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Supplemental Methods 

Pump-probe system and data acquisition 

The pump-probe system (Fig. S1) has been described in detail elsewhere1-3. In short, we integrated a 

commercial laser-scanning microscope (Zeiss, LSM 510) with a custom laser setup that produces two 

ultrafast pulse trains (~125 fs pulses each, with an 80 MHz repetition rate) tuned to 730 nm (pump) and 810 

nm (probe). This wavelength combination produces drastically different transient responses for various 

types of melanins4.  The pump pulse train is amplitude-modulated at 4.5 MHz using an acousto-optic 

modulator (AOM), and the relative time delay between the pump and probe pulses is adjusted using a delay 

stage. Then the two beams are spatially overlapped and sent collinearly to the laser-scanning microscope.  

The pulses are focused onto the sample using a 20X objective (0.8NA) with less than 0.65 mW total power 

to avoid any effects that may alter the melanin pigment chemistry (e.g., photobleaching)4. At the focus, the 

two beams interact with the sample. Then, the pump is then removed from the transmitted light using a 

dichroic filter and the remaining probe light is collected using a photodiode. The nonlinear signal (based on 

transferred modulation from the pump to the probe due to the nonlinear interaction) is detected using a 

custom-built lock-in amplifier with a time constant of ~5 µs. To measure the transient dynamics, we 

acquire multiple images at the same location (420 µm x 420 µm field of view), each with a different pump-

probe time-delay.  A stack of 22 images is collected, with pump-probe time-delays ranging from -1.5 ps 

(i.e., probe precedes the pump) to 3 ps. Acquisition time per stack is ~6 minutes.  A total of 612 pump-

probe stacks were acquired.  



 Quantification of pigment structure 

To quantify the image structure we used a 2-dimensional mathematical autocorrelation transformation: For 

each gray-scale image, we compute a two-dimensional autocorrelation (AC) and compute the 2-

dimensional distribution anisotropy, AC entropy, and estimate of the image signal to noise ratio (used as a 

metric of degree of pigmentation, since the noise is adjusted to a constant level) 1,5. This transformation, 

also known as a morphological autocorrelation transformation, provides insight into the morphological 

covariance, and the parameters derived from it are invariant to translation, scale, and rotation 6. We also 

compute the cross-correlation (XC) between the two gray scale images with biochemical information, and 

extract the same parameters which serve as additional indicators of degree of chemical and spatial 

heterogeneity.  For more details see Refs.1,5.  

 

Statistical analysis 

A total of 30 parameters were extracted for each pump-probe image stack. These include the average and 

standard deviation of θ; mean and standard deviation of the three PCs, normalized by the total signal 

intensity; entropy of the spherical coordinates (R, θ and φ); the variance accounted for by the top 3 PCs of 

each individual image; and the SNR, anisotropy and entropy of the gray-scale images (based on AC and 

XC).   Border areas (e.g., a single 420 µm X 420 µm image containing both normal tissue and melanoma 

regions) were not included in the quantitative analysis that determines the predictive power.   

The following statistical analysis is used to reduce the number of parameters and assess the 

predictive power of the method 1: First, we apply forward sequential feature selection in a wrapper fashion 

(using a nested 10-fold cross validation) 7 with data drawn from individual images to maximize the 

variance of the data. This process reduces the number of parameters from 30 to 7 or 4, depending on the 

specific test (e.g., melanomas vs. non-melanomas, or non-metastatic melanomas vs. metastatic 

melanomas), and allows us to elucidate which image features are the most diagnostically relevant. Finally, 

using the selected parameters, we test the method’s predictive power using the leave one out cross 

validation (LOOCV) method, with each specimen (i.e., all images from a single specimen) treated as the 

test set, and the remaining used for training. Thus, for each iteration, the test set is completely independent 



from the training set. Classification is based on support vector machine learning using a Gaussian radial 

basis function kernel. 

Preliminary statistical analysis  

Using the seven selected parameters, we constructed a confusion matrix which allows us to gain a general 

sense of how well each type of lesion can be differentiated from all of the others (the model is tested using 

10-fold cross validation; Fig S2). Here normal regions were omitted due to the small sample size in this 

category, and all melanomas (in-situ and invasive) were grouped together since both lead to surgical 

treatments. The results show that each lesion can be uniquely identified with high specificity and low false 

negative rates (overall sensitivity and specificity for identifying melanoma is 94% and 79%, respectively). 

The highest false negative rate (FNR = 26%) was between melanotic macules and melanomas, suggesting 

these lesions are the most difficult to identify with these parameters. For comparison, Fig. S2B show the 

confusion matrix of the same data but using a model that is based on only the structural parameters (see 

Fig. 5). The results exhibit much lower sensitivity and higher false negative rates compared to the 

optimized parameters. The overall sensitivity for melanoma was 92% and specificity 27%.  These results 

indicate that the biochemical information is critical for improving the specificity towards disease. 

While the confusion matrix allows us to get a sense of how well the method can differentiate 

between lesion types, the approach is overly optimistic for assessing the overall predictive power, as it 

treats each image as independent. To more accurately estimate the predictive power of pump-probe 

microscopy, we use the leave one out cross validation (LOOCV) method with individual lesions (i.e., all 

images from a patient) used as the test set and all others as the training set. This is described in detail in the 

results section of the main text  

 

Does the fixation process alter the melanin pump-probe signal? 

We conducted several tests to identify any possible changes in the melanin signals resulting from 

processing the samples.  Using black hairs, we tested how leaving the samples in formalin for different 

amounts of time (1, 4, 8, 12, 24 hrs) may alter the signals. Results do not show any significant changes on 

the pump-probe melanin signals (data not shown).  Using pigmented tissue (normal), we compared fixed 

and unfixed samples, which also did not show any differences. We also conducted tests using b16 cells live 



and fixed with different methods of fixation, including formalin, methanol, and ethanol. No significant 

changes were observed. We have also imaged eumelanin derived from a Jurassic cephalopod8.  Results 

show that signals from the fossil are essentially identical to that of eumelanin extracted from its modern-

day counterpart, Sepia officinalis8. These are also similar to signals from human tissue specimens1,3. Thus, 

there is no evidence that either the fixation or storing of the samples alters the melanin pump-probe signals.  

 

 

 

 

 

 

 

 

  



Supplemental Figures: 

 

Figure S1: System schematic and data acquisition. Ti:Sapph: Titanium-Sapphire laser. OPO: Optical 

Parametric Oscillator. AOM: Acousto-Optic Modulator. PD: Photodiode. 	

	

 

 

Figure S2: Confusion matrix using optimized parameters (A) and structural parameters (B) 
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