Table E1 Background Data and Radiographic Prevalences of Osteolysis at Five to Ten Years in the Three Hundred and Sixty-five Knees Treated with Primary Total Knee Arthroplasty

|  | Baseplate with Grit-Blasted Proximal Surface Finish ( $\mathrm{R}_{\mathrm{a}}=1.0 \mu \mathrm{~m}^{*}$ ) |  | Baseplate with Polished Proximal Surface Finish ( $\mathrm{R}_{\mathrm{a}}<0.1 \mu \mathrm{~m}$ *) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Insert Sterilized with Ethylene-Oxide | Insert Gamma- <br> Irradiated in Air | Insert Gamma- <br> Irradiated in Air | Insert Sterilized with Ethylene-Oxide | Insert Sterilized with Gas Plasma |
| Years of operations | 1987 | 1987-1993 | 1992-1996 | 1993-1996 | 1996-1998 |
| Number of knees | 4 | 242 | 21 | 54 | 44 |
| Patient gender | 3 female 1 male | 156 female 86 male | 11 female 10 male | 23 female <br> 31 male | 21 female <br> 23 male |
| Patient age at arthroplasty $\dagger$, years | $\begin{aligned} & 65 \pm 14 \\ & (50 \text { to } 83) \end{aligned}$ | $\begin{aligned} & 68 \pm 8 \\ & (36 \text { to } 87) \end{aligned}$ | $\begin{aligned} & 67 \pm 6 \\ & (59 \text { to } 80) \end{aligned}$ | $\begin{aligned} & 69 \pm 15 \\ & (55 \text { to } 81) \end{aligned}$ | $\begin{aligned} & 64 \pm 8 \\ & (45 \text { to } 79) \end{aligned}$ |
| Patient weight $\dagger, \mathrm{kg}$ | $\begin{aligned} & 78 \pm 19 \\ & (52 \text { to } 95) \end{aligned}$ | $\begin{aligned} & 83 \pm 16 \\ & (48 \text { to } 136) \end{aligned}$ | $\begin{aligned} & 80 \pm 11 \\ & (48 \text { to } 100) \end{aligned}$ | $\begin{aligned} & 85 \pm 15 \\ & (45 \text { to } 118) \end{aligned}$ | $\begin{aligned} & 87 \pm 16 \\ & (55 \text { to } 125) \end{aligned}$ |
| Osteoarthritis type | 4 varus | 186 varus 56 valgus | 18 varus 3 valgus | $\begin{aligned} & 42 \text { varus } \\ & 12 \text { valgus } \end{aligned}$ | 35 varus 9 valgus |
| Insert-forming method, machined from: $\ddagger$ | 4 CMS412 | 24 CMS1900 108 CMS412 1 REB412 56 CMS415 53 REB415 | 2 CMS1900 3 CMS412 4 CMS415 12 REB415 | $\begin{aligned} & 1 \text { CMS415 } \\ & 53 \text { REB415 } \end{aligned}$ | $\begin{aligned} & 40 \text { REB415 } \\ & 4 \text { REB1050 } \end{aligned}$ |
| Insert shelf age, years | 0.0 | $\begin{aligned} & 0.9 \pm 0.9 \\ & (0.0 \text { to } 5.4) \end{aligned}$ | $\begin{aligned} & 2.6 \pm 2.3 \\ & (0.1 \text { to } 7.1) \end{aligned}$ | $\begin{aligned} & 0.5 \pm 0.5 \\ & (0.0 \text { to } 1.7) \end{aligned}$ | $\begin{aligned} & 0.5 \pm 0.3 \\ & (0.1 \text { to } 1.8) \end{aligned}$ |
| Insert initial thickness $\dagger$, mm | $\begin{aligned} & 6 \pm 2 \\ & (4 \text { to } 8) \end{aligned}$ | $\begin{aligned} & 7 \pm 2 \\ & (4 \text { to } 14) \end{aligned}$ | $\begin{aligned} & 8 \pm 1 \\ & (6 \text { to } 10) \end{aligned}$ | $\begin{aligned} & 8 \pm 1 \\ & (6 \text { to } 12) \end{aligned}$ | $\begin{aligned} & 9 \pm 1 \\ & (6 \text { to } 12) \end{aligned}$ |
| Tibial and femoral component fixation method§ | 2 hybrid 2 cementless | 57 cemented 180 hybrid 5 cementless | 13 cemented 8 hybrid | 52 cemented 2 hybrid | 44 cemented |
| Medialization of postoperative mechanical axis relative to center of tibial component $\dagger, \mathrm{mm}$ | $\begin{aligned} & -6 \pm 7 \\ & (-13 \text { to }+2) \end{aligned}$ | $\begin{aligned} & 1 \pm 10 \\ & (-34 \text { to }+30) \end{aligned}$ | $\begin{aligned} & -1 \pm 12 \\ & (-29 \text { to }+26) \end{aligned}$ | $\begin{aligned} & -1 \pm 10 \\ & (-27 \text { to }+19) \end{aligned}$ | $\begin{aligned} & 2 \pm 8 \\ & (-22 \text { to }+19) \end{aligned}$ |
| Hyperextension of femoral component relative to tibial component $\dagger$, ${ }^{\circ}$ | $\begin{aligned} & 2 \pm 6 \\ & (-5 \text { to }+7) \end{aligned}$ | $\begin{aligned} & 3 \pm 8 \\ & (-24 \text { to }+24) \end{aligned}$ | $\begin{aligned} & 6 \pm 6 \\ & (-5 \text { to }+18) \end{aligned}$ | $\begin{aligned} & 5 \pm 9 \\ & (-22 \text { to }+21) \end{aligned}$ | $\begin{aligned} & 11 \pm 7 \\ & (-8 \text { to }+23) \end{aligned}$ |
| Years from surgery to date when reviewed radiographs were made $\dagger$ | $\begin{aligned} & 8 \pm 2 \\ & (5 \text { to } 9) \end{aligned}$ | $\begin{aligned} & 8 \pm 1 \\ & (5 \text { to } 10) \end{aligned}$ | $\begin{aligned} & 8 \pm 1 \\ & (5 \text { to } 10) \end{aligned}$ | $\begin{aligned} & 8 \pm 1 \\ & (5 \text { to } 9) \end{aligned}$ | $\begin{aligned} & 6 \pm 1 \\ & (5 \text { to } 8) \end{aligned}$ |
| Prevalence of osteolysis |  |  |  |  |  |
| Positive | 25\% (1/4) | 34\% (82/242) | 33\% (7/21) | 6\% (3/54) | 14\% (6/44) |
| Questionable | 50\% (2/4) | 20\% (48/242) | 10\% (2/21) | 15\% (8/54) | 14\% (6/44) |
| Negative | 25\% (1/4) | 46\% (112/242) | 57\% (12/21) | 80\% (43/54) | 73\% (32/44) |

$* \mathrm{R}_{\mathrm{a}}=$ average roughness. $\dagger$ The data are presented as the mean and standard deviation, with the range in parentheses. $\ddagger$ CMS $1900=$ compression molded sheet 1900 resin, CMS412 $=$ compression molded sheet 412 resin, REB412 = ram-extruded bar 412 resin, CMS415 $=$ compression molded sheet 415 resin, REB415 $=$ ram-extruded bar 415 resin, REB1050 $=$ ram-extruded bar 1050 resin. §Hybrid tibial and femoral component fixation connotes that only the tibial component was fixed with use of cement.


## intercomponent hyperextension $=$ baseplate posterior tilt - femoral component posterior tilt

Fig. E-1
Method used to calculate the angle of hyperextension between the femoral component and the tibial component from the anteroposterior radiograph. As illustrated in the schematic at the left, the trigonometric method effectively determines how each implant is rotated relative to the tube and then relates the orientation of the two implants to each other. The radiographic magnification factor is determined with use of the projected and true diameters of the cylindrical insert locking pin. In this example, $\mathrm{SI}_{\text {femora }}$ and baseplate posterior tilt are each positive in sign. fc = femoral component and $b p=$ baseplate .

