Page 1 of 3

TABLE E-1 Effect of Tibial Baseplate Angular Tilt on Accuracy of Medial Compartment Polyethylene Thickness Measurements per Analysis of the Six-Week Postoperative Single-Leg Standing Anteroposterior Radiograph of Each Study Knee

	Error in Radiographic Measurement of Polyethylene Thickness*				
			Percentage	Percentage	Percentage
Baseplate	Mean ±		within	within	within
Radiographic	Standard	95% Confidence	±0.2 mm	±0.5 mm	±1.0 mm
Tilt [†]	Deviation	Interval	of 0.0 mm	of 0.0 mm	of 0.0 mm
Any ° (n =	$0.0 \pm 0.5 \text{ mm}$	−1.1 to 1.0 mm	46	74	92
416)					
<8° (n =	$0.0 \pm 0.5 \text{ mm}$	−1.0 to 1.0 mm	47	77	94
396)					
<7° (n =	$0.0 \pm 0.5 \text{ mm}$	–0.9 to 0.9 mm	49	78	96
380)					
<6° (n =	$0.0 \pm 0.4 \text{ mm}$	–0.8 to 0.9 mm	50	81	97
364)					
<5° (n =	$0.0 \pm 0.4 \text{ mm}$	–0.7 to 0.8 mm	52	83	97
341)					
<4° (n =	$0.1 \pm 0.4 \text{ mm}$	–0.6 to 0.8 mm	56	86	98
297)					
<3° (n =	$0.1 \pm 0.3 \text{ mm}$	–0.6 to 0.7 mm	57	88	98
256)					
<2° (n =	$0.1 \pm 0.3 \text{ mm}$	–0.5 to 0.7 mm	62	92	99
181)					
$<1^{\circ} (n = 79)$	$0.0 \pm 0.3 \text{ mm}$	–0.6 to 0.6 mm	61	94	99

^{*}A positive error denotes an overestimate of polyethylene thickness, as the error was calculated by subtracting the assumed initial thickness of each insert from the mean result of the two observers. $\dagger 0^{\circ}$ of baseplate radiographic tilt would indicate that the top surface of the baseplate projected as a flat line; n is both the number of knees and number of radiographs examined.

Page 2 of 3

TABLE E-2 Results of Multiple Linear Regression Analyses That Were Performed to Identify Which Factors Were Significantly Associated (p < 0.05) with Medial Compartment Radiographic Polyethylene Thickness Loss of Inserts Sterilized via Gamma Irradiation in Air

	Dependent	Variable*
	Time-Averaged	Time-Regressed
	Radiographic Polyethylene	Radiographic
	Thickness Loss (k and r =	Polyethylene Thickness
Independent Variables	249)	Loss ($k = 243, r = 1401$)
Patient age at surgery	p < 0.01, b = -0.005 (-	p < 0.01, b= -0.006 (-
	0.007, -0.003)†	0.008, -0.003);
Patient weight	p = 0.72	p = 0.12
Male sex	p = 0.06	p = 0.34
Polyethylene insert shelf age	p < 0.01, b = 0.072 (0.059,	p < 0.01, b = 0.070
	0.085)†	(0.055, 0.084)‡
Polyethylene insert resin (3	p > 0.41	p > 0.10
options)		
Polyethylene insert initial	p = 0.74	p = 0.88
thickness		
Tibial baseplate top surface	p = 0.30	p = 0.54
polished		
Postoperative mechanical	p < 0.01, b = 0.004 (0.003,	p < 0.01, b = 0.003
axis	0.006)†	(0.002, 0.005)‡

*k and r denote the number of knees and radiographs examined, respectively. p is the probability value obtained when all variables were entered into the regression. b is the unstandardized regression coefficient obtained when only the significant variables were included in the equation, with 95% confidence interval limits in parentheses. †The linear regression equation featuring only significant variables was: time-averaged radiographic polyethylene thickness loss (mm/year) = $0.398 - 0.005 \times$ patient age years + $0.072 \times$ insert shelf age years + $0.004 \times$ mm by which hip-to-ankle axis was medial to knee center; the p value and R²-value of the equation were <0.01 and 0.40, respectively. ‡The linear regression equation featuring only significant variables was: time-regressed radiographic polyethylene thickness loss in mm/year = $0.473 - 0.006 \times$ patient age years + $0.070 \times$ insert shelf age years + $0.003 \times$ by which hip-to-ankle axis was medial to knee center; the equation's p value and R²-value were <0.01 and 0.36, respectively.

Page 3 of 3

TABLE E-3 Results of Multiple Linear Regression Analyses That Were Done to Identify Which Factors Were Significantly Associated (p < 0.05) with Medial Compartment Radiographic Polyethylene Thickness Loss of Inserts Sterilized with Gamma Radiation in an Inert Gas or Without Radiation (Gas Plasma)

	Dependent Variable*		
	Time-Averaged	Time-Regressed	
	Radiographic Polyethylene	Radiographic Polyethylene	
	Thickness Loss (k and $r =$	Thickness Loss ($k = 87$, $r =$	
Independent Variables	101)	374)	
Patient age at surgery	p < 0.01, b = -0.003 (- 0.005, -0.002)†	p < 0.01, b = -0.003 (- 0.005, -0.001)‡	
Patient weight	p = 0.02, b = 0.001 (0.000, 0.002)†	p = 0.22	
Male sex	p = 0.01, b = 0.036 (0.014, 0.058)†	p < 0.01, b = 0.038 (0.014, 0.063‡	
Polyethylene insert sterilized without radiation	p = 0.13	p = 0.59	
Polyethylene insert shelf age	p = 0.19	p = 0.84	
Polyethylene insert forming resin	p = 0.08	p = 0.27	
Polyethylene insert initial thickness	p = 0.64	p = 0.69	
Postoperative mechanical axis	p = 0.02, b = 0.001 (0.000, 0.003)†	p = 0.06	

*k and r denote the number of knees and radiographs examined, respectively. p is the probability value obtained when all variables were entered into the regression. b is the unstandardized regression coefficient obtained when only the significant variables were included in the equation, with 95% confidence interval limits in parentheses. †The linear regression equation featuring only significant variables was: time-averaged radiographic polyethylene thickness loss in mm/year = $0.154 - 0.003 \times$ patient age years + $0.001 \times$ patient kg + $0.036 \times$ sex (0, if female; 1, if male) + $0.001 \times$ mm by which hip-to-ankle axis was medial to knee center; the equation's p value and R²-value were <0.01 and 0.46, respectively. ‡The linear regression equation featuring only significant variables was: time-regressed radiographic polyethylene thickness loss in mm/year = $0.213 - 0.003 \times$ patient age years + $0.038 \times$ sex (0, if female; 1, if male); the equation's p value and R²-value were <0.01 and 0.21, respectively.