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eMethods: Imputation and Model selection
Imputation of QoL –related variables: 
Mean imputation is not valid for missing outcomes because it underestimates uncertainty by not accounting for imputed values being estimated rather than known [1]. A descriptive analysis of missing data was undertaken to inform on the best method for handling the missing values in the health benefit side of the trial. The amount of missing data was analysed by trial group and follow-up assessment (Table 1).
Table 1. Number and proportion of individuals with missing data by intervention.
	Missing at week
	SCT (n=99)
	Continuous ART (n=100)

	0
	18 (24%)
	17 (22%)

	24
	7 (9%)
	16 (21%)

	48
	15 (20%)
	26 (33%)


The proportion of individuals with missing data did not present a clear pattern in either trial arm and, after week 0, the amount of missing values was considerably higher for continuous ART. Both results indicated that the mechanism was unlikely to be missing completely at random (MCAR). The pattern of missing data was also analysed (Table 2).
Table 2. Pattern of missing data.
	
	Pattern

	Frequency
	Baseline utility
	Utility at week 24
	Utility at week 48

	89
	1
	1
	1

	18
	1
	0
	1

	13
	0
	1
	0

	13
	1
	1
	0

	9
	1
	0
	0

	6
	0
	0
	0

	2
	0
	0
	1

	2
	0
	1
	1

	Total: 152
	
	
	


As previously identified, missing data was non-monotonic as individuals missing at one follow-up could return to the trial in future follow-ups. Given the uneven patterns, the missing data was modelled in individual components of the total QALYs (by week) instead of directly imputing total QALYs. 
The association between the missingness and baseline covariates was also analysed. For utility at 48 weeks, the missing values were related to the treatment. This information supported the assumption of covariate dependent missing at random (CD-MAR) or missing at random (MAR) [1]. An association between missingness and previously observed outcomes was also analysed, and showed that for utility at 24 weeks, the total cost at 6 months was related with the missing values. The significant association indicated that our data was likely MAR [1]. The logistic regression results for these analyses are given in Table 3-4.
Table 3. Logistic regression results for missingness in terms of baseline covariates.
	
	Odds ratio in logistic regression (95% Confidence Intervals)

	Response Variable
	Missing data 
at week 0
	Missing data 
at week 24
	Missing data 
at week 48

	Age group (13-18 years)
	2.18 
(0.98-4.85)
	1.23
(0.40-3.77)
	0.61
(0.23-1.65)

	Age group (19-25 years)
	7.25 
(0.88-59.60)
	1
(omitted)
	1.11
(0.20- 6.24)

	Treatment indicator
	0.80 
(0.37-1.74)
	2.80
(0.82-9.53)
	3.11
(1.17- 8.22)

	Female
	1.24 
(0.57-2.71)
	1.21
(0.40-3.69)
	0.65
(0.026-1.63)

	Baseline EQ-5D
	Not included
	0.04
(0-1097.8)
	6.29
(0.01-3861.22)

	N
	152
	103
	117



Table 4. Logistic regression results for missingness in terms of previous outcomes.
	
	Odds ratio in logistic regression (95% Confidence Intervals)

	Response Variable
	Missing data 
at week 24
	Missing data 
at week 48

	Baseline utility
	0.005
(0-336.80)
	0.82
(0-16463.31)

	Utility at week 24
	Not included
	58.68
(0.08-44695.42)

	Total costs at 6 months
	.9995
(.9992-.9998)
	0.9995
(0.996-1.003)

	Total costs at one year
	Not included
	1.000602 
(.998 -1.004)

	N
	117
	102


Under the non-monotonic MAR assumption with multiple follow-ups, the optimal technique for imputing missing values is Multiple Imputation (MI) [1] where each missing value is replaced with a set of predictions obtained using all the covariates that may be associated with the missingness [2]. This method effectively recognizes the uncertainty associated with the missing values and the estimated parameters in the imputation model [1]. Although MI allows for the efficient estimation of missing values, the existence of hierarchical structure must not only be reflected in the main model, but also in the multiple imputation process.  In order to be able to reflect the two-level structure of the data the software Realcom was used [3]. To ensure enough degrees of freedom for the imputation regression, a two-level (patient and site) random effects model together with country fixed effects was used enabling country-level heterogeneity to be controlled for despite the small sample size. 
All missing utility values were predicted in terms of gender, age group and total cost at 6 months. Baseline utility was not included as it is one of the response variables in the multivariate imputation model.  The regressions are expressed as:





, where  includes the patient-level covariates, together with the country dummies. 
30 imputed datasets were generated, and the results were combined using Rubin’s rule to generate an overall estimate and standard error [1]. 
Validation of MI:
As shown in Figure 1, the distributions of the observed data were similar to those estimated for the imputed data sets, suggesting that the imputation mechanism properly reflects the original data. Due to the large number of imputation series’ only a sample of the datasets are presented. The main difference between the distributions was the existence of some values over 1 for some imputed datasets. This was observed due to the inability to specify a truncated regression in Realcom, which could limit the values of EQ-5D between 0 and 1. 
Figure 1. Multiple imputation graphic validation.
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Model selection
The trial data exhibit a three-level structure, with patients nested into sites nested into countries, i.e. hierarchical data. Failure to acknowledge such clustering risks misleading conclusions in terms of the generalisability of the results [4]–[6].  
A stepwise procedure to identify the model best representing the data was implemented. First, a non-hierarchical model was estimated and used to select statistically significant patient level covariates. Then, a two-level random intercepts specification was introduced. Despite the three-level structure of the data, given the limited amount of data and the risk of non-convergence in the relevant parameters, only two-levels of interest were specified: country and patients. If found necessary, country-specific covariates would be included to explain the between-country heterogeneity. Furthermore, given interest in country-specific estimates, the complexity of the hierarchical model was further increased by estimating a two-level random coefficients model with patient and country level covariates. 
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