TABLE E-1 Primary TKA Studies with at Least a Preop/Postop Design

Reference	Measure	No. of Patients at Baseline	No. of Patients at Follow-up	No. of Knees at Baseline	No. of Knees at Follow-up	Follow-up (months)	Age (years)	Gender	Arthritis	BMI	Notes
Bachmeier et al., 2001 ¹	WOMAC, SF-36		108			10	72	61% Female	100% OA		Compared WOMAC and SF- 36; no control variables used; WOMAC more sensitive than SF-36
Baldwin & Rubinstein, 1996 ²	HSS	300		346	301	48	67.5	58% Female			Tested only effect of bone quality
Beaupre et al., 2001 ³	WOMAC, SF-36	120	93			4.5	68.4	40% Female	91% OA		RCT to test role of exercise; no effect
Bert et al., 2000, 2001 ^{4,5}	KS, SF-36	279	277			12	72	70% Female		Mean = 30	No effect of preop activity level on postop activity/demand level
Bourne et al., 1995 ⁶	KS	100				24	70	42 Male 58 Female	100% OA		Resurfacing of patella
Brown et al., 2001^7	KS, HSS	268	246	536		76.8	68	68% Female	89% OA 8% RA		No effect of component size asymmetry
Bullens et al., 2001 ⁸	KS, WOMAC	108	86	126	100	58.8	67.4		67 OA 37 RA		Done to compare KS scores and satisfaction visual analog scale; poor correlation. No difference between RA and OA in KS scores but RA had better satisfaction
Clark et al., 2001 ⁹	KS, WOMAC	143	108			36	71.4		75% OA 25% RA		RCT of posterior-stabilized vs. cruciate-retaining implants; no significant difference
Cloutier et al., 2001 ¹⁰	KS	130	89	163	107	120	67	34 Male 96 Female	122 OA 41 RA		Cruciate ligament retention
Cohen et al., 1997 ¹¹	KS	186		272		6	69.5	71 Male 115 Female	148 OA 22 RA	Mean = 177 pounds	
Deshmukh et al., 2002 ¹²	KS	180	130			12	68.8	85 Male 95 Female		31 normal 83 overweight 64 obese 2 morbidly obese	Regression model included age, sex, side of arthritis, comorbidity, preop scores, and BMI. BMI did not adversely influence the outcome of TKA short-term
Diduch et al., 1997 ¹³	HSS, KS	88	84	114	103	96	51	29 Male 55 Female	64% OA		
Duffy et al., 1998 ¹⁴	KS	104	93	120	106	120	Cementless = 54	Cementless: 23 Male 23 Female	OA: Cementless 42 Cemented 42	Mean = 80.9 kg	Cemented had better survival
							Cemented = 65	Cemented: 23 Male 24 Female	RA: Cementless 9 Cemented 6		
Elke et al., 1995 ¹⁵	KS	394		524		50.4	75.1 68.4	No difference	61 RA 415 OA		RA vs. OA: no difference
Evanich et al., 1997 ¹⁶	HSS	251	169	302	212	91	66	48% Female	78% OA 17% RA		Countersunk metal-backed patellae
Ewald et al., 1999 ¹⁷	KS	412	180	539	306	120-168	63		RA 151 OA 155		Kinematic arthroplasty

Fortin et al., 1999 ¹⁸	SF-36, WOMAC	130	106			6	67		All had OA		2 In regression model, education and comorbidity did not predict outcomes for TKA alone but did in pooled TKA/THA
Gill & Joshi, 2001 ¹⁹	KS	223	223	254	254	201.6	68	89 Male 165 Female	289 total TKAs: 254 with OA, 35 with RA. ONLY studied patients with OA		Survivorship of TKA; no further analysis. Posterior cruciate-retaining
Gill et al., 1999 ²⁰	KS	139	63	159	72	206.4	61	21 Male 42 Female	68 OA 3 RA		Total condylar TKA; survival analysis
Gioe & Bowman, 2000 ²¹	KS, SF-36	296	195	324	213	49	69 ± 6	285 Male 11 Female	272 OA		RCT of tibial components; no multivariate analysis
Griffin et al., 1998 ²²	KS, HSS	120	56	165	73	127.2	67.8	15 Male 41 Female	51 OA	20 obese 30 nonobese	Obese showed more improvement
Harwin, 1998 ²³	KS, HSS	336	326	366	356	61.2	65.1	138 Male 188 Female	241 OA 109 RA		Symmetrical TKA; preop/postop comparison only. Results reported separately for OA and RA
Hasegawa et al., 2002 ²⁴	HSS	140		221		12-60	68	16 Male 124 Female	129 OA 92 RA	Mean = 53 kg	Risk factors for heterotopic ossification: knee flexion, effusion (bivariate analysis only); age, gender, arthritis, BMI not significant
Hawker et al., 1998 ²⁵	WOMAC, KS	1496	1193			24-84	72.6	70% Female	87% OA 6% RA	Mean = 28	Primary & revision: education, race, income, living environment. Correlates of pain at follow- up: preop pain, osteotomy before replacement, low SF- 36 scores for social function & emotional role function, high SF-36 score for pain, less satisfaction; none significant in multivariate analysis. Age, BMI not related to outcomes
Healy et al., 2002 ²⁶	KS, HSS	159	142	159	142	96 (no clinical pathway) 60 (clinical pathway)	69.9		100% OA	Mean = 84.5 kg	Clinical pathway vs. no clinical pathway. Clinical pathways reduced hospital cost for TKA without affecting short-term patient outcome
Heck et al., 1998 ²⁷	KS, WOMAC, SF-36	291	268	330		24	70.2	109 Male 182 Female	100% OA	Mean = 30.2	Logistic regression found maximal improvement in SF- 36 physical component score for subjects who had surgery at institutions performing ≥50 TKA/year, had a better mental health status at baseline, and were treated with posterior cruciate- sparing device

											3
Hsu et al., 1998 ²⁸	HSS	113	113	140	140	57.6	62.6	73% Female	135 OA 5 RA		Tested hybrid prosthesis: uncemented femur/cemented tibia; decreased pain, increased muscle strength
Hube et al., 2002 ²⁹	KS	221		297	276	36.2	66.3 (33-81)	123 Male 153 Female	261 OA 33 RA 3 infection		Midvastus approach; preop/postop comparison only
Ikejiani et al., 2000 ³⁰	HSS	185	185	185	185	78	67	79 Male 106 Female	OA	Weight recorded	Patellar resurfacing; preop/postop comparison
Indelli et al., 2002^{31}	KS	91	85	100	92	90	69 (57-85)	13 Male 72 Female	All with OA		Prospective; preop/postop comparison
Jenny & Jenny, 1998 ³²	KS	125	125	125	125	30	69	39 Male 86 Female			Anterior cruciate ligament- retaining vs. replacing prostheses; preop/postop comparison
Jones et al., 2001 ³³	WOMAC, SF-36	257	257	257	257	6	70.7	63% Female	93% OA	Mean = 31.4	Education, age, gender, BMI, prior joint surgery, living arrangement, comorbidity included in regression model. Age not associated with improvement in WOMAC. Gains in WOMAC & SF-36 scores but not significant
Jordan et al., 1997 ³⁴	KS	375		473	410	56.4	68	113 Male 261 Female	427 OA 45 RA	Weight recorded	Cementless meniscal bearing TKAs; preop/postop comparison
Kiebzak et al., 2002 ³⁵	SF-36	415				24		234 Female			American Society of Anesthesiologists (ASA) grade, number of comorbidities analyzed; Improvements in SF-36 greater for men (except for role emotional). Only 54 used in analysis
Konig et al., 1997, 1998, 2000 ³⁶⁻³⁸	KS	357	294	399	329	56.4	69.4	56 Male 238 Female	278 OA 34 RA 16 other		Preop walking distance related to pain on follow-up; no predictors of KS score; KS function score predicted by preop walking distance, age, BMI, preop patient category
Larson et al., 2001 ³⁹	HSS	94	82	127	118	48	67 (41-81)	20 Male 62 Female	87 OA 30 RA	Mean = 28 (17-44) 26 obese 1 morbidly obese	Mean BMI same in patients with and without patellar complications; 50% of patients with patellar fracture or anterior knee pain obese compared with 32% without those factors; not significant.
Lin et al., 2002 ⁴⁰	KS	122	78			24	67.7-70		100% OA		Impact of clinical pathway; affected utilization but not outcomes
Liu & Chen, 1998 ⁴¹	HSS	88		176		31	67.4	97.5% Female	82 OA 6 RA		Bilateral TKA did not result in an increase of op/postop complications

											4
Lombardi et al., 2001 ⁴²	HSS, KS	240	240	351	351	77	65.5	Reported	223 OA 23 RA	Reported	No difference in follow-up KS but significantly greater improvements in pain relief & outcomes in posterior- stabilized group than in posterior cruciate-retaining group
Malkani et al., 1995 ⁴³	HSS, KS,	118	84	168	119	120	64		78 OA 36 RA	Height and weight reported	All patients received Kinematic total condylar prostheses. HSS & KS scores significantly improved
Martin et al., 1997 ⁴⁴	KS	290	231	378	306	78	67	60 Male 171 Female	202 OA 91 RA		Follow-up knee and function scores differed significantly between groups. No difference according to whether patella resurfaced. Cemented femoral component associated with better function score
Matsueda & Gustilo, 2000 ⁴⁵	KS	365	291	425	336	6	68.4	90 Male 201 Female	253 OA 27 RA other 11		Compared subvastus and medial parapatellar approaches; no functional difference
Meding et al., 2001 ⁴⁶	KS	1888	1888	2759	2759	30	70.6	60% Female		Recorded	Preop KS and KS functional scores related to radiographic changes but not to pain score
Miyasaka et al., 1997 ⁴⁷	KS	83	46	108	60	169	61	85% Female	RA: 38 OA: 21	Weight recorded	Study of preop/postop valgus deformity
Mokris et al., 1997 ⁴⁸	KS	90	90	105	105	51	68.7	34 Male 56 Female	97 OA 6 RA		Preop/postop comparison
Mont et al., 1999 ⁴⁹	KS	104	101	121	118	65	70	38 Male 63 Female (62% Female)	97 OA 2 RA		Preop/postop comparison
Moskal & Diduch, 1998 ⁵⁰	HSS	514	488	646	617	51.6	64	69.6% Female		Mean height & weight	Tested role of postop radiographs; preop/postop comparison
O'Rourke et al., 2002^{51}	KS, HSS	134	114	176	153	76.8	72.4	59.4% Female		Mean = 30.9	Decreased osteolysis correlated with KS. Trend toward anterior knee pain with higher BMI
Pereira et al., 1998 ⁵²	HSS		107	163		36	69	40 Male 103 Female	130 OA 8 RA		PCL-sparing associated with greater improvement than PCL- sacrificing
Ranawat et al., 1997 ⁵³	KS	118	96	150	125	58.7	70		OA vs. RA		Functional status significantly better for OA than for RA; knee score better for OA than for RA
Rand & Gustilo, 1996 ⁵⁴	KS	202	182	277	251	27.6	69	69 Male 113 Female	156 OA 19 RA		Inset vs. resurfacing patellar prostheses; resurfacing had better function and higher pain score

Λ

											5
Regner et al., 1997 ⁵⁵	HSS	120	88	144		81.6	61	22 Male 98 Female			Preop and postop reported by OA and RA. Revision rate not affected by age, sex, arthritis, alignment or prosthesis
Rinta-Kiikka et al., 1996 ⁵⁶	KS	97	89	102	94	64	67	77% Female	74 OA 16 RA	Reported	Correlates of survival: age; extension deficit, knee score, function score, pain score at last review. BMI not associated
Ritter et al., 1995 ⁵⁷	KS	1351		2001		3-10	69.1	65% Female	91% OA 6% RA		
Rodriguez et al., 1996 ⁵⁸	HSS KS	99	67	145	104	52	12.7 (5-18)	91Male 13 Female	All with RA		Patients with stage-II or IV RA
Schroder et al., 2001 ⁵⁹	HSS	102	52	114	58	120	78		48 OA 10 RA		Preop/postop comparison; no difference between OA and RA
Sextro et al., 2001 ⁶⁰	KS	118	50	168	66	188.4	65.1	72 Female	109 OA 52 RA		
Stickles et al., 2001 ⁶¹	WOMAC, SF-36	4161	1011			12	69.9	637 Female	100% OA	Mean 31.2	No difference in WOMAC, SF-36 physical component score, mental component score by BMI categories in multiple regression model
Title et al., 2001 ⁶²	KS	128	128	148	148	51	63	53 Female	122 OA 24 RA		Total condylar prosthesis vs. press-fit condylar prosthesis: 2 cohorts matched for age, diagnosis, gender, and body weight
Ververeli et al., 1995 ⁶³	HSS	103	103			24	69.5	73 Female	100% OA		Continuous passive motion better than physical therapy alone
Worland et al., 1998 ⁶⁴	HSS	91	80	114	103	6	70.2	53 Female 27 Male	100% OA		RCT. Continuous passive motion vs. professional physical therapy. Continuous passive motion adequate rehabilitation alternative with lower costs and no differences in results vs. physical therapy
Yang et al., 2001 ⁶⁵	KS	90	86	113	109	36	69	13 Male 73 Female	82 OA 4 RA		

WOMAC: Western Ontario and McMaster Universities Arthritis Index HSS: Hospital for Special Surgery Score KS: Knee Society Score SF-36: Short Form-36 (from the Medical Outcomes Study) OA: osteoarthritis RA: rheumatoid arthritis BMI: body-mass index TKA: total knee arthroplasty RCT: randomized controlled trial

Bibliography for Table E-1

1. Bachmeier CJ, March LM, Cross MJ, Lapsley HM, Tribe KL, Courtenay BG, Brooks PM; Arthritis Cost and Outcome Project Group. A comparison of outcomes in osteoarthritis patients undergoing total hip and knee replacement surgery. Osteoarthritis Cartilage. 2001;9:137-46.

2. Baldwin JL, Rubinstein RA Jr. The effect of bone quality on the outcome of ingrowth total knee arthroplasty. Am J Knee Surg. 1996;9:45-50.

3. Beaupre LA, Davies DM, Jones CA, Cinats JG. Exercise combined with continuous passive motion or slider board therapy compared with exercise only: a randomized controlled trial of patients following total knee arthroplasty. Phys Ther. 2001;81:1029-37.

4. Bert JM, Gross M, Kline C. Patient demand matching in total knee arthroplasty: is it necessary? Am J Knee Surg. 2001;14:39-42.

5. Bert JM, Gross M, Kline C. Outcome results after total knee arthroplasty: does the patient's physical and mental health improve? Am J Knee Surg. 2000;13:223-7.

6. Bourne RB, Rorabeck CH, Vaz M, Kramer J, Hardie R, Robertson D. Resurfacing versus not resurfacing the patella during total knee replacement. Clin Orthop Relat Res. 1995;321:156-61.

7. Brown TE, Diduch DR, Moskal JT. Component size asymmetry in bilateral total knee arthroplasty. Am J Knee Surg. 2001;14:81-4.

8. Bullens PH, van Loon CJ, de Waal Malefijt MC, Laan RF, Veth RP. Patient satisfaction after total knee arthroplasty: a comparison between subjective and objective outcome assessments. J Arthroplasty. 2001;16:740-7.

9. Clark CR, Rorabeck CH, MacDonald S, MacDonald D, Swafford J, Cleland D. Posterior-stabilized and cruciate-retaining total knee replacement: a randomized study. Clin Orthop Relat Res. 2001;392:208-12.

10. Cloutier J, Sabouret P, Deghrar A. Total knee arthroplasty with retention of both cruciate ligaments. A 9 to 11 year follow-up study. Eur J Orthop Surg Traumatol. 2001;11:41-6.

11. Cohen RG, Forrest CJ, Benjamin JB. Safety and efficacy of bilateral total knee arthroplasty. J Arthroplasty. 1997;12:497-502.

12. Deshmukh RG, Hayes JH, Pinder IM. Does body weight influence outcome after total knee arthroplasty? A 1-year analysis. J Arthroplasty. 2002;17:315-9.

13. Diduch DR, Insall JN, Scott WN, Scuderi GR, Font-Rodriguez D. Total knee replacement in young, active patients. Long-term follow-up and functional outcome. J Bone Joint Surg Am. 1997;79:575-82.

14. Duffy GP, Berry DJ, Rand JA. Cement versus cementless fixation in total knee arthroplasty. Clin Orthop Relat Res. 1998;356:66-72.

15. Elke R, Meier G, Warnke K, Morscher E. Outcome analysis of total knee-replacements in patients with rheumatoid arthritis versus osteoarthritis. Arch Orthop Trauma Surg. 1995;114:330-4.

16. Evanich CJ, Tkach TK, von Glinski S, Camargo MP, Hofmann AA. 6- to 10-year experience using countersunk metal-backed patellas. J Arthroplasty. 1997;12:149-54.

17. Ewald FC, Wright RJ, Poss R, Thomas WH, Mason MD, Sledge CB. Kinematic total knee arthroplasty: a 10- to 14-year prospective follow-up review. J Arthroplasty. 1999;14:473-80.

18. Fortin PR, Clarke AE, Joseph L, Liang MH, Tanzer M, Ferland D, Phillips C, Partridge AJ, Belisle P, Fossel AH, Mahomed N, Sledge CB, Katz JN. Outcomes of total hip and knee replacement: preoperative functional status predicts outcomes at six months after surgery. Arthritis Rheum. 1999;42:1722-8.

19. Gill GS, Joshi AB. Long-term results of cemented, posterior cruciate ligament-retaining total knee arthroplasty in osteoarthritis. Am J Knee Surg. 2001;14:209-14.

20. Gill GS, Joshi AB, Mills DM. Total condylar knee arthroplasty. 16- to 21-year results. Clin Orthop Relat Res. 1999;367:210-5.

21. Gioe TJ, Bowman KR. A randomized comparison of all-polyethylene and metal-backed tibial components. Clin Orthop Relat Res. 2000;380:108-15.

22. Griffin FM, Scuderi GR, Insall JN, Colizza W. Total knee arthroplasty in patients who were obese with 10 years followup. Clin Orthop Relat Res. 1998;356:28-33.

23. Harwin SF. Patellofemoral complications in symmetrical total knee arthroplasty. J Arthroplasty. 1998;13:753-62.

24. Hasegawa M, Ohashi T, Uchida A. Heterotopic ossification around distal femur after total knee arthroplasty. Arch Orthop Trauma Surg. 2002;122:274-8.

25. Hawker G, Wright J, Coyte P, Paul J, Dittus R, Croxford R, Katz B, Bombardier C, Heck D, Freund D. Health-related quality of life after knee replacement. J Bone Joint Surg Am. 1998;80:163-73.

26. Healy WL, Iorio R, Ko J, Appleby D, Lemos DW. Impact of cost reduction programs on short-term patient outcome and hospital cost of total knee arthroplasty. J Bone Joint Surg Am. 2002;84:348-53.

27. Heck DA, Robinson R, Partridge CM, Lubitz RM, Freund DA. Patient outcomes after knee replacement. Clin Orthop Relat Res. 1998;356:93-110.

28. Hsu RW, Tsai YH, Huang TJ, Chang JC. Hybrid total knee arthroplasty: a 3- to 6-year outcome analysis. J Formos Med Assoc. 1998;97:410-5.

29. Hube R, Sotereanos N, Reichel H. The midvastus approach for total knee arthroplasty. Orthop Traumatol. 2002;10:235-44.

30. Ikejiani CE, Leighton R, Petrie DP. Comparison of patellar resurfacing versus nonresurfacing in total knee arthroplasty. Can J Surg. 2000;43:35-8.

31. Indelli PF, Aglietti P, Buzzi R, Baldini A. The Insall-Burstein II prosthesis: a 5- to 9-year follow-up study in osteoarthritic knees. J Arthroplasty. 2002;17:544-9.

32. Jenny JY, Jenny G. Preservation of anterior cruciate ligament in total knee arthroplasty. Arch Orthop Trauma Surg. 1998;118:145-8.

33. Jones CA, Voaklander DC, Johnston DW, Suarez-Almazor ME. The effect of age on pain, function, and quality of life after total hip and knee arthroplasty. Arch Intern Med. 2001;161:454-60.

34. Jordan LR, Olivo JL, Voorhorst PE. Survivorship analysis of cementless meniscal bearing total knee arthroplasty. Clin Orthop Relat Res. 1997;338:119-23.

35. Kiebzak GM, Campbell M, Mauerhan DR. The SF-36 general health status survey documents the burden of osteoarthritis and the benefits of total joint arthroplasty: but why should we use it? Am J Manag Care. 2002;8:463-74.

36. Konig A, Scheidler M, Rader C, Eulert J. The need for a dual rating system in total knee arthroplasty. Clin Orthop Relat Res. 1997;345:161-7.

37. Konig A, Kirschner S, Walther M, Eisert M, Eulert J. Hybrid total knee arthroplasty. Arch Orthop Trauma Surg. 1998;118:66-9.

38. Konig A, Walther M, Kirschner S, Gohlke F. Balance sheets of knee and functional scores 5 years after total knee arthroplasty for osteoarthritis: a source for patient information. J Arthroplasty. 2000;15:289-94.

39. Larson CM, McDowell CM, Lachiewicz PF. One-peg versus three-peg patella component fixation in total knee arthroplasty. Clin Orthop Relat Res. 2001;392:94-100.

40. Lin YK, Su JY, Lin GT, Tien YC, Chien SS, Lin CJ, Cheng YM, Lin SY. Impact of a clinical pathway for total knee arthroplasty. Kaohsiung J Med Sci. 2002;18:134-40.

41. Liu TK, Chen SH. Simultaneous bilateral total knee arthroplasty in a single procedure. Int Orthop. 1998;22:390-3.

42. Lombardi AV Jr, Mallory TH, Fada RA, Hartman JF, Capps SG, Kefauver CA, Adams JB. An algorithm for the posterior cruciate ligament in total knee arthroplasty. Clin Orthop Relat Res. 2001;392:75-87.

43. Malkani AL, Rand JA, Bryan RS, Wallrichs SL. Total knee arthroplasty with the kinematic condylar prosthesis. A ten-year follow-up study. J Bone Joint Surg Am. 1995;77:423-31.

44. Martin SD, McManus JL, Scott RD, Thornhill TS. Press-fit condylar total knee arthroplasty. 5- to 9-year follow-up evaluation. J Arthroplasty. 1997;12:603-14.

45. Matsueda M, Gustilo RB. Subvastus and medial parapatellar approaches in total knee arthroplasty. Clin Orthop Relat Res. 2000;371:161-8.

46. Meding JB, Ritter MA, Faris PM, Keating EM, Harris W. Does the preoperative radiographic degree of osteoarthritis correlate to results in primary total knee arthroplasty? J Arthroplasty. 2001;16:13-6.

47. Miyasaka KC, Ranawat CS, Mullaji A. 10- to 20-year followup of total knee arthroplasty for valgus deformities. Clin Orthop Relat Res. 1997;345:29-37.

48. Mokris JG, Smith SW, Anderson SE. Primary total knee arthroplasty using the Genesis Total Knee Arthroplasty System: 3- to 6-year follow-up study of 105 knees. J Arthroplasty. 1997;12:91-8.

49. Mont MA, Yoon TR, Krackow KA, Hungerford DS. Eliminating patellofemoral complications in total knee arthroplasty: clinical and radiographic results of 121 consecutive cases using the Duracon system. J Arthroplasty. 1999;14:446-55.

50. Moskal JT, Diduch DR. Postoperative radiographs after total knee arthroplasty: a cost-containment strategy. Am J Knee Surg. 1998;11:89-93.

51. O'Rourke MR, Callaghan JJ, Goetz DD, Sullivan PM, Johnston RC. Osteolysis associated with a cemented modular posterior-cruciate-substituting total knee design: five to eight-year follow-up. J Bone Joint Surg Am. 2002;84:1362-71.

52. Pereira DS, Jaffe FF, Ortiguera C. Posterior cruciate ligament-sparing versus posterior cruciate ligament-sacrificing arthroplasty. Functional results using the same prosthesis. J Arthroplasty. 1998;13:138-44.

53. Ranawat CS, Luessenhop CP, Rodriguez JA. The press-fit condylar modular total knee system. Four-to-six-year results with a posterior-cruciate-substituting design. J Bone Joint Surg Am. 1997;79:342-8.

54. Rand JA, Gustilo B. Comparison of inset and resurfacing patellar prostheses in total knee arthroplasty. Acta Orthop Belg. 1996;62 Suppl 1:154-63.

55. Regner L, Carlsson L, Karrholm J, Herberts P. Clinical and radiologic survivorship of cementless tibial components fixed with finned polyethylene pegs. J Arthroplasty. 1997;12:751-8.

56. Rinta-Kiikka I, Savilahti S, Pajamaki J, Lindholm TS. A five to seven years follow-up of 102 cementless Synatomic knee arthroplasties. Ann Chir Gynaecol. 1996;85:77-85.

57. Ritter MA, Worland R, Saliski J, Helphenstine JV, Edmondson KL, Keating EM, Faris PM, Meding JB. Flat-on-flat, nonconstrained, compression molded polyethylene total knee replacement. Clin Orthop Relat Res. 1995;321:79-85.

58. Rodriguez JA, Saddler S, Edelman S, Ranawat CS. Long-term results of total knee arthroplasty in class 3 and 4 rheumatoid arthritis. J Arthroplasty. 1996;11:141-5.

59. Schroder HM, Berthelsen A, Hassani G, Hansen EB, Solgaard S. Cementless porous-coated total knee arthroplasty: 10-year results in a consecutive series. J Arthroplasty. 2001;16:559-67.

60. Sextro GS, Berry DJ, Rand JA. Total knee arthroplasty using cruciate-retaining kinematic condylar prosthesis. Clin Orthop Relat Res. 2001;388:33-40.

61. Stickles B, Phillips L, Brox WT, Owens B, Lanzer WL. Defining the relationship between obesity and total joint arthroplasty. Obes Res. 2001;9:219-23.

62. Title CI, Rodriguez JA, Ranawat CS. Posterior cruciate-sacrificing versus posterior cruciate-substituting total knee arthroplasty: a study of clinical and functional outcomes in matched patients. J Arthroplasty. 2001;16:409-14.

63. Ververeli PA, Sutton DC, Hearn SL, Booth RE Jr, Hozack WJ, Rothman RR. Continuous passive motion after total knee arthroplasty. Analysis of cost and benefits. Clin Orthop Relat Res. 1995;321:208-15.

64. Worland RL, Arredondo J, Angles F, Lopez-Jimenez F, Jessup DE. Home continuous passive motion machine versus professional physical therapy following total knee replacement. J Arthroplasty. 1998;13:784-7.

65. Yang K, Yeo SJ, Lee BP, Lo NN. Total knee arthroplasty in diabetic patients: a study of 109 consecutive cases. J Arthroplasty. 2001;16:102-6.