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Appendix A: Inverse Probability of Treatment-Weighted Estimators 
This approach defines causal effects within the 

framework of outcomes that would have been 
observed had subjects been assigned to each of the 
several possible treatments of interest. In order to 
study the causal effect of the timing of surgery on 
the risk of mortality, we would like to compare the 
risk of mortality corresponding to the hypothetical 
situation that each patient is assigned to receive 
definitive fixation after more than twelve hours 
P(Y[1] = 1) with the risk corresponding to the 
hypothetical situation that each patient has 
definitive fixation within twelve hours P(Y[0] = 1). 
In the setting of a perfect experiment in which 
patients could be perfectly randomized to 
treatment before or after twelve hours after 
admission, a possible estimate of the causal effect 
of interest is given by the observed relative risk of 
mortality, P(Y = 1|A = 1)/P(Y = 1|A = 0). As the 
relationship between the timing of surgery and 
subsequent clinical outcomes is confounded by 
baseline covariates such as age, injury severity, or 
comorbidities, the patients in our sample who were 
operatively managed after more than twelve hours 
may not be representative of the entire population 
of patients. Therefore, the risk of mortality among 
these patients, P(Y = 1|A = 1), cannot be used as 
an estimate of the true risk of mortality P(Y[1] = 1) 
had every patient been assigned to surgery after 
more than twelve hours. 

Robins29 introduced a class of estimators that 
address this problem through a straightforward 
weighting approach. Like propensity score 
methods30,31, these inverse probability of 
treatment-weighted (IPTW) estimators make use 
of an estimate of the treatment mechanism. IPTW 
estimators use the probability that a given subject 
(i) would have received his or her observed 
treatment (Ai) given his or her baseline covariates 
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(Wi). They then weight each observation by the 
inverse of this probability, P(Ai|Wi), so that each 
subject’s weight is:  

 
wi = 1/P(Ai|Wi) 
 
This creates a new sample in which treatment 

assignment is independent of the baseline 
covariates, making it straightforward to estimate 
P(Y[1] = 1) and P(Y[0] = 1) by fitting of a 
saturated, weighted logit model. In the setting of a 
categorically defined treatment time, t0 through t4, 
the following model was fit with corresponding 
indicator variables (Ia) in order to estimate the risk 
of mortality at each later interval versus the 
baseline (definitive fixation within twelve hours):  

 
logit(P[Y(a) = 1]) = B0 + B1*I(a = t1) + B2*I(a = t2) 

+ B3*I(a = t3) + B4*I(a = t4) 
 
In order to study the possibility of a different 

causal effect (effect modification) of treatment 
time separately for subpopulations defined by a 
variable such as the presence or absence of a 
serious chest injury (Abbreviated Injury Score <3 
compared with ≥3), P(Y[1] = 1)/P(Y[0] = 1) could 
be calculated within each level of chest injury 
severity and compared. Effect modification by 
baseline factors (Vj) was assessed using the 
following conditional saturated weighted logit 
model with treatment by covariate product terms: 

 
logit(P[Y(a) = 1]) = B0 + B1*I(a = t1) + B2*I(a = t2) 

+ B3*I(a = t3) + B4*I(a = t4) + B5*Vj + B6*I(a = t1)*Vj + 
B7*I(a = t2)*Vj + B8*I(a = t3)*Vj + B9*I(a = t4)*Vj 

 
There are two basic assumptions for valid 

estimation of causal effect using IPTW. The first is 
that there are no unmeasured confounding 
variables. This means that the counterfactual 
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outcome is conditionally independent of treatment, 
given measured covariates. To the extent that 
unknown confounding goes unadjusted for, or is 
uncorrelated with measured confounders, estimates 
may be biased. This assumption is ubiquitous in 
observational studies and cannot be empirically 
tested. The second assumption has been called the 
experimental treatment assignment (ETA) 
assumption and is similar to Rosenbaum and 
Rubin’s “strongly ignorable treatment assignment” 
assumption for use of the propensity score30. It 
requires that there are no values of the baseline 
covariates for which treatment is assigned in a 
deterministic fashion. If, for example, patients with 
head/neck injury scores of 3 or more are always 
operated on after more than twelve hours, none of 
the patients in the re-weighted sample who were 
operated on within twelve hours will have 
head/neck injury scores of 3 or more, leading to a 
biased estimate of the corresponding risk of 
mortality. In this case, the comparison of interest 
cannot realistically be made among the population 
at hand because one group of patients could never 
realistically have received the treatment that they 
did not receive based on one (severity of head/neck 
injury) or more characteristics. 

Appendix B: Data-Adaptively Selected Treatment Models 
IPTW estimators only give consistent estimates 

of the parameters of interest if the treatment 
mechanism itself is estimated consistently. Since a 
misspecified parametric model for the treatment 
mechanism will lead to inconsistent estimation of 
the treatment mechanism and thus inconsistent 
estimation of the causal parameters of interest, we 
avoided assuming an a priori functional form and 
instead employed a data-adaptive model selection 
algorithm that chooses the functional form on the 
basis of the information that is available in the data 
at hand. For this purpose, we used a model-
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selection approach that is based on polynomial 
spline functions and includes testing of all one-
way interaction terms between candidate 
covariates32. The consistency of the estimates 
based on the selected model is not affected by 
adding additional terms for variables to this model 
that might in truth not be related to the treatment 
variable. If these variables are, however, 
associated with the outcome of interest, including 
them in the treatment mechanism model will adjust 
for empirical confounding by any of these 
variables and thus increase the efficiency of the 
IPTW estimates. On the basis of this observation, 
we complemented the selected model with main-
effect terms for all baseline covariates in Wm that 
had not already been selected by the data-adaptive 
model selection algorithm. The data-adaptively 
selected treatment models, before addition of 
main-effect terms for other predictors of the 
outcome, are given in Tables E-1 and E-2. 

Data-adaptive model selection based on 
polynomial splines was performed using the 
polyspline package in R version 2.3.139,40; 
multinomial regression models were fitted using 
the multinom() function in the nnet package; the 
Hosmer-Le Cessie test was carried out using the 
resid() function of the Design package. 
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TABLE E-1 Summary of the Estimates of the Treatment Mechanism That Were Used for the 
Categorical Mortality Analysis 

Covariate >12 to 24 hr >24 to 48 hr >48 to 120 hr >120 hr  
New Injury Severity Score 1.00 1.01 1.03 1.04 
Arrival between 6 A.M. and 12 P.M. 0.23 0.77 0.70 0.94 
Cardiac comorbidity 1.34 1.70 2.49 2.14 
Number of serious associated 
extremity/pelvic injuries 

0.69 0.80 0.91 0.91 

Maximum Abbreviated Injury Score, 
head/neck region 

1.02 1.02 1.03 0.98 

Bilateral femoral fracture 0.29 0.77 0.57 0.81 
Age 1.01 1.01 1.01 1.01 
Teaching hospital 1.53 0.91 0.65 1.07 
Glasgow Coma Scale score 1.00 0.96 0.95 0.92 
Treated at level-1 trauma center 0.95 1.36 1.42 1.40 
Cerebrovascular comorbidity 1.24 2.51 1.04 0.00 
Hospitals from Northeast region 1.23 1.15 1.76 0.93 

 
The entries in the first column give the factor 

by which the relative risk of being assigned to 
surgery between twelve and twenty-four hours 
rather than to surgery within twelve hours changes 
for each unit increase in the covariate under 
consideration. For covariates with factors greater 
than 1.00, the relative risk of being assigned to the 
former treatment category rather than the latter one 
(reference category) thus increases as the value of 
the covariate increases. Entries in the remaining 
columns are interpreted accordingly. The 
polychotomous logistic regression model selected 
for the treatment mechanism consisted entirely of 
main-effect terms with the Hosmer-Le Cessie test 
showing acceptable model fit for all time frames 
except for >120 hours (p values of 0.24, 0.56, 0.24, 
and 0.028, respectively). 
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TABLE E-2 Summary of the Estimated Treatment Mechanism That Was Used for the Binary Mortality 
Analysis (Investigation of Effect Modification) 

Covariate 
Odds Ratio 

(95% Confidence Interval)* 
Arrival between 6 A.M. and 12 P.M. 0.52 (0.43 to 0.63) 
New Injury Severity Score 1.03 (1.02 to 1.04) 
Cardiac comorbidity 1.69 (1.37 to 2.07) 
Number of serious associated extremity 
injuries 

0.77 (0.70 to 0.84) 

Age 1.01 (1.01 to 1.02) 
Glasgow Coma Scale score 0.97 (0.95 to 0.99) 
New Injury Severity Score (knot 50)† 0.95 (0.92 to 0.98) 
Maximum Abbreviated Injury Score 
head/neck region 

1.01 (0.96 to 1.07) 

Bilateral femoral fracture 0.59 (0.30 to 1.14) 
Teaching hospital 1.07 (0.91 to 1.25) 
Treated at level-1 trauma center 1.18 (1.01 to 1.39) 
Cerebrovascular comorbidity 1.54 (0.33 to 7.24) 
Hospitals from Northeast region 1.25 (0.95 to 1.64) 
*The entries give the estimated odds ratio for being assigned to surgery after twelve hours as compared 
with surgery during the reference time frame. †Apart from main-effect terms for the covariates that were 
found to be predictive of mortality, this model contains a spline function for the New Injury Severity 
Score with a knot at 50, suggesting that the dependence of treatment assignment probabilities on this 
variable may differ depending on whether the New Injury Severity Score is above or below 50. The 
Hosmer-Le Cessie test showed acceptable goodness-of-fit (p = 0.54). 

Appendix C: Assessing the Validity of the Experimental Treatment Assignment 
Assumption 

 Standardized Risk Ratio Approach 
Modified IPTW weights were proposed by Sato 

and Matsuyama35 in order to expand causal 
contrasts afforded by IPTW estimates to specific 
components of the larger study group. Because 
subjects managed after twelve hours tended to 
have slightly higher injury severity (Table I), 
regardless of the extensive confounding control, 
unknown or unmeasured factors may still preclude 
some patients from later treatment groups from 
receiving early treatment (a practical ETA 
violation). A corollary of this is that only those 
patients managed early could have reasonably been 
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treated in any of the five treatment groups (t0 to t4) 
and may represent the only patients who could 
ethically be randomized. Standardized risk ratios 
give the closest approximation to such an 
experiment by focusing on the patients who were 
managed early. All components of the analysis 
described in Appendices A through C were 
identical for the standardized risk ratio (SRR) 
analysis, except that the calculation of weights was 
different in order to provide inferences as to the 
estimated effect of treatment within the early 
treatment group. Weights were generated with use 
of the same treatment mechanism model for the 
IPTW analysis to estimate the conditional 
probability of early treatment as the numerator and 
the conditional probability of receiving the 
treatment received as the denominator: 

 
wi = P(A = t0|W = Wi) / P(A = Ai|W = Wi) 
By using the early treatment group (t0) as the 

standard population and the mortality experience 
of the entire study sample, the standardized risk 
ratio is interpreted as the estimated risk ratio if 
those who were actually managed early were to 
have been managed at one of the later treatment 
time periods. 

 Monte Carlo Simulation Approach 
Wang et al.36 proposed the following 

simulation-based approach for examining the 
extent to which IPTW estimators might be biased 
due to a violation of the ETA assumption. First, an 
estimate of the data-generating distribution is 
obtained that allows one to simulate realizations of 
the observed data structure. For this estimated 
data-generating distribution, the true parameter 
values can be computed through G-computation. A 
sampling distribution of IPTW estimates can be 
obtained by applying the IPTW estimator to a large 
number of simulated realizations of the observed 
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data structure. Since the assumption of no 
unmeasured confounding is trivially satisfied in 
this case, any discrepancy between the mean of 
these estimates and the true parameter value 
reflects a violation of the ETA assumption. 

In the case of a point-treatment study, the 
observed data structure O = (W, A, Y) consists of 
baseline covariates W, treatment A, and outcome 
Y. An estimate of the data-generating distribution 
thus consists of an estimate of the marginal 
distribution of W, the conditional distribution of A 
given W, and the conditional distribution of Y 
given A and W. We estimate the marginal 
distribution of W by its empirical distribution and 
use the data-adaptive approach described in 
Appendix B to obtain an estimate of the 
conditional distribution of A given W. For the 
mortality analysis, the conditional distribution of Y 
given A and W is estimated by means of logistic 
regression. This model includes main-effect terms 
for A as well as all baseline covariates that were 
found to have significant univariate associations 
with the outcome. These estimates now allow us to 
simulate realizations of the observed data 
structures by using the following sequential 
approach. We first generate n realizations of W by 
sampling with replacement from the n observed 
values in our dataset. We next draw n realizations 
of A from the estimated conditional distribution of 
A given these simulated values of W. Last, we 
obtain n realizations of Y by drawing from the 
estimated distribution of Y given the simulated 
values of A and W. The true parameter values for 
this data-generating distribution can be computed 
based on the following G-computation approach. If 
we want to estimate the counterfactual mortality 
for the scenario that every patient undergoes 
surgery within twelve hours of admission, for 
example, we first draw a large number, say N = 
10,000, realizations of W as above; then we 
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generate N realizations of Y by drawing from the 
estimated conditional distribution of Y given A = 
a* and these simulated values of W, where a* 
represents the treatment level corresponding to 
surgery within twelve hours. The desired 
counterfactual mortality can then be estimated by 
simply taking the mean of these simulated Y 
values.  

Table E-3 summarizes the results of such a 
simulation study for determining the extent of bias 
to which our IPTW estimators of the marginal 
counterfactual mortality risks might be subject 
because of a violation of the ETA assumption. 
Figure E-1 shows the corresponding distributions 
of IPTW estimates relative to the true parameter 
value obtained by G-computation. In all cases, the 
bias due to a possible violation of the ETA 
assumption appears to be minimal. As all subjects 
seem to have adequately large probabilities of 
following any one of the five categories of 
treatment time that we are examining here, this 
should also be true for the two treatment categories 
defined by the binary version of treatment so that 
the corresponding parameters in the binary 
analysis can also be estimated without appreciable 
bias due to a violation of the ETA assumption. 
 
TABLE E-3 Estimate of ETA Bias Based on Monte Carlo Simulation 

 ≤12 hr >12 to 24 hr >24 to 48 hr >48 to 120 hr >120 hr 
G-computation truth 4.15% 2.27% 3.55% 2.68% 3.03% 
Mean IPTW estimate 4.16% 2.20% 3.53% 2.64% 2.92% 
Estimated bias 0.01% –0.07% –0.01% –0.03% –0.11% 
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Appendix D: Modified Bootstrap Approach to Obtaining Confidence Intervals and P 
Values 

Observations from the same hospital are likely 
to be correlated with each other. In the presence of 
such correlated data, standard mean estimates are 
still consistent even though they may no longer be 
efficient. Therefore, we do not need to take into 
account the correlation among patients from the 
same hospital for the purpose of obtaining point 
estimates. Confidence intervals provided by these 
standard methods, however, are no longer reliable 
in the presence of correlated data; they would be 
based on the assumption of a sample of 
independent observations and would thus tend to 
overestimate the information available in the data, 
resulting in confidence intervals that are too small. 
Therefore, we estimated confidence intervals with 
use of the following modified bootstrap 
approach37. During each bootstrap iteration, we 
draw a sample of size N with replacement from the 
pool of N hospitals in our dataset to obtain a 
bootstrap dataset that consists of all patients from 
the selected hospitals. This is a slight modification 
to the standard bootstrap approach for 
independently sampled observations, which would 
prescribe us to draw samples of size n with 
replacement from the pool of n patients in our 
dataset. We follow the same modified bootstrap 
approach to obtain p values by applying the 
general resampling-based methodology developed 
by Pollard and van der Laan38. 
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Fig. E-1 

The distributions of inverse probability of treatment-
weighted (IPTW) estimates relative to the true 
parameter value obtained by G-computation (vertical 
red line). 
 


