percent of patients treated with the first stage of a two-stage protocol would initially move into the tunnel, and 3.4% (eleven) would not leave it but would remain in that state for the life of the model. Patients with a repeat infection could recycle back into the tunnel state, with 3.4% of the patients never leaving the health state and the remainder of the patients going on to receive a repeat two-stage revision. For repeated cycles, we continued to assume that 3.4% of patients scheduled to receive a repeat staged procedure would not undergo a second stage.

This portion of the two-staged model was duplicated in the direct-exchange arm for patients who had reinfection. Patients from the direct-exchange cohort who had a reinfection were subsequently treated with a two-stage revision protocol, penalizing the direct-exchange protocol. In clinical practice, patients for whom a direct exchange fails typically go on to have a staged protocol.

TABLE E-1 Data from Articles on Treatment of Infection at the Site of Total Hip Arthroplasty*

Study	Year	No. of Hips	Mean Age (yr)	Successful Revision Total Hip Arthroplasties	Reinfections				Mechanical Complications					
					Total	Treated with Repeat Revision	Treated with Resection	Treated with Antibiotics	Total	Treated Operatively	Treated Nonoperatively	Deaths	2nd Stage Not Performed	Interval Between Stages (wk)
Staged revision														
Younger et al. ${ }^{15}$	1998	27	68.5	16	1	1	0	0	8	5	3	2	0	12
Tsukayama et al. ${ }^{13}$	1996	41	63	30	6	4	2	0	5	5	0	0	0	15.7
Hsieh et al. ${ }^{8}$	2005	24	59	22	0	0	0	0	2	2	0	0	0	13.6
Kraay et al. ${ }^{10}$	2005	28	53	22	2	2	0	0	4	4	0	0	0	7.4 mo
Hsieh et al. ${ }^{7}$	2004	42	NA	36	2	0	1	1	2	2	0	0	2	12.2
Yamamoto et al. ${ }^{14}$	2003	17	59	15	0	0	0	0	0	0	0	0	2	18.5
Hofmann et al. ${ }^{6}$	2005	34	64	23	1	0	1	0	0	0	0	3	7	14
Takahira et al. ${ }^{12}$	2003	9	67.1	8	1	1	0	0	0	0	0	0	0	10.1
Haddad et al. ${ }^{5}$	2000	48	60	44	4	2	2	0	0	0	0	0	0	NA
Koo et al. ${ }^{9}$	2001	22	56	12	1	0	1	0	8	1	7	1	0	9
Masri et al. ${ }^{11}$	2007	29	65	23	3	1	1	1	1	1	0	2	0	37
Total/average		321	61.5	251	21	11	8	2	30	20	10	8	11	15.6
Rate				0.782	0.065	0.524	0.381	0.095	0.093	0.666	0.333	0.025	0.034	
Direct exchange														
Ure et al. ${ }^{20}$	1998	20	61.4	18	0	0	0	0	2	2	0	0		
Raut et al. ${ }^{18}$	1994	57	66	36	8	0	5	3	13	2	11	0		
Hope et al. ${ }^{17}$	1989	72	64	61	9	9	0	0	2	2	0	0		
Callaghan et al. ${ }^{21}$	1999	24	65.3	21	2	0	2	0	1	1	0	0		
Wroblewski ${ }^{16}$	1986	99	63	63	9	2	3	4	24	2	22	3		
Raut et al. ${ }^{19}$	1996	15	65	11	1	1	0	0	3	1	2	0		
Laffargue et al. ${ }^{22}$	2003	106	66	78	13	13	0	0	15	11	4	0		
Raut et al. ${ }^{23}$	1995	183	64.5	126	29	18	0	11	28	4	24	0		
Total/average		576	64.4	414	71	43	10	18	88	25	63	3		
Rate				0.7188	0.1233	0.6056	0.1408	0.2535	0.1528	0.2841	0.7159	0.0052		

*The indication for surgery was an infection that had been present at the site of a hip arthroplasty for greater than three weeks. The values are given as the number of hips unless otherwise indicated. NA $=$ not avai

