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DESCRIPTION OF HIV COMPUTER SIMULATION*  

 
Our simulation separately tracks the number of accumulated genetic mutations that may 

confer resistance to each of the three main drug categories of HAART: Nucleoside Reverse 

Transcriptase Inhibitors (NRTIs), Non-nucleoside Reverse Transcriptase Inhibitors (NNRTIs), 

and Protease Inhibitors (PIs). It then uses this information to determine the likelihood of 

phenotypic resistance to HAART.  Mutations develop as a direct function of the viral replication 

rate and the mutation rate; whether these mutations persist in the viral population is related to 

whether there is selection pressure from the presence of a particular medication in the patient’s 

regimen. Phenotypic resistance and adherence determine the likelihood of HAART effectiveness, 

which then impacts the likelihood of clinical outcomes. Suppression of viral load impacts the 

CD4 count trajectory favorably, which in turn reduces HIV-related morbidity and mortality.   

Numerous longitudinal studies have described the incidence of individual mutations in 

the HIV reverse transcriptase and protease genes and their correlation with phenotypic resistance 

and clinical characteristics.1-30 While their results were heterogeneous, several principles 

emerged. First, mutations accrue in response to selection pressures based on drugs in the 

antiretroviral regimen. For example, if the HAART round includes NNRTIs but not PIs, a 

mutation conferring resistance to an NNRTI is far more likely to accrue than is a mutation 

conferring resistance to a PI. Second, adherence is an important modulator of selection pressures. 

When adherence is low, selection pressures will decrease, so even though a high rate of viral 

replication may potentially give rise to a resistant mutation, this impact is mitigated as there is no 

selection pressure to sustain the mutation in the viral population. Third, the rate of accruing 

mutations depends on the number of drugs to which HIV is susceptible.  The rate is lower if the 

number of susceptible drugs is high. Fourth, the rate of accruing mutations is unlikely to be zero, 

even if the round includes three or more drugs to which there is complete susceptibility of HIV 

and therefore maximum suppression of viral replication. Fifth, if there is resistance to all drugs in 
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the HAART regimen, selection pressure for additional mutations will be low, and it is unlikely 

that additional mutations will accrue. (For this reason, even though the model does not specify a 

“ceiling” on the number of mutations, after patients have accumulated enough mutations to 

accrue resistance to all drugs in a class; it is unlikely that they will accumulate additional 

mutations within that class). Lastly, the cumulative incidence of resistance mutations is more 

clinically important than their point prevalence because accumulated resistance mutations are 

usually archived, and therefore may influence the effectiveness of HAART regimens even if they 

no longer are detected by assay. (Therefore, the simulation should represent the cumulative 

incidence of mutations, rather than the point prevalence.) 

After these basic principles were used to specify the model, we calibrated it using clinical 

data from a large observational cohort study until time to treatment failure and survival replicated 

clinical observations in a large observational study.31 For the current report, we re-calibrated this 

model so that its short-term CD4 and viral load trajectories were consistent with those observed 

in ACTG 5142. We now describe in greater detail the simulation’s specification of genotypic 

mutations, phenotypic resistance, viral load trajectories, CD4 trajectories, and mortality. 

 

Genotypic Mutations 
 
A theoretical construct entitled optimal mutation accumulation rate is the starting point 

for determining all mutation accumulation rates in the model. This construct denotes what the 

mutation accumulation rate would be under optimal circumstances (perfect adherence to therapy 

and no resistance to therapy). A different optimal mutation accumulation rate may be specified 

for each drug class; however, during our calibration of the model, we found that it was not 

necessary to do this in order to yield clinically accurate projections of time to treatment failure 

and survival. 
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Starting from the optimal mutation accumulation rate, the model calculates the actual 

mutation accumulation rate based on the amount of viral replication (proxied by viral load) and 

the level of adherence: 

 

Actual mutation accumulation rate = optimal mutation rate * (replication factor ^ (log 

instantaneous viral load – 2.31)) * (adjustment factor for composition of regimen)* (adherence 

adjuster) 

 

Replication factor was set at 3.16 based on results from heterogeneous studies that 

measured mutation accumulation rates with varying viral loads.4,7-9,20,29,30 Note that the mutation 

rate increases as viral load (and viral replication) increases. It was not necessary to change this 

estimate during model calibration.  

 

Adherence adjuster decreases the mutation accumulation rate based on the amount of 

nonadherence. This was specified so as to be logically consistent with other assumptions 

embedded in the model (e.g. if an individual is completely nonadherent to a particular drug, the 

impact on the accumulation of same-class mutations should be the same as if the person was not 

prescribed the drug at all). 

 

Adjustment factor for composition of regimen ensures that mutations only accumulate to 

the drug types that are represented in the current HAART round (e.g. if an NNRTI is not included 

in the current HAART round, it is extremely unlikely to get an NNRTI mutation). 

 

During calibration of our model, we found that an optimal mutation rate of 0.014 per 

month yielded the closest correlation of observed versus expected results for time to treatment 

failure and survival, and that any mutation rate between 0.010 per month and 0.015 per month 
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yielded reasonably good correlations. Note that this rate reflects mutation accumulation under 

optimal circumstances (perfect adherence and no resistance), and therefore individuals in the 

model, on average, accumulate mutations more rapidly.  

 

Phenotypic Resistance 

The model considers the possibility that any one particular mutation may not induce any 

resistance, may engender resistance to one drug, or may engender resistance to more than one 

drug (because of cross-resistance). Estimates for cross resistance were based on published sources 

that specify the relationship of each individual mutation with each HAART drug,32 and 

incorporates a mathematical average of how likely any one mutation is likely to engender 

resistance to more than one drug in the same class. Because a separate calculation is performed 

for each drug class, the model captures clinically observed heterogeneity among drug classes (i.e. 

it is more common among NNRTIs than among PIs or NRTIs).  

The model also considers the possibility that a particular mutation may or may not result 

in phenotypic resistance. Because this likelihood varies greatly by individual mutation, we used a 

simple summary estimate (0.5) which fell within the clinically observed range (approximately 0.1 

to 0.9).4,8,12,16,21,22,29,30 Since the rate of accumulating resistance in the model is the product of the 

rate of accumulating mutations and the probability that each mutation will cause resistance, any 

error in this estimate would have induced a compensatory error in the imputed mutation rate, and 

therefore would not have been expected to adversely impact its results. Because the imputed 

mutation rate was remarkably consistent with clinical observations, it is unlikely that this error 

was substantial. 

 

Change in Viral Load 
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Our model assumes that the viral load for each patient has a “set point” that reflects the 

particular dynamics between the virulence of the HIV strain and the activity of the immune 

system.  In the current analyses, we assume that the viral load prior to starting HAART reflects 

this “set-point.” (Therefore the current analyses will not apply to primary HIV infection, which is 

characterized by very high viral loads that are transient.) The model assumes that the viral load 

decreases after HAART is started and that the extent of the decrease varies with the number of 

drugs in the HAART round to which there is phenotypic resistance and with the degree to which 

the patient adheres to the HAART round.  If mutations accrue and resistance develops, the viral 

load will start to increase and move toward its set point.  Similarly, if a patient stops taking one or 

more drugs, the viral load will start to move toward its set point, with the speed of movement 

depending on the number of drugs and doses missed. 

 

We distinguish between steady state viral load (a theoretical, immeasurable construct) 

and instantaneous viral load (a measurable construct). Steady state viral load is the viral load that 

would be reached at equilibrium, after an infinite amount of time, if there were no changes in any 

of its determinates. Instantaneous viral load is the true viral load at a particular time. We 

distinguish between these constructs because the determinates of viral load may change by 

clinically significant amounts over much shorter time scales (i.e. over hours) than the true viral 

load (i.e. usually over weeks or months). The instantaneous viral load moves towards the steady 

state viral load, with a delay factor that reflects its slower kinetics. 

 

Steady-state viral load 

Based on our previously reported analyses of antiretroviral naïve individuals in care,33 

and then updated to reflect short-term viral load outcomes in ACTG 5142, steady state viral load 

is determined by the following equations: 
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Log steady state viral load = Log viral load “set point” – Log viral load decrement 

 

Log Viral load decrement = Log drug class-specific viral load decrement * scaling 

constant * adherence adjuster * resistance adjuster 

 

Scaling constant is based on magnitude of pre-treatment viral load in simulated cohort 

relative to pre-treatment viral load in source data (Log patient viral load baseline / 4.5). The Log 

drug class specific viral load decrements are unboosted PI (1.84), boosted PI (2.68), efavirenz 

(3.09), and nevirapine (2.22). 

 

The viral “set point” is the equilibrium viral load after the primary phase of HIV 

infection has concluded. Adherence adjuster attenuates the decrease in viral load as individuals 

are more nonadherent to therapy. Adherence is defined as the proportion of antiretroviral doses 

taken as directed. We assume a linear relationship between adherence and the logarithm of the 

decrease in viral load, a reasonable approximation as verified by a later analyses of 6,394 

antiretroviral naïve patients for which adherence information was available.33 

 

Resistance adjuster attenuates the decrease in viral load if patients have resistance to one 

or more antiretroviral drugs. We assume a linear relationship between the proportion of drugs to 

which there is resistance, and the logarithm of the decrease in viral load (i.e. if viral load decrease 

would be X log units with resistance to no drugs, it would be 2/3 * X log units with resistance to 

1 drugs, and 1/3 * X log units with resistance to 2 drugs).  While this is clearly a simplification, 

there is a growing literature to support a rough rule of thumb that, under favorable circumstances 

(the absence of resistance and high levels of adherence), one-drug regimens drop log viral loads 

by approximately 1 log, two drug regimens drop log viral loads by approximately 2 logs, and 
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three drug regimens drop log viral loads by approximately 3 logs.7,9,11,13,18,20,29 Over time, we may 

be able to make this relationship more precise. 

 

Instantaneous viral load 

 

The formula for this variable is straightforward, specifying an exponential convergence 

towards the steady state viral load:   

 

Log Instantaneous viral load at time t = Log Instantaneous viral load at time t-1 + (Log 

instantaneous viral load at time t - Log instantaneous viral load at time t-1)/viral load delay 

constant. 

 

Viral load delay constant was set at 1.5 months, reflecting observed kinetics of viral load 

fluctuations. 

 

Change in CD4 Count 

The CD4 count plays a crucial role in determining the risk of HIV-related mortality, and 

therefore estimating its trajectory is essential for predicting this mortality risk over long time 

periods.   

Similarly to how viral load is represented, CD4 count is also represented by a steady state 

variable and an instantaneous variable.  

 

Steady State 

 

The representation of CD4 is more complicated than viral load because there is no “set 

point.” Published data prior to widespread adoption of HAART suggests that the CD4 count 
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declines at a rate inversely proportional to the viral load.34 However, HAART may change this 

relationship substantially. We therefore analyzed the CD4 count trajectories of the anti-retroviral 

naive HIV-positive patients starting HAART in the same observational cohort that was used to 

analyze viral load. We analyzed this data in accord with the conceptual framework that changes 

in CD4 count during HAART may be disaggregated into two separate components: a trough to 

peak change in CD4 (representing the rise in CD4 count from when a round is started, to the 

highest level that will be obtained during that round) and a trough to trough change in CD4 

(representing the change in CD4 count from the start of first HAART round to the start of each 

subsequent round), which occurs as patients develop resistance or have worsening of 

nonadherence. The “peak” CD4 for a particular HAART round was approximated by the value 1 

year after that round was initiated. (This is only a gross approximation, as data show that CD4 

counts continue to increase as long as regimens are effective. However, the rate of increase 

diminishes dramatically after 1 year, and therefore the 1 year value can be used as a proxy for the 

plateau.) Based on our previously reported analyses of antiretroviral naïve individuals in care,33 

and then updated to reflect short-term CD4 outcomes in ACTG 5142, CD4 trajectory is 

determined by the following equations: 

 

If off HAART 

 

CD4 at time t = CD4 at time t-1 –time interval (in months) * (1.78+2.8*(log 

instantaneous viral load – 3). 

 

If on HAART and resistant to one or fewer drugs in the regimen) 

 

CD4 = 
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  + 2 (if patient on haart for at least one year)   

  + 23*(if patient on haart for at least two years)   

  + 10*(if patient on haart for at least three years)  

  + 14*(if patient on haart for at least four years)  

  + 10*(if patient on haart for at least five years)  

  + 0*(if patient age at reg baseline < 30)  

  + 26*(if 30 <= patient age at reg baseline < 40) 

  + 18*(if 40 <= patient age at reg baseline < 50) 

  + 16*(if 50 <= patient age at reg baseline < 60) 

  + 6*(if 60 <= patient age at reg baseline < 70) 

  -15*(if patient age at reg baseline >= 70) 

  + 1*(if CD4 at reg baseline <=200) 

  + 0*(if 200 < CD4 at reg baseline < 350) 

  -6*(if 350 <= CD4 at reg baseline < 500) 

  -48*(if CD4 at reg baseline >= 500) 

  + 3.3  

  + 0*(if patient adherence > 0.8)   

  + 0*(if 0.6 <= patient adherence < 0.8) 

  -6*(if 0.4 <= patient adherence < 0.6) 

  -31*(if 0.2 <= patient adherence 0.4) 

  -51*(if patient adherence < 0.2) 

  + 43*Change in viral load from baseline (scaled according to max 

possible change in viral load) 

 

+ “noise” component without between-regimen correlation 

+ “noise” component with between-regimen correlation 
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If on HAART  (and resistant to 2 or more drugs in the regimen) 

 

We based the following equations from data from PLATO, a joint analysis of 13 13 HIV 

cohorts from Europe, North America, and Australia, involving patients who had had multi-class 

virological failure:35 

 

If viral load >= 4.0,   

 CD4 at time t = CD4 at time t-1 +  (50 * pat->VLreal + 200)/time interval;  

Otherwise,  

 CD4 at time t = CD4 at time t-1 

 

 

 

Instantaneous 

 

Instantaneous CD4 incorporates a delay factor (3 months), analogous to instantaneous 

viral load. It also incorporates a “noise” factor to reflect unexplained variance in the CD4 count 

(a far lower proportion of CD4 count variance is explained by covariates). The delay factor was 

specified based on observed CD4 kinetics, and the noise factor was specified during the 

verification of the model to result that clinically plausible CD4 trajectories were produced for 

simulated individual patients.  

 

Adherence 
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The model permits the user to specify an overall predisposition towards adherence to 

therapy, defined as the proportion of antiretroviral doses taken as directed. Because adherence 

often varies greatly from time to time (both within regimens, and because of differing regimen 

characteristics, between regimens), we modify this predisposition via two “noise” terms, one of 

which is drawn anew with each time period, and the other of which is drawn anew each time a 

new regimen starts. The noise factors were specified during the verification of the model to result 

in clinically plausible viral load and CD4 trajectories for individual patients.  

 

The model incorporates the observation that nonadherence to one drug in a HAART 

regimen is often highly correlated with nonadherence to other HAART drugs in the regimen (i.e. 

if you miss one drug, chances are relatively high that you also will miss the other drugs at the 

same dosing time). To represent this correlation, the model permits the user to select a correlation 

factor. Because there are insufficient clinical data on which to base estimates for this correlation, 

we arbitrarily set it at 0.9 for all of our analyses. This setting was consistent with satisfactory 

performance on our calibration and validation exercises.31  

 

For the current report, we incorporated adherence levels observed in ACTG 5142 (62% 

of patients with 100% adherence). For the remainder of patients without perfect adherence (38%), 

we assumed a level of adherence typical in large observational cohort studies (62% of doses taken 

as directed).33 

 

Mortality 

 

Mortality is partitioned into HIV-related and non-HIV-related sources of death. HIV-

related mortality is a function of age, CD4 count, viral load, and presence of HAART (to 

consider the salutary effects of maintaining less “fit” viral strains, independent from its beneficial 
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impact on CD4 count and viral load). Estimates were based on our analyses of observational data 

of HIV+ individuals for which cause of death was a prospectively defined and measured 

outcome. Detailed tables are available from the authors on request; summary tables were 

published previously.31 

 

Non-HIV related mortality is a function of age, sex, and race, and was based on same 

observational cohort above. These results were indexed to published life tables of all-causes 

mortality in the United States by age, race, and sex to extrapolate beyond the age groups that 

were represented in this population.36 Detailed tables are available from the authors on request; 

summary tables were published previously.31 

 

 

*Adapted from online appendix in Braithwaite RS, Shechter S, Roberts MS, et al. Explaining variability in 

the relationship between antiretroviral adherence and HIV mutation accumulation.37  
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