TABLE E-1 Magnetic Resonance Imaging Examination: Brief Definitions of Pathological Changes in the Shoulder Joint*

g Examination. Brief Definitions of Fathological Changes in the Shoulder John
Focal intratendinous signal increase on T1-weighted, T2-weighted, and proton-density fat-
saturated images without evidence of loss of continuity in the image morphology.
Magnetic resonance imaging features: intermediate to high signal intensity on proton-
density fat-saturated images, but low to intermediate signal intensity on T2-weighted
images, never isointense to fluid on T2-weighted images and no loss of tendon continuity
Transmural defect/loss of tendon continuity that can be focal (circumscribed, narrow) or
complete (entire tendon, for example, supraspinatus). Synonym: full-thickness rupture.
Magnetic resonance imaging features: complete absence of any tendon morphology in all
sequences. On proton-density fat-saturated images and on T2-weighted images, defect is
isointense to fluid
Non-transmural defect/loss of tendon continuity, which, according to location, can be
distinguished as superficial, either on the bursal side or the joint side, or within the tendon
tissue; focal thinning of the superior segments of the rotator cuff.
Magnetic resonance imaging features: defect is isointense to fluid on proton-density fat-
saturated and T2-weighted images. This finding distinguishes partial rotator cuff rupture
from tendinopathy as the latter (primarily on T2-weighted images) would never show an
isointense signal but rather would show only a low to intermediate signal intensity
Evidence of fluid in bursitis and changes in the rotator cuff, as described above, were
defined as bursitis. (Problem: low amounts of fluid in bursitis can also be physiological, and
contrast media would be needed to detect inflammation; this, however, was not part of the
study protocol, nor was it necessary.)
Magnetic resonance imaging features: fluid signal in bursitis on proton-density fat-saturated
images (very sensitive) and T2-weighted images, possibly peribursal edema on proton-
density fat-saturated images
Narrowing of the acromioclavicular joint cavity, subchondral cysts/erosion, osteophytic
spurs near the joint, joint capsule hypertrophy, contusion/bruise/effusion
Highly sensitive: subchondral edema, juxta-articular periarticular edema in the
acromioclavicular joint, signal increase on proton-density fat-saturated images, signal
decrease on T1-weighted images (activated acromioclavicular joint arthrosis, however, may
not show symptoms)
Narrowing of the glenohumeral joint space; glenohumeral chondropathy (cartilage abrasion
apparent on proton-density and proton-density fat-saturated images), (subcapital)
osteophytes, cystic debris on the head and glenoid side, areas of subchondral sclerosis
(hypointense on all sequences), focal subchondral edema (hyperintense on proton-density
fat-saturated images)

Tendinopathy/tendinitis of long head of	Intratendinous signal increase in the tendon on sagittal T2-weighted images (in the
the biceps tendon	horizontal course) and axial proton-density images (in the intrasulcal course) over multiple
	slices ($n \ge 2$); the fulcrum/pivot point was not assessed (due to the partial volume effect and
	the magic-angle phenomenon)
Tendovaginitis in long head of the	Detection of fluid in the tendon sheath of long head of the biceps tendon over the entire
biceps tendon	intrasulcal course (either isolated [sensitive] or in conjunction with a glenohumeral effusion
biceps tendon	[less specific because it is a communicating injury])
Insertion tendinopathy (supraspinatus,	The same characteristics apply as for tendinopathy; however, the tendon injuries are
infraspinatus, subscapularis, teres minor)	restricted to the area in direct proximity to the region of projection (greater tubercle, lesser
	tubercle). In addition (but not mandatory): cystic or edematous subcortical osseous changes
	at the area of tendon insertion (applies mainly to the front or back edge of the greater
	tubercle)
Rupture of long head of the biceps	No image morphological evidence of the tendon, mainly on coronal proton-density fat-
tendon	saturated images, sagittal T2-weighted images, and axial proton-density images; empty
	anterior rotator interval (with corresponding accompanying injuries); usually empty biceps
	tendon sheath (narrow intact residual fibers can usually already be observed); ideally,
	evidence of retracted proximal tendon stump; no evidence of luxation of long head of the
	biceps tendon (see below)
Dislocation of long head of the biceps	No local evidence of preserved continuity of long head of the biceps tendon: the tendon is
tendon	medially dislocated and on or above the lesser tubercle of the humerus. Here, it might lie on
	the tendon projection of the subscapularis, or lie under the subscapularis tendon (then it
	usually is associated with the subscapularis rupture); empty biceps tendon sheath
Primary glenohumeral osteoarthritis	Characteristics: see glenohumeral osteoarthritis.
	Cause usually unknown; chronic microtrauma, microinstability, individual predisposition.
	Lesion is primary glenohumeral osteoarthritis if the image does not show clear signs of
	another cause, no cause can be deduced from the medical history, or no other cause is
	known to the radiologist
Secondary glenohumeral osteoarthritis	Characteristics: see glenohumeral osteoarthritis.
	Lesion is secondary glenohumeral osteoarthritis if it is known, for example, to be
	subsequent to trauma, congenital (or early acquired) deformities, shoulder infections,
	chronic inflammatory diseases (e.g., rheumatoid arthritis), or metabolic diseases (e.g.,
	diabetes mellitus)

^{*}Proton-density sequence = long repetition time, short echo time. Fat-saturated = spectral (selective) suppression of the fat signal on the proton-density sequences. T2-weighted sequence = long repetition time, long echo time. T1-weighted sequence = short repetition time, short echo time.