
APPENDIX 

Top 25 Diagnoses among Decedents 

Twenty five most prevalent principal diagnoses among decedents over the age of 
65, Pennsylvania Cost Containment Council Data, 2001-2005, by Clinical 
Classification System category 
 
Code  Diagnosis  
2 Septicemia (except in labor) 
100 Acute myocardial infarction 
122 Pneumonia (except that caused by tuberculosis or sexually transmitted 

disease) 
108 Congestive heart failure; nonhypertensive 
109 Acute cerebrovascular disease 
131 Respiratory failure; insufficiency; arrest (adult) 
129 Aspiration pneumonitis; food/vomitus 
157 Acute and unspecified renal failure 
42 Secondary malignancies 
127 Chronic obstructive pulmonary disease and bronchiectasis 
19 Cancer of bronchus; lung 
55 Fluid and electrolyte disorders 
153 Gastrointestinal hemorrhage 
226 Fracture of neck of femur (hip) 
145 Intestinal obstruction without hernia 
114 Peripheral and visceral atherosclerosis 
115 Aortic; peripheral; and visceral artery aneurysms 
106 Cardiac dysrhythmias 
233 Intracranial injury 
237 Complication of device; implant or graft 
159 Urinary tract infections 
101 Coronary atherosclerosis and other heart disease 
238 Complications of surgical procedures or medical care 
103 Pulmonary heart disease 
107 Cardiac arrest and ventricular fibrillation 
 
 



STATISTICAL METHODS 
 

In an observational study or nonrandomized trial, the method of inverse 

probability treatment weight (IPTW) is usually used to remove sampling bias. 

The basic concept of the IPTW method is to assign a weight to each observation 

as the inverse of the probability the observation belongs to a certain treatment, 

conditional on a set of covariates. An observation with a higher probability of 

being in a certain treatment is over-representative for that treatment, and thus a 

lower weight is assigned. Conversely, an observation with a lower probability of 

that treatment receives a higher weight. After weighting, the treatment effect is 

no longer related to the confounders. Note that robust standard errors must be 

used to derive confidence intervals of the estimator of interest and the P values in 

the inference test.(21) 

 Most often, the treatment is binary (treatment vs. control), or 

otherwise categorical, and the level of observation is one individual. A logistic 

regression model is used to estimate the probability of being in the treatment 

group, conditional on a set of covariates. For a patient in the treatment group, 

this probability is interpreted as the probability of being in the treatment group, 

given the characteristics of that patient. For a patient in the control group, one 

minus the estimated probability gives the probability of being in the control 

group, conditional on their specific characteristics. The inverse of this estimated 

probability (or one minus the probability) is then the IPTW. This is reminiscent of 

a typical propensity score modeling. 



 We extend this in two ways. First, our "treatment" is the continuous 

measure of hospital intensity: it is not categorical. It is natural to think of 

characteristics being "balanced" across two treatment groups, as in a randomized 

controlled trial. The typical binary IPTW case replicates this balance in the 

weighted sample. In the context of continuous treatment, the analogous 

"balance" is achieved in the weighted sample when the continuous treatment has 

a similar distribution given any characteristics.(18)   

 In the typical analysis each patient receives one treatment 

assignment only for the study (for example, a drug therapy or surgery), and thus 

one IPTW for their entire observational period. However, in our analysis patients 

may be admitted to several hospitals over the observational period, and thus are 

exposed to varying treatment. Hence, the second extension is that patients have 

varying weights over time. These time-varying weights extend the "balance" over 

the observational study, to ensure that the continuous treatment has a similar 

distribution, given any characteristics, throughout the study. As patients change 

treatment (go to variously more or less intense hospitals), their assigned weights 

change to reflect over- or under-representation at that time. At each time the 

patient's history is accounted for, both treatment intensity history and past 

prognostic factors such as illness and mortality risk, as this history may affect 

current treatment.(17,22)   

The steps to accomplish this weighting proceed similarly to 

implementations of marginal structural models, simply altered to allow for a 



continuous treatment. This is accomplished using linear models to obtain a 

predicted cumulative distribution function for the continuous hospital intensity 

measure, the "treatment". This allows us to compute the necessary treatment 

probabilities. This is analogous to the predicted probabilities obtained from 

logistic regression models in the binary case. Further, we compute stabilized 

weights, which are superior as they have smaller variance and yield narrower 

confidence intervals.(17,22)  These weights are the ratio of two probabilities, as 

opposed to the inverse of a single estimate. The denominator in either case is the 

same. We obtain the denominator probability from a linear model that controls 

for patient characteristics, past treatment and history, and current prognostic 

information. However, in the stabilized weight the numerator is not one, but 

rather a probability obtained from a similar model which considers past 

treatment history only, not current nor past prognostic information. 

 A weighted logistic regression is then used to predict 30-day and 

180-day mortality, weighted using the stabilized IPTW and incorporated robust 

standard errors for intrasubject correlation. A fixed-time survival model, as 

opposed to a time-to-event analysis as in other implementations of marginal 

structural models, has advantages and disadvantages. First and foremost 

amongst the advantages is that comparing the two models allows us to easily 

and interpretably present distinctions between short-term outcomes and longer-

term outcomes, and how hospital treatment intensity may be more or less 

favorable to one or the other. This is an important consideration, and different 



clinical and societal pressures may lean toward one or the other. Further, fixed-

time models more consistently appear in other mortality models in the literature, 

allowing for easier comparison of our intensity measure to others for the same 

outcome. 

 There are two primary disadvantages to the fixed-time model. First, 

patients may just "miss" the time cutoff in either direction. A patient that dies in 

exactly 30 days is marked as deceased, but a patient that dies in 31 days is not. 

For any reasonable clinical or societal concern, these outcomes would not be 

considered different. This shortcoming of the fixed-time survival is mitigated by 

the richness of our data. With over one million patients, we do not expect a large 

influence on the results from those patients near the border. 

A second drawback to our model is that a patient may have several 

hospitalizations within the last 30 (or 180) days of life. In our logistic regression 

model, these will all be marked as deceased. However, each person can clearly 

only die once. This has two consequences. First, if higher intensity hospitals 

tended to readmit patients much more or much less often than those of lower 

intensity, this would introduce bias. In practice this is not an issue: neither the 

number of admissions per person nor the time between admissions is related to 

intensity. Secondly, the admissions before death may be to different hospitals, 

such that a single patient experiences several treatment intensity levels in their 

last 30 (or 180) days of life. However, because the stabilized IPTW explicitly 



include patient history, this effect is capture and the person's mortality is not 

unduly assigned to one or another hospital.  

In order to address these concerns, we additionally ran time-to-event 

analysis using the same weighting methodology. We used a pooled logistic 

regression model which approximates the Cox model for the ease of 

implementation in the statistical package.(20) However, in order to estimate the 

proper logistic regression model, we must observe all patients at the same fixed 

time interval (e.g., each month). Clearly, hospital discharge data does not fit this 

pattern. Therefore, we must force each patient be to observed regularly until 

death. We choose a time interval and then divide the history of all patients into 

sections of that duration. If the patient was not observed (had no admissions) in a 

particular interval the information from the previous interval is copied. For 

example, if we forced chose one month as our unit of observation for all patients, 

and a particular patient was first admitted January 1, 2003 and died December 

31, 2003, that patient would have twelve observations. If that patient was not 

admitted during the month of July, the information from June would be used. 

The choice of the fixed time interval is forced by the data itself. If we chose, say, 

one month as above, we would observe some patients multiple times in one 

month. It would not be possible to determine which observation (admission) 

should be used. 

The narrowest interval during which no patient had multiple admissions 

is one day. Thus, we forced each patient to be observed each day from their first 



admission to their death, or the end of the study data collection. The daily 

characteristics are "updated" at each new admission, and each person is marked 

as deceased only once, on their final day. This makes for a very large data set. 

The patient in the example above would have 365 observations. With over one 

million patients, it was not feasible to perform estimation. To overcome this, we 

used 500 bootstrap samples, each 1% of the original data. We were able to 

estimate the daily pooled logistic model on this sample, and combine the results. 

Even using this bootstrapping method, implementation of this model is 

extremely computationally intensive, and may not be practical for analysis of 

hospital claims data. 
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Sensitivity Analyses 
 

     Just as indicated in Figure A1, the adjusted odds ratio for death at 30 days (A, 

B) and 180 days (C, D) postadmission, given treatment in a hospital with a 

particular end-of-life treatment intensity compared to if the patient had been 

admitted instead to a hospital with the average end-of-life treatment intensity. 

Covariables included patient demographics and clinical characteristics, 

hospitalization history, and hospital characteristics. Panels A and C depict a 

patient with an average predicted probability of death (PPD) upon admission 

(black line with 95% confidence interval in shaded grey), panels B and D depict 

patients at lowest (5th percentile, blue line with 95% confidence interval in 

shaded blue) and highest (95th percentile, red line with 95% confidence interval 

in shaded red) PPD upon admission (confidence interval overlap in shaded 

purple) (note: as the length of follow-up increases, the odds ratio cannot be 

interpreted as the risk ratio because the event rate exceeds 5%). 



 
FIGURE LEGENDS 
 
Figure 2 Sensitivity Analyses. As in Figure 2, figures represent the adjusted 

odds ratio for death at 30 days (A, B) and 180 days (C, D) post-admission, given 

treatment in a hospital with a particular end-of-life treatment intensity compared 

to if the patient had been admitted instead to a hospital with the average end-of-

life treatment intensity intensity. Covariables included patient demographics and 

clinical characteristics, hospitalization history, and hospital characteristics. 

Panels A and C depict a patient with an average predicted probability of death 

(PPD) upon admission (4.6% PPD; black line with 95% confidence interval in 

shaded grey), panels B and D depict patients at lowest (0% PPD; blue line with 

95% confidence interval in shaded blue) and highest (41% PPD; red line with 95% 

confidence interval in shaded red) PPD upon admission (confidence interval 

overlap in shaded purple). (Note: as the length of follow-up increases, the odds 

ratio cannot be interpreted as the risk ratio because the event rate exceeds 5%).   

 

Sensitivity Analysis -- Population (3 columns, each with panels A-D). Adjusted 

odds ratio 30-day and 180-day post-admission mortality, by hospital treatment 

intensity among the subset of admissions with a high probability of dying in 3 

categories (column 1 – urban [Pittsburgh & Philadelphia] admissions only; 

column 2 – CHF admissions; column 3 – AMI admissions).  

 



Column 1, Panels A-D: the average treatment intensity of hospitals in Pittsburgh 

and Philadelphia are approximately 1 SD above the state average. The nonlinear 

relationship between intensity and survival, which wanes with length of follow 

up, is retained in this more homogenous urban sample. 

 

Column 2 and Column 3, Panels A-D: the relationship between treatment 

intensity and survival is preserved when we restricted analyses to a single 

chronic condition (CHF), but not when we restricted analyses to a single acute 

condition (AMI). We hypothesize that post-admission survival after AMI may be 

less subject to the hospital’s tendency to use life-sustaining treatments than to its 

use of evidence-based treatments. Patients with life-limiting chronic illnesses like 

CHF, on the other hand, may be rescued – at least in the short-term – by overall 

greater use of life-prolonging treatments.  

 

Sensitivity Analysis – Dead Measure, Panels A-D.  These models are identical 

to those reported in Figure 2, with the exception that the end-of-life treatment 

intensity index is based upon treatment patterns among decedents rather than 

among patients “prospectively” identified as being at high risk of dying. The 

relationship between intensity and survival is more linear, such that returns to 

intensity increase above “average” treatment intensity, although the relationship 

still wanes with length of follow-up. 
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