PRISMA Flow Diagram

Articles identified through electronic database searching

$$
(\mathrm{N}=2671)
$$

Additional articles identified

 through a manual search$$
(N=5)
$$

Studies were excluded, due to:
($N=136$) Letters, reviews, meta-analysis ($\mathrm{N}=286$) Not human studies ($\mathrm{N}=186$) Not English studies

Studies included in qualitative synthesis

$$
(\mathrm{N}=15)
$$

Studies included in
quantitative synthesis (meta-analysis)

$$
(N=13)
$$

Sensitivity

Study $\quad P-v$ alue B vs A direct
indirect 0.98875 network
F vs A
direct
indirect 0.99125
network
C vs B
direct
indirect 0.7625
network
E vs B
direct
indirect 0.9375 network

Odds Ratio (95\% CrI)
1.9 (0.11, 29.)
1.8 (0.0010, 3.5e+03)
$1.4(0.24,9.5)$
$1.8(0.18,16$.
2. $(0.0034,1.1 e+03)$
$2.0(0.30,11$.
$4.4(0.24,72$.
1.5 (0.00012, 9.5e+03)
3.3 (0.50, 24.)
0.16 (0.0030, 9.4)
0.18 (0.0012, 26.)
$0.20(0.0098,3.3)$

Study $\quad \mathrm{P}-\mathrm{v}$ alue Odds Ratio (95\% Crl)
F vs D
direct
indirect 0.28875 network
F vs E
direct
indirect 0.98125
network

Specificity

Study P-value
B vs A direct
indirect 0.16
network
F vs A
direct
indirect 0.1025
network
C vs B
direct
indirect 0.1375
network
E vs B
direct
indirect 0.165 network
$2.99999999999998 \mathrm{e}-65 \quad 1 \quad 4.00000000000002 \mathrm{e}+49$

Study P-value
F vs D
direct
indirect 0.04375 network

F vs E
direct
indirect 0.1025
network
$2.99999999999998 \mathrm{e}-65 \quad 1 \quad 4.00000000000002 \mathrm{e}+49$

Study P -value
Odds Ratio (95\% CrI)
B vs A
direct
indirect 0.16375 network

F vs A
direct
indirect 0.10125
network
C vs B
direct
indirect 0.115
network
E vs B
direct
indirect 0.10375 network
$1.6(0.100,12$.
$1.8 \mathrm{e}-05(4.8 \mathrm{e}-21,13$.
$1.4(0.100,8$.
$1.9(0.31,11$.
$1.7 \mathrm{e}+06(0.37,3.7 \mathrm{e}+21)$
$2.2(0.43,13$.
$1.4(0.14,13$.
$1.2(0.18,14$.
$1.3 \mathrm{e}-07(0.019,3.5)$
$0.22(0.014,2.2)$
$1.7 \mathrm{e}+06$ (0.37, 3.7e+21)
$2.2(0.43,13$.
1.1 (0.14, 13.)
$1.4 \mathrm{e}+06(0.15,1.3 \mathrm{e}+18)$
1.2 (0.18, 14.)
$3.99999999999999 \mathrm{e}+23$

Study P -value
F vs D
direct
indirect 0.15375 network

F vs E
direct
indirect 0.13875
network

Odds Ratio (95\% Crl)
0.36 (0.014, 14.)
$2.1 \mathrm{e}-07$ (2.3e-20, 2.2)
0.37 (0.033, 5.6)

$$
\begin{aligned}
& 1.2 \mathrm{e}+07(1.3,3.2 \mathrm{e}+23) \\
& 3.3(0.079,2.2 \mathrm{e}+02) \\
& 7.1(0.42,5.0 \mathrm{e}+02)
\end{aligned}
$$

$9.99999999999997 \mathrm{e}-2613.99999999999999 \mathrm{e}+23$
Study
B vs A
direct
indirect
network O.67875

Accuracy

Study P -value B vs A direct indirect 0.8125 network
F vs A direct
indirect 0.8325 network

C vs B
direct
indirect 0.96125
network
E vs B
direct
indirect 0.8725 network

Odds Ratio (95\% Crl)
1.4 (0.36, 5.8)
0.96 (0.017, 36.)
$1.3(0.56,3.1)$
1.6 (0.50, 5.2)
2.4 (0.080, 88.)
1.9 (0.69, 4.5)
3.4 (0.81, 15.)
3.2 (0.055, 2.5e+02)
3.1 (1.3, 8.3)
0.25 (0.031, 2.)
0.19 (0.012, 2.4)
$0.22(0.042,1.1)$
300
Study P-value
Odds Ratio (95\% Crl)
F vs D
direct
indirect 0.15625
network
F vs E
direct
indirect 0.84375 network
0.13 (0.045, 0.28)
$0.42(0.078,1.5)$
0.15 (0.041, 0.44)

75		7.3 (0.79, 67.)
		5.5 (0.45, 62.)
	-	6.1 (1.3, 35.)
0.01	1	0

Appendix Figure 1. Flow chart showing literature search and study selection.
Appendix Figure 2. Node-splitting plot showing the sensitivity of the seven imaging methods for the diagnostic values of ischemic stroke. $(\mathrm{A}=$ traditional computed tomography; B = computed tomography angiography; C = computed tomography perfusion; $\mathrm{D}=$ diffusion-weighted imaging; $\mathrm{E}=$ magnetic resonance angiography; $\mathrm{F}=$ traditional magnetic resonance imaging; $\mathrm{G}=$ transcranial Doppler ultrasound)

Appendix Figure 3. The node-splitting plot showing the specificity of the seven imaging methods for the diagnostic values of ischemic stroke. ($\mathrm{A}=$ traditional computed tomography; B = computed tomography angiography; C = computed tomography perfusion; $\mathrm{D}=$ diffusion-weighted imaging; $\mathrm{E}=$ magnetic resonance angiography; $\mathrm{F}=$ traditional magnetic resonance imaging; $\mathrm{G}=$ transcranial Doppler ultrasound)

Appendix Figure 4. Node-splitting plot of PPV of the seven imaging methods for the diagnostic values of ischemic stroke. $(\mathrm{A}=$ traditional computed tomography; $\mathrm{B}=$ computed tomography angiography; $\mathrm{C}=$ computed tomography perfusion; $\mathrm{D}=$ diffusionweighted imaging; $\mathrm{E}=$ magnetic resonance angiography; $\mathrm{F}=$ traditional magnetic resonance imaging; G = transcranial Doppler ultrasound; PPV = positive predictive value)

Appendix Figure 5. Node-splitting plot of NPV of the seven imaging methods for the diagnostic values of ischemic stroke. $(\mathrm{A}=$ traditional computed tomography; $\mathrm{B}=$ computed tomography angiography; $\mathrm{C}=$ computed tomography perfusion; $\mathrm{D}=$ diffusionweighted imaging; $\mathrm{E}=$ magnetic resonance angiography; $\mathrm{F}=$ traditional magnetic resonance imaging; $\mathrm{G}=$ transcranial Doppler ultrasound; NPV = negative predictive value)

Appendix Figure 6. The node-splitting plot highlighting the accuracy of the seven imaging methods for the diagnostic values of ischemic stroke. ($\mathrm{A}=$ traditional computed tomography; $\mathrm{B}=$ computed tomography angiography; $\mathrm{C}=$ computed tomography perfusion; $\mathrm{D}=$ diffusion-weighted imaging; $\mathrm{E}=$ magnetic resonance angiography; $\mathrm{F}=$ traditional magnetic resonance imaging; $\mathrm{G}=$ transcranial Doppler ultrasound)

