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Part 1 - Principal Component Analysis (PCA) for Physical Function 
 

To obtain an estimate of participants’ baseline physical function, the following variables 
were entered into a principal component analysis (PCA): off-medication MDS-UPDRS scores, 
mean self-selected gait speed, mean fast gait speed, mean 4SST time, and mean mini-BEST 
score. Visual inspection of a “scree” plot showed one principal component with an Eigenvalue 
>1. Referred to as PC1, this principal component had a total Eigenvalue of 2.93, explaining 
58.59% of the initial variance (the other Eigenvalues were, PC2 = 0.78, PC3 = 0.69, PC4 = 0.43, 
PC5 = 0.17). The component matrix showed that mean fast gait speed positively loaded on PC1 
(r = 0.89), as did mean self-selected gait speed (r = 0.87) and mean mini-BEST scores (r = 0.67); 
off-medication MDS-UPDRS scores (r = -0.70) and mean 4SST negatively loaded on PC1 (r = -
0.66).  As such, the latent variable of PC1 appears to be a reliable measure of physical function, 
with more positive PC1 values indicating better physical functioning across a range of scales. 
The inter-relationships among the constituent measures, and their relationship to physical 
function is shown in Figure S3-1.   

We conducted regression analyses to examine the effects of PC1 on response times at 
Retention 1 and Retention 2, in order to check the validity of the relationship between PC1 and 
the SRTT. Among the included participants (repeating n=23, random n=19), for both random 
and repeating sequences, less impaired participants (higher PC1 scores) showed significantly 
faster response times on both retention tests and the pretest. In sum, PC1 appears to be a valid 
measure of physical function (given the number of measures of physical function that load on 
this factor) and the SRTT is sensitive to individual differences in physical function (given the 
relationship between SRTT performance and PC1 scores).  

 

 

Figure S3-1. Correlation matrix showing the relationship between all of the constituent 
measures and the first principal component, PC1. The off-left diagonal shows the 95% 
confidence ellipse and the off-right diagonal shows the correlation coefficient (Pearson’s r) for 
each bivariate comparison. Mini-BEST: Mini Balance Evaluation Systems Test. 4SST: Four Square 
Step Test. Self-paced speed and fast-paced speed refer to gait speeds, respectively. UPDRS: 
Movement Disorders Society sponsored version of the Unified Parkinson Disease Rating Scale 
(referred to in the manuscript as MDS-UPDRS). 
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Part 2 - Explanation of Exponential Curve-Fitting Procedures 

Three parameter exponential curves were fit using the dose-response analysis package 
of Ritz, Baty, Streibig, & Gerhard (2015), specifically the “drm()” function. Parameters in the 
function are estimated based on the minimization of the negative log-likelihood. Models were 
fit separately for the random and repeating sequences, with average response time as a 
function of total trial number (across all days). This excluded the first block of trials (trials 1-6) 
which were considered pretest performance for each participant. Thus, trial numbers ran from 
7-108.     
 
Data Exclusions 

To understand the reasons for our exclusions, it is helpful to understand how the 
exponential decay parameters relate to one another. The typical skill acquisition pattern of 
rapid performance improvement during early practice followed by eventual stable 
performance, is shown in Figure 1C of the manuscript, and is reliably modelled by a negative 
decay constant, R (also referred to as the acquisition rate parameter in the manuscript), and a 
positive change constant, C. In this typical case, the negative sign of the decay constant, R, is 
correctly interpreted as exponential decay; however, if the sign of the change constant, C, is 
switched from positive to negative, then the same negative decay constant, R, should then be 
interpreted as exponential growth (the resultant curve can be visualized by inverting Figure 1C’s 
curve over a horizontal axis). Therefore, the correct interpretation of the decay constant, R, 
depends on the sign of the change constant, C. 

For the exponential curves, the model failed to converge for one participant’s random-
sequence curve, and another participant’s decay parameter was an extreme outlier (with a 
value of essentially zero, it was >25 standard deviations different from the other scores). As 
such, both participants were excluded from the random sequence analyses. Furthermore, 
exponential curves actually showed negative change for 4 participants’ performance on 
repeating trials and 6 participants’ performance on random trials. Because the interpretation of 
the decay constant, R, depends on the sign of the change constant, C, we excluded these 
participants from the mixed-effects regressions so that all analyses focused on participants who 
improved over time. Importantly, these exclusions also make our analyses more similar to past 
work by Wadden et al.1 Interestingly, Wadden et al. did not report any exclusions or 
adjustments to their decay/change constants, suggesting that all participants reliably improved 
over time in that study. It is not clear exactly why our change curves would differ from Wadden 
et al., but our sample was drawn from a different population (PD versus stroke) and our task 
had different demands (a lower extremity standing postural stepping serial reaction time task 
versus a seated upper extremity continuous tracking task). Therefore, multiple factors (e.g., 
task difficulty, “fatigue,” and a different patient population with different impairments) could 
contribute to these different skill acquisition patterns. However, in order to make the 
interpretation of our decay constants comparable to Wadden et al., we decided to exclude 
participants whose performance worsened during practice.  
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Part 3 - Mixed-Effects Regression Models 
 

 We tested a series of mixed-effects regression models, separately, for both the 
repeating sequence and random sequences. Models were compared based on the Akaike’s 
Information Criterion (AIC) with an a priori threshold of a two-point reduction of the AIC. In the 
event that two models fell within the two-point threshold, the simpler model was chosen as the 
better explanation of the data. The dependent variable for all models was the difference 
between pretest performance and performance on retention tests. This difference score was 
chosen to represent learning given the high correlation between pretest and retention tests 
(rrand = 0.84, rrepeat = 0.87), and the correlation between pretest performance and PC1 (rrand = 
0.68, rrepeat = 0.67). This multicollinearity meant that pretest performance and PC1 could not be 
included as predictors in the same model; thus the difference score approach was preferable. 
Details of the fixed-effects and random-effects for each of the models are presented below: 
 

• Model 01:  Random-effect of subject. Fixed-effect of retention test (Retention 1 versus 
Retention 2).  

• Model 02: Random-effect of subject. Fixed-effects of retention test and PC1.  
• Model 03: Random-effect of subject. Fixed-effects of retention test, PC1, and decay rate 

(R).  
• Model 04: Random-effect of subject. Fixed-effects of retention test, PC1, decay rate (R), 

and medication status (ON medication versus OFF).  
• Model 05: Random-effect of subject. Fixed-effects of retention test, PC1, decay rate (R), 

and all two-way and three-way interactions.  
 

All variables were either contrast-coded (if categorical) or mean-centred (if continuous) prior to 
analysis. As such, the intercept represents the average amount of learning (i.e., the change 
from pretest to retention tests) and a statistically significant positive intercept indicates 
significant learning (see Table 2 in the manuscript). Model fit statistics for the repeating 
sequence are shown in Table S3-2 and model fit statistics for the random sequences are shown 
in Table S3-3.  All models were fit using maximum-likelihood estimation.  
 
Table S3-2. Model fit statistics for the repeating sequence.  

Model Deviance AIC df RanEff SD Residual SD 
M01 -102.31 -94.31 4 0.096 0.044 
M02 -104.84 -94.84 5 0.090 0.044 
M03* -108.70 -96.98 6 0.082 0.044 
M04 -109.96 -95.96 7 0.079 0.044 
M05 -115.43 -95.43 10 0.082 0.039 

The asterisk (*) denotes the best fitting model based on the change in the AIC. “RanEff SD” is 
the standard deviation for the random effect of subject. “Residual SD” is the standard deviation 
of the model’s residuals (i.e., random errors).  
 
 



S5 
 

Table S3-3. Model fit statistics for the random sequences.  
Model Deviance AIC df RanEff SD Residual SD 
M01 -97.87 -89.87 4 0.100 0.031 
M02 -100.37 -90.37 5 0.093 0.031 
M03 -102.00 -90.00 6 0.089 0.031 
M04* -106.51 -92.51 7 0.079 0.031 
M05 -103.70 -83.70 10 0.089 0.030 

The asterisk (*) denotes the best fitting model based on the change in the AIC. “RanEff SD” is 
the standard deviation for the random effect of subject. “Residual SD” is the standard deviation 
of the model’s residuals (i.e., random errors).  
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