Supplementary Material
Data Analysis and Prediction Model Construction Using Rule Learner

Rule Learner (RL) is a classification rule-learning algorithmS1-S4 that learns propositional IF-THEN rules.   RL has several advantages over other rule and decision tree learners. First, its simplicity and flexibility allow the user to select learning parameters for its search, thereby utilizing extant knowledge. Second, RL covers data with replacement, unlike most rule and decision tree learners, such as C4.5S5 and CART,S6 which cover data without replacement. Covering training data with replacement is an advantage if data are scarce since there are more data available to provide statistical support for newly discovered rules. We have observed this in previous studies wherein RL was more accurate than C4.5S5 when analyzing sparse genomic and proteomic datasets. Third, RL can handle hierarchical variables (such as cancer and its subtypes) and hierarchical values for variables (such as a hierarchy of numerical ranges of values). Fourth, our rule learning toolkit allows the use of RL’s models such that the classifier can be agnostic and give no prediction of class value to a test case. This is an implicit way of avoiding costly errors. RL also has an explicit way to handle classification errors, allowing the user to specify their relative costs.

An overview of our modeling approach is shown in Supplemental Figure 1 Panel A. There are three main components in the rule learning toolkit (which contains executable java programs): (a) Efficient Bayesian Discretization (EBD), (b) Rule Learner (RL), and (c) Inference Engine (IE). RL requires variables with discrete values – hence, we needed value ranges for each marker. We used a new supervised discretization method called Efficient Bayesian Discretization (EBD) that we developed in-house for transforming continuous data to discrete.S7  EBD uses a Bayesian score to discover the appropriate discretization for a continuously valued variable and runs efficiently on high-dimensional biomedical datasets.  EBD had statistically significantly better performance than other commonly used methods for discretizationS8 and is embedded as a pre-processing option within RL. We specified EBD as the discretization method for RL. Since EBD is a supervised method that uses class information, we discretize each variable using the training/learning dataset and apply the derived discretization to the test/validation dataset. EBD can produce one, two, or more ranges of values for a marker. Markers with just one discretized value range are highly unlikely to be discriminative of the target class values, and can be automatically removed prior to RL analysis within the toolkit.
RLS1-S4 is a supervised machine-learning algorithm that searches the space of possible models by considering biomarkers one at a time first, followed by their combinations as being good discriminators for lung cancer based on the training dataset.  The rules learned by RL do not partition the input space as, for example, is done by the classification and regression trees (CART) method;S6 instead they cover overlapping regions in the input space.S8 The classification rule model consists of a set of IF-antecedent-THEN-consequent rules, where the antecedent (left-hand-side) of the rule contains a conjunction of biomarkers (marker-value pairs), and the consequent (right-hand-side) contains the value of the target class (Case or Control). Each rule has statistics associated with it as shown in the example below:  

IF (SERPINE1 > 1803) AND (MIF ≤ 37.2) THEN (Class = Control)

CF = 0.952, Train TP = 39, Train FP = 2, Test TP = 43, Test FP = 1

The above rule indicates that when SERPINE1 is upregulated (level > 1803) and MIF is downregulated (level ≤ 37.2), then the target class is Control in 39 of 41 samples for which this rule applied (that is, matched the antecedent – also known as coverage of the rule) in the training set (Train). Applying this rule to the sample data in the test set (Test), this rule was applied to 44 samples, of which 43 were correctly classified. TP refers to the true positives and FP to the false positives covered by the rule in both the training and test datasets. CF refers to the certainty factor of the rule, which represents the degree of confidence in the rule based on the training data. RL contains several mathematical functions such as the accuracy (% correct predictions out of total predictions) and the positive predictive value (PPV), which are used to calculate the CF of a rule. RL automatically determines the best CF function for a rule model based on performance of each metric over 5-fold cross-validation. Once the best CF function is chosen, it is used for determining the CF value for each rule in the model. During inference, the CF value of each applicable rule is utilized for weighted voting to determine class value for a test case. We can also manually set the CF function to one of the available options for learning and inference within the RL toolkit. For the model in this analysis, the CF chosen and applied by RL is shown below:

CF = (TP + 0.05) / (TP + FP)     if TP > FP,

         (TP - 0.05) / (TP + FP)      if TP < FP,

         TP / (TP + FP)                  otherwise

To construct these rules, RL starts by considering all single markers as possible predictors of the class variable, and creates two rules for each value range of the marker – one rule that predicts Case, and one rule that predicts Control. All the rules are ordered according to their certainty factor and coverage, and placed on a memory structure called the beam. The width of this structure controls the space of rules that are explored during the search for a robust model that explains the training data. By default, one thousand rules are stored for further expansion by addition of markers to the antecedent. Another parameter that controls the search space of possible rules is the total number of markers that are allowed to interact as part of the same rule antecedent – we refer to this as the maximum number of conjuncts in a rule. The default is five. RL successively adds conjuncts (biomarker-value pairs) to each rule that is good (as specified by user, for example, minimum CF = 0.85) until any of the constraints are violated, such as maximum number of conjuncts, minimum CF, or minimum coverage.  Ultimately, all rules that pass all user-specified constraints in the order that they were learned are presented as the final rule model. The algorithm proceeds as a heuristic beam search through the space of rules. An example using two measured markers (MIF and SERPINE1, each having two discrete ranges of values as determined by EBD – see Supplemental Figure 1 Panel B) is shown in Supplemental Figure 1 Panel C. Initially, there are eight rules that are placed on the beam after evaluation on the training dataset, and ordered according to their certainty factors. Then, in the next step of the search, pairs of interacting conjuncts are evaluated. If there were more marker-value pairs, then the search would proceed to examine the addition of more conjuncts to each promising rule antecedent. In this example, since there are only two binary-valued markers, the search ends rapidly with two final rules output by RL. These classification rules satisfy user-specified preferences for certainty and coverage. This example shows how RL searches through the space of possible rules (in this case, 8 single conjunct rules and 8 two conjunct rules, which represent all possible combinations of marker-value pairs for each target class value). As more markers and their measurements are added, the search space grows very fast, and the space of models that are explored will be prioritized based on the CF and trimmed down by RL’s beam width parameter, as only the most promising rules are added onto the beam. While a rule’s certainty might increase by adding a conjunct to its antecedent, its coverage of samples in the training data is likely to decrease. When the coverage for a rule drops below a user-specified threshold upon adding any new conjunct, then it is placed onto a final list (set) of rules in the order of its CF. The search continues with the remaining rules on the beam to which conjuncts can still be added without violating any of the user-specified constraints. The search terminates when there are no more such rules to be examined further. 

The Inference Engine (IE) module shown in Supplemental Figure 1 Panel A performs evidence gathering based on the final set of classification rules that are learned from the training data and applies this model to infer the class value for unseen test cases. RL can automatically pick the inference method that works best over cross-validation on the training dataset (see description in next paragraph below). Typically, either the highest CF rule is applied for predicting the class value for a test case, or weighted voting is applied, wherein each predicted class value is weighted by the CF of the rule used for prediction, and the class value with the largest weight is chosen. If none of the rules can be applied to the test case, then RL will abstain from predicting (No Prediction). RL can automatically search its space of most parameters (some have default values) to find an optimal set to apply as constraints for building the rule model. This ability is called bias-space search, and it employs a cross-validation method to find a set of parameters that can yield generalizable models. The user can specify how many folds to use (n), and the training dataset will then be split into n folds with an effort to maintain the distribution of cases and controls in each subset as close to that in the entire training dataset. A random number generator is used to reshuffle the dataset. The default n for cross-validation using automatic bias space search is 5. In n-fold cross-validation, each fold is treated as a validation dataset, and is excluded from learning and instead used for testing the learned model. Hence, the performance metrics obtained from the n-folds reflect a conservative estimate of the classification performance on the training dataset and is more likely to be representative of the performance on real test data. 

We first ran RL with automatic bias-space search on the entire training dataset, using the standard 10-fold cross-validation. In this mode, for each external fold, RL performs an internal 5-fold cross-validation to learn the best bias parameters to apply. Discretization is performed on each fold separately. This is the mode that we typically use in the absence of a test set. Since we had a test set available, we manually ran RL with different internal cross-validation settings and discovered that with 20-fold cross-validation on this training dataset, we were able to find a set of parameters for RL that resulted in a model that met the requisite classification performance threshold, i.e. ~80% BACC, on the training dataset. We then applied this model to predict the class value (Case or Control) for the test samples. Inference on each test sample was performed by weighted voting of all rules whose antecedents matched the corresponding marker values in the test sample. The CF was used to weight each rule that applies by a simple summation of CF. The class value with the largest CF sum was then chosen as the final prediction from the model. As a final check of the derived model, we applied the basic SVM, with linear kernel, available in WEKA to the entire training data, as well as the RL-derived 10-biomarker panel to estimate the AuROC.
In order to ensure that the biomarkers selected above were truly discriminative, we utilized Support Vector Machines (SVMs)S10 to learn models from the entire set of biomarkers, and from just the 8 or 10 biomarkers obtained from RL. Classification models were learned using linear SVMs implemented in the WEKA machine learning toolkit.S11  When the entire set of 70 markers was used to learn an SVM classifier from the training dataset, which was then applied to the test dataset, a SN of 80.0%, specificity of 83.1% and AuROC of 81.6% was achieved. When only the 8 biomarkers were used for learning from the training data, a SN of 70.0%, SP of 89.2%, and AuROC of 79.6% were achieved on the test data. This result shows that the 8 biomarkers represent the bulk of the discriminative power in the training dataset. Moreover, the model obtained from RL is clearly more sensitive toward cancer detection than the SVM approach.
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Supplementary Figure 1. Panel A. Overview of Rule Learning Toolkit containing three main components: Efficient Bayesian Discretization (EBD), Rule Learner (RL) and Inference Engine (IE). Panel B. Example of EBD discretized values for two markers MIF and SERPINE1. Each marker has two ranges of values that we interpret as UP and DOWN for simplicity. Panel C. An example of RL’s Heuristic Beam Search with the two binary-valued markers and two class values. 
[image: image2.png]F (THBS1 > 3000) THEN (Class = Controf)
CF=1.00, CF/cost=1.00, P=0.0, TP=30, FP=0
. IF (CYFRA 21.1 value is between 20.4 and 95) THEN (Class = Cancer)
CF=1.00, CF/cost=1.00, P=0.0, TP=13, FP=0
. IF (SAA > 12600) THEN (Class = Cancer)
CF=0.955, CF/cost=0.955, P=0.0, TP=10, FP=1
. IF (MIF > 66) THEN (Class = Cancer)
CF=0.888, CF/cost=0.888, P=0.0, TP=37,
. IF (PRL > 544) THEN (Class = Cancer)
CF=0.887, CF/cost=0.887, P=0.0, TP=22, F
. IF (CCL5 = 2230) THEN (Class = Cancer)
CF=0.877, CF/cost=0.877, P=0.0, TP=20, FP:
F (ErbB2 = 2920) AND (TTR = 11,200) THEN (Class = Cancer)
CF=0.968, CF/cost=0.968, P=0.0, TP=14, FP:
. IF (ErbB2 = 2920) AND (SERPINE1 = 2,020) THEN (Class = Cancer)
CF=0.890, CF/cost=0.890, P=0.0, TP=19, FP=5
. IF (SERPINE1 > 2020) AND (MIF = 66) THEN (Class = Controf)
CF=0.887, CF/cost=0.887, P=0.0, TP=84, FP=5
10. IF (SERPINE1 = 2020) AND (TTR < 11200) THEN (Class = Cancer)
CF=0.880, CF/cost=0.880, P=0.0, TP=24, FP=7
11. IF (SELE > 29.1) AND (MIF = 66) AND (PRL < 544) THEN (Class = Controf)
CF=0.896, CF/cost=0.896, P=0.0, TP=55, FP=3
12. IF (ErbB2 > 2920) AND (MIF = 66) AND (TTR > 11200) THEN (Class = Controf)





Supplementary Figure 2.  10-Biomarker Panel of Rules
Supplementary Table. Individual 10-Biomarker Classification Performance
	Biomarker (Statistics)
	Training Set
	Test Set

	
	Cases
	Controls
	Cases
	Controls

	PRL                  Range (Min, Max) 

                 Median

                 Mean

p-value* 
	(75.2, 4450)
229

453


	(68.2, 468)
193

207


	(294, 1530)
706

771


	(73.8, 1170)
180

222



	
	0.0139, 0.0989
	<0.0001,  <0.0001

	TTR                              (Min, Max) 

                 Median

                 Mean

                              p-value*
	(5830, 14400)

10200
10300

	(7800, 15000)

11600
11700

	(6240, 12900)

10300
10400


	(7840, 15200)

11700
11800



	
	<0.0001, <0.0001
	0.0066, 0.0601

	THBS1                        (Min, Max) 

                 Median                                       Mean

                              p-value*
	(937, 2470)

1931.85

1830

	(779, 2660)

2130
2090

	(1280, 2420)

1980
1970


	(1220, 2950)

2240
2150


	
	0.0025, 0.0005
	0.159, 0.1416

	SELE                            (Min,Max)
                 Median                                     Mean

                                         p-value*
	(5.5, 43.9)

17.6
18.6


	(0.3, 126)

21.7

27.4

	(7.4, 30)

19.7

18.8


	(5.3, 191)

25.8

30.1


	
	0.0078, 0.0121
	0.1533, 0.0643

	CCL5                            (Min,Max) 

                 Median                                    Mean

                              p-value*
	(644, 4220)

3011.05

2779.39 

	(1210, 4620)

3450
3330


	(728, 3990)

3370
3010

	(1960, 4720)

3520.
3470


	
	0.0006, 0.0047
	0.0326, 0.3125

	MIF                              (Min,Max) 

                 Median

                                             Mean

                                         p-value*
	(15.5, 503.5)

64.1

97.19


	(8, 84.1)

23

28.0

	(25.8, 126)

65.2
68.9


	(6.4, 378)

24

34.3


	
	<0.0001, <0.0001
	0.0166, 0.0001

	SERPINE1                  (Min, Max) 

                 Median                                    Mean

                                         p-value*
	(650, 3930)

1655.93

1871.96 


	(648, 3600)

2300
2290


	(1630, 3670)

1970
2110


	(838, 5270)

2160
2340



	
	0.0063, 0.0005
	0.4433, 0.4533

	ERBB2                        (Min, Max) 

                 Median

                                  Mean

                 p-value*
	(248, 6680)

2820.33

2941.95


	(440, 8010)

3360
3400


	(2250, 4440)

3410
3230

	(952, 14200)

3310
3590



	
	0.0422, 0.0147
	0.4857, 0.4839

	CYFRA 21.1               (Min, Max) 

                 Median

                                  Mean

 p-value*
	(9.2, 87.7)

15.1

20.42

	(10.2, 538)

13.8
27.2


	(12.1, 97.5)

14.7

26.3

	(10.2, 182)

14

16.4


	
	0.493, 0.0022
	0.130, 0.0488

	SAA                             (Min, Max) 

                 Median

                                  Mean
              p-value*
	(42.7, 22000)

754
3879.74

	(34.3, 23400)

385
1400


	(149, 13600)

760
2460

	(22.7, 6690)

308

932



	
	0.0203, 0.0385
	0.0171, 0.091


*The two-tailed p-values for the t-test (parametric) and the Mann-Whitney test (non-parametric), respectively, are indicated. All p-values <0.05 are in bold font. The t-test for the training set data was performed for correlated (matched) samples. For the test set data, the samples were treated as independent. All statistics were obtained from VassarStats website for statistical computation (http://faculty.vassar.edu/lowry/VassarStats.html). The units for the data values shown is FI (Fluorescence Intensity).
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