Non-invasive Characterization of the Histopathologic Features of Pulmonary Nodules of the Lung Adenocarcinoma Spectrum using Computer Aided Nodule Assessment and Risk Yield (CANARY) – a Pilot Study

Supplemental Information

1. Texture Feature extraction

1.1 Training set generation 

High resolution CT scans from fourteen patients with moderate diffuse pulmonary lung disease was selected from the Lung Tissue Research Consortium repository to create a training set of 976 regions of Interest (ROI). The ROIs were selected through consensus of four expert radiologists such that more than 70% of the region spanning 15x15x15 voxels of ROIs belong to one of the primal lung parenchymal CT patterns- normal, emphysema, ground glass, reticular and honey comb. Based on this criterion 80, 150, 187, 265 and 294 ROIs were selected to represent emphysema, ground glass, honey comb, normal and reticular forms respectively. Figure 1 shows representative examples of the ROIs.

1.2 Visualization of ROI similarities

Quantitative discriminability of a number of pairwise similarity metrics based on the ROI histograms was examined using Multi-dimensional scaling (MDS) [1].  Parametric and non-parametric similarity metrics supported in Analyze software version 10.0 (Mayo Clinic, Rochester) were used in this exercise. Parametric metrics included first and second order statistics and measures of effectiveness such as Fechner-Weber contrast measure, target-reference inference ratio, Fisher distance, correlation coefficient, scale invariant normalized mean square error and normalized mutual information.  Non-parametric similarity metrics were based on histogram distances such as Manhattan, Euclidean, Bhattacharya, Kolmogrov-Smirnoff and Cramer Von Mises Distance (CVM), chi squared distance, Kullback-Liebler divergence, Jeffrey divergence, and histogram intersection [2]. Of all the metrics, MDS representation of CVM (the squared L2-metric between cumulative density functions) was found to be most consistent with the expert groupings and, consequently, was chosen as the similarity metric in the automated classification. Figure 2 shows the axis1-axis2 (1-2) and 2-3 MDS projections for CVM, revealing the natural orderliness with which the metric projects the ROIs to align with expert consensus. The honeycomb and groundglass features overlapping in the 1-2 projection are sufficiently separated in the 2-3 projection.

1.3 Assessing separability quality of CVM similarity metric

Having visually established the statistical equivalence of CVM and expert groupings, quantitative equivalence was evaluated using automatic clustering of CVM similarities and hence the underlying ROIs into natural clusters. To create an unbiased stratification of ROIs into natural clusters, affinity propagation [3] was used. Affinity propagation uses message passing to iteratively find clusters given pair-wise similarities of n-dimensional data. In addition to resolving the clusters, it identifies the exemplar that is most ‘central’ to each of the clusters. Clustering based on affinity propagation yielded ten natural clusters. The primal type of each cluster was identified as the primal type of its exemplar. The number of clusters computed was 1, 2, 2, 2, and 3 respectively for emphysema, ground glass, honey combing, normal and reticular.The natural clusters and the groupings were highly correlated to the consensus groupings of experts as shown in the confusion matrix in Table 1. Figure 3 shows mean intra cluster and inter exemplar CVM values for this clustering.

1.4 Identification of exemplar ROIs

The ROIs belonging to each of the primal forms were clustered independently using affinity propagation to obtain the respective class specific exemplars. A total of 34 exemplars spanning across the landscapes of emphysema (exemplars E_emph= 5), ground glass (E_groundglass = 5), honey combing (E_honeycombing = 6), normal (E_normal = 9), and reticular (E_reticular = 9). These exempars were collectively used subsequently as reference VOIs to identify the label that best matches with the 15x15x15 neighborhood centered around each of the voxels of the to be classified dataset.

2. Data Processing

2.1 Lung Segmentation

The segmentation of the lungs was achieved using an adaptive density-based morphology approach involving optimal thresholding to identify low density fields in the scans, region growing and void filling [4]. The optimal threshold includes the lung, the air outside the body and other air cavities within the body.  The lungs were isolated through connected component analysis. Three dimensional connected components that touch the edge of the volume is assumed to be air and eliminated. Small connected components that make up for less than one percent of the scan data are also discarded. Three dimensional hole filling was used to fill the lung cavities created by the elimination of normal blood vessels during the thresholding process.

2.2 Airway extraction

The airways of the bronchial tree were automatically segmented by iterative application of increasingly restrictive constraints to a thresholding and 3D region growing process that results in the most complete airway extraction while excluding other low density lung regions such as emphysematous regions, honeycombing or other gas-filled structures such as the stomach or colon. Airway extraction was first attempted utilizing the 1x1x3 neighborhood grey scale minimum, with a threshold of -950 HU and 26 neighbor connectivity. Each axial slice of the result was then checked for the number of 2D connected components. If the number of connected components exceeds 50, the segmentation is assumed to include regions extraneous to airways. In such cases, the segmentation was repeated using more restrictive parameters such as 6 neighborhood connectvity and -960 HU thresholding. 

2.3 Lung Separation

In the event the left and right lung continues to be connected after the above steps, morphological operations are applied to separate the lungs. Using morphological erosion iteratively, layers of edge voxels are removed from the segmented lungs so as to break the connectivity of the lungs. After separating the lungs, the removed edge voxels are reaassigned using conditional dilation. This step assigns the removed edge voxels to the closest lung.

The lung borders are subjected to a final smoothing step using morphological closing with a 23x23x5 elliptical structuring element so as to close the fissures along the mediastinum created by pulmonary arteries and veins.

2.4 Vessel Extraction

Pulmonary vessels were extracted using an optimized multi-scale tubular structure enhancement filter based on the eigenvalues of the Hessian matrix [5]. These filters calculate 2nd-order derivatives within the neighborhood of each of the lung voxel. The eigen values of the Hessian matrix constructed from the derivatives are analyzed to determine the likelihood of the underlying voxel belonging to a tubular structure and hence a vessel. 

2.5 Parenchymal Classification

The local histograms computed from the 15x15x15 neighborhood of each of the parenchymal voxel were compared against the histogram of the 34 exemplars identified in the training phase. CVM similarity measure was used in the comparison and the primal type of the exemplar with the least CVM distance was assigned as the tissue type of the underlying voxel. The number of voxels belonging to each of the tissue types was calculated across the whole lung and the individual lungs. The voxels identifed as vessels were included as normal to account for the total lung volume.
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