
Copyright © by The Journal of Bone and Joint Surgery, Incorporated Liu et al. Cost-Effectiveness of Operative Versus Nonoperative Treatment of Displaced Midshaft Clavicle Fractures. A Decision Analysis http://dx.doi.org/10.2106/JBJS.17.00786 Page 1

Appendix

Fig. E-1

Cost-effectiveness plane for the lifetime analysis comparing operative and nonoperative treatment. In this analysis, the health utilities of operative and nonoperative treatment persist for the individual's lifetime. The x axis is the incremental QALYs with operative treatment, while the y axis is the incremental costs of operative treatment. The solid red and green lines are the willingness-to-pay thresholds of \$50,000 per QALY and \$100,000 per QALY, respectively. Data points to the right of these lines indicate that the particular trial is cost-effective according to the willingness-to-pay threshold. In the Monte Carlo simulation, 68.3% of the trials were to the right of the willingness-to-pay threshold was increased to \$100,000 per QALY, 70.0% of the trials were to the right of this threshold.

COPYRIGHT © BY THE JOURNAL OF BONE AND JOINT SURGERY, INCORPORATED LIU ET AL. COST-EFFECTIVENESS OF OPERATIVE VERSUS NONOPERATIVE TREATMENT OF DISPLACED MIDSHAFT CLAVICLE FRACTURES. A DECISION ANALYSIS http://dx.doi.org/10.2106/JBJS.17.00786 Page 2

Terminology Explanation This is a popular discipline used in the financial, engineering, and project management fields Decision analytics to formally analyze important decisions. Decision analysis is especially useful in analyzing decisions with unknown variables and uncertainty in events. Predictive and prescriptive analytics have emerged from this discipline, using forecasting, optimization, and simulation techniques. Decision analytics in medicine is a growing field with techniques being utilized in cost-effectiveness studies. Health utility This is a common term used in health economics to reflect an individual's preference for different health outcomes. Most health utility scales range from 0 to 1 with 0 reflecting death and 1 reflecting perfect health. While there are different methods to calculate health utility, including the rating scale method, standard gamble method, and time trade-off method, most health economic evaluations use multi-attribute utility systems (MAUS). Examples of MAUS are the EuroQol-5D, Short Form-6D (which is calculated from the Short Form-12 or Short Form-36), and Health Utilities Index. Quality-adjusted life-years are calculated from this health utility by combining the utility value with the quantity of time in a health state. This is a financial term used to capture the present value of future cash flows. The financial Discount rate definition refers to the interest rate expected for a loan from a financial institution. The discount rate considers the time value of money as 1 dollar now being more valuable than 1 dollar in the future. In cost-effectiveness studies, the discount rate is used not only for monetary costs, but also for health utility. The discount rate used for health utility relies on the principle that a perfectly healthy year now is more valuable than a perfectly healthy year in the future. Markov model Also known as the Markov method. This is a stochastic method used to model transition states. The principle of Markov modeling depends only on the current state and not on the prior states. The probability of transitioning from 1 state to another state can vary according to a predetermined distribution. Markov modeling is often used in cost-effectiveness analyses to capture the value of different health states over time. Also known as the Monte Carlo method or Monte Carlo experiments. This is a computational Monte Carlo simulation algorithm that relies on repeated random sampling to obtain numerical results. This decision analytic tool is especially powerful when there are uncertain variables that can be modeled according to a distribution. This tool is often used in managing risk as it calculates not only the average value of each decision, but also the percentage of iterations in which a certain strategy is more valuable than another strategy.

TABLE E-1 Glossary of Common Terminology in Decision Analysis

Rollback analysis

	each node. The terminal node is calculated first while working backward to the initial decision node. The value of each decision is calculated by using the weighted average of the probability of events and the value of each decision tree branch. This analysis is commonly used in decision analytics and game theory.
Strategy tables	This is a 2-way sensitivity analysis technique that shows how the optimal strategy changes in response to 2 simultaneously changing parameters. This is a particularly useful tool in decision analytics when there is uncertainty in the probability of events, value of an outcome, or cost of a decision.
Tornado chart	Also known as a tornado plot or tornado diagram. These diagrams are useful in sensitivity analysis, showing the importance of each variable in the decision model. The sensitive variable is modeled as an uncertain value, while other variables are held at baseline value. This shows

how important this variable is in the decision model.

Also known as foldback analysis. This is an iterative algorithm used to determine the value of

COPYRIGHT © BY THE JOURNAL OF BONE AND JOINT SURGERY, INCORPORATED LIU ET AL.

COST-EFFECTIVENESS OF OPERATIVE VERSUS NONOPERATIVE TREATMENT OF DISPLACED MIDSHAFT CLAVICLE FRACTURES. A DECISION ANALYSIS

http://dx.doi.org/10.2106/JBJS.17.00786

Page 3

 TABLE E-2 Summary of Published Studies Used to Build the Decision Model

Study	Level of Evidence	Study Design	No. of Patients (Op./Nonop.)	Age Criteria <i>(yr)</i>	Plate Technique*	Nonop. Intervention
Canadian Orthopaedic Trauma Society ⁸ , 2007	I	Prospective randomized	111 (62/49)	16-60	Superior	Sling
S Thyagarajan et al. ²⁹ , 2009	III	Retrospective cohort	34 (17/17)	None	NA	Sling
Kulshrestha et al. ¹⁰ , 2011	II	Prospective cohort	68 (43/25)	20-50	Superior	Sling
Mirzatolooei ³¹ , 2011	Ι	Prospective randomized	50 (26/24)	18-65	Superior	Sling
Virtanen et al. ¹³ , 2012	Ι	Prospective randomized	51 (26/25)	18-70	Anterior	Sling
Robinson et al. ¹² , 2013	Ι	Prospective randomized	178 (86/92)	16-60	NA	Collar and cuff
Althausen et al. ¹⁸ , 2013	III	Retrospective cohort	149 (66/83)	None	Superior	Sling or shoulder immobilizer
Jones et al. ²⁷ , 2014	II	Retrospective cohort	65 (24/41)	None	NA	NA
Khorami et al. ²⁸ , 2014	II	Prospective cohort	65 (35/30)	18-60	NA	Figure-of-8 bandage
Eden et al. ²⁶ , 2015	II	Prospective cohort	78 (41/37)	None	Superior	Rucksack bandage
van der Ven Denise et al. ¹⁴ , 2015	II	Prospective cohort	78 (38/40)	16-70	Anterior	Sling
Melean et al. ³⁰ , 2015	Ι	Prospective randomized	76 (34/42)	>18	NA	Sling
Dhakad et al. ¹¹ , 2016	II	Prospective randomized	50 (25/25)	16-60	Superior	Figure-of-8 brace and sling
Naveen et al. ²⁴ , 2017	II	Prospective cohort	60 (30/30)	20-50	Superior	Figure-of-8 brace
Shetty et al. ²⁵ , 2017	II	Prospective randomized	30 (16/14)	20-50	NA	Clavicle brace and arm pouch
Woltz et al.º, 2017	Ι	Prospective randomized	148 (83/65)	18-60	Mixed	Sling
Naimark et al. ³⁷ , 2016	III	Retrospective cohort	73 (op.)	18-70	Superior	None
van der Linde et al. ³⁸ , 2017	III	Retrospective cohort	101 (op.)	16-65	NA	None
Tutuhatunewa et al. ³⁹ , 2017	III	Retrospective cohort	278 (128/150)	18-65	NA	Sling or collar and cuff

*NA = not available.

COST-EFFECTIVENESS OF OPERATIVE VERSUS NONOPERATIVE TREATMENT OF DISPLACED MIDSHAFT CLAVICLE FRACTURES. A DECISION ANALYSIS

http://dx.doi.org/10.2106/JBJS.17.00786

Page 4

 TABLE E-3 Health Utility Values for Nonoperative and Delayed Operative Treatment

		Time					Final Converted
		Frame		No. of		Mapping Study to	EQ-5D
Study	Health State	(yr)	MAUS*	Patients	MAUS Value*	Convert to EQ-5D	Value
Robinson et al. ¹²	Nonop.	>1	SF-12	92	54.9 (SF-12 mental score), 52.9 (SF-12 physical score)	Sullivan and Ghushchyan (CLAD†) ⁴⁰	0.95
Woltz et al.9	Nonop.	<1	SF-36	74	54.9 (SF-36 mental score), 53.4 (SF-36 physical score)	Hanmer ⁴¹	0.82
Woltz et al.9	Nonop.	>1	SF-36	74	52.2 (SF-36 mental score), 56.1 (SF-36 physical score)	Hanmer ⁴¹	0.82
Tutuhatunewa et al. ³⁹	Nonop.	>1	EQ-5D	88	0.90	None	0.90
Canadian Orthopaedic Trauma Society ⁸	Nonop.	<1	SF-6D	32	0.71	Brazier et al. ⁴²	0.67
Canadian Orthopaedic Trauma Society ⁸	Nonop.	>1	SF-6D	31	0.84	Brazier et al. ⁴²	0.80
van der Linde et al. ³⁸	Delayed op.	>1	EQ-5D	25	0.83	None	0.83
Compiled value	Nonop.	<1		106			0.77
Compiled value	Nonop.	>1		285			0.88
Compiled value	Delayed op.	>1		25			0.83

*MAUS = multi-attribute utility system. †CLAD = censored least absolute deviations.

COST-EFFECTIVENESS OF OPERATIVE VERSUS NONOPERATIVE TREATMENT OF DISPLACED MIDSHAFT CLAVICLE FRACTURES. A DECISION ANALYSIS

http://dx.doi.org/10.2106/JBJS.17.00786

Page 5

 TABLE E-4 Health Utility Values for Implant Removal

						Final
	Time					Converted
	Frame		No. of	MAUS	Mapping Study to	EQ-5D
Study	(yr)	MAUS*	Patients	Value*	Convert to EQ-5D	Value
Tutuhatunewa et	>1	EQ-5D	40	0.92	None	0.92
al. ³⁹						
Naimark et al. ³⁷	>1	EQ-5D	11	0.78	None	0.78
Canadian	>1	SF-6D	5	0.75	Brazier et al.42	0.71
Orthopaedic						
Trauma Society ⁸						
Compiled value	>1		56			0.87

*MAUS = multi-attribute utility system.

COST-EFFECTIVENESS OF OPERATIVE VERSUS NONOPERATIVE TREATMENT OF DISPLACED MIDSHAFT CLAVICLE FRACTURES.

A DECISION ANALYSIS

http://dx.doi.org/10.2106/JBJS.17.00786

Page 6

 TABLE E-5 Health Utility Values for Operative Treatment

							Impl	ant Removal	
Study	Time Frame <i>(yr)</i>	MAUS*	No. of Patients	MAUS Value*	Mapping Study to Convert to EQ-5D	Converted EQ-5D Value	No.	EQ-5D Score	Final Converted EQ- 5D Score
Robinson et al. ¹²	>1	SF-12	86	56.6 (SF-12 mental score), 54.3 (SF-12 physical score)	Sullivan and Ghushchyan (CLAD†) ⁴⁰	0.97	10	0.87	0.98
Woltz et al. ⁹	<1	SF-36	86	53.6 (SF-36 mental score), 53.5 (SF-36 physical score)	Hanmer ⁴¹	0.86	14	0.87	0.84
Woltz et al. ⁹	>1	SF-36	86	52.6 (SF-36 mental score), 55.2 (SF-36 physical score)	Hanmer ⁴¹	0.86	14	0.87	0.84
Naimark et al. ³⁷	>1	EQ-5D	61	0.91	None	+	‡	+	0.91
van der Linde et al. ³⁸	>1	EQ-5D	101	0.89	None	0.89	62	0.87	0.93
Tutuhatu newa et al. ³⁹	>1	EQ-5D	81	0.91	None	+	+	+	0.91
Canadian Orthopae dic Trauma Society ⁸	<1	SF-6D	47	0.76	Brazier et al. ⁴²	+	+	+	0.72
Canadian Orthopae dic Trauma Society ⁸	>1	SF-6D	52	0.86	Brazier et al. ⁴²	+	+	+	0.81

COPYRIGHT © BY THE JOURNAL OF BONE AND JOINT SURGERY, INCORPORATED LIU ET AL. COST-EFFECTIVENESS OF OPERATIVE VERSUS NONOPERATIVE TREATMENT OF DISPLACED MIDSHAFT CLAVICLE FRACTURES. A DECISION ANALYSIS http://dx.doi.org/10.2106/JBJS.17.00786 Page 7

Compiled	<1 yr	133			0.80	
value						
Compiled	>1 yr	467			0.91	
value						1

*MAUS = multi-attribute utility system. Since several studies combined the MAUS score for implant removal and successful operative treatment, we used a correction factor for the health utility of implant removal to correct for this discrepancy. †CLAD = censored least absolute deviations. ‡The study had separate health utility values for implant removal and successful operative treatment.

COPYRIGHT © BY THE JOURNAL OF BONE AND JOINT SURGERY, INCORPORATED LIU ET AL. COST-EFFECTIVENESS OF OPERATIVE VERSUS NONOPERATIVE TREATMENT OF DISPLACED MIDSHAFT CLAVICLE FRACTURES. A DECISION ANALYSIS http://dx.doi.org/10.2106/JBJS.17.00786 Page 8 TABLE E-6 Societal Costs of Nonoperative and Delayed Operative Treatment

	Nonop. Treatment		Nonop. Treatment Delayed Operative Treatm		Freatment	Nonop. and Delayed ()p. Treatment	
					Avg. No. of			
Median Weekly Income		Avg. No. of			Work		Combined	Total Societal
per Bureau of Labor	Fracture	Work Weeks	% of	Health-	Weeks	Combined Health-	Loss of	Cost of Nonop.
Statistics	Billing	Missed	Patients	Care Costs	Missed	Care Costs	Wages	Treatment
\$849	\$227	12.2	9.3	\$9,414	10.2	\$1,229	\$11,147	\$12,377

IS EARLY OP. TREATMENT OF DISPLACED MIDSHAFT CLAVICLE FRACTURES WORTH IT? USING DECISION ANALYTICS TO FIND THE MOST COST-EFFECTIVE STRATEGY BETWEEN OP. AND NONOP. TREATMENT http://dx.doi.org/10.2106/JBJS.17.00786

Page 9

Table E-7 Societal Costs of Operative Treatment

			Combined	
			Loss of Wages	
	Avg. No. of		with Op.	
Health-Care Costs of	Work Weeks	Median Weekly	Treatment and	
Op. Treatment and	Missed with	Salary per	Complications	Total Societal
Complications from Op.	Op.	Bureau of	from Op.	Cost of Op.
Treatment	Treatment	Labor Statistics	Treatment	Treatment
\$8,568	10.2	\$849	\$8,852	\$17,420