Criteria for con	nsidering studies
Type of	Systematic reviews and meta-analyses, and subsequently published
studies	or not included RCTs, quasi-RCTs. Search date: from September 2013
	(end of the last search) to August 2019.
Type of	Children with clinically diagnosed acute gastroenteritis, including in-
participants	and outpatients, regardless of the location (however, with focus on
	children living in geographic Europe).
Type of	• Active (e.g., live or viable) and lyophilized forms of probiotics as
interventions	single ingredients or in combination with other probiotics in all
	delivery vehicles (and formulations).
	• Six taxonomic groups (<i>Lactobacillus</i> , <i>Bifidobacterium</i> , <i>Saccharomyces</i> ,
	Streptococcus, Enterococcus, and Bacillus).
	• Studies in which it could not be verified what group of probiotics
	was consumed were excluded.
	• Studies administering yogurt or milk products containing only
	Lactobacillus or Streptococcus organisms as starter cultures were not
	included (regardless whether alone or supplemented with
	probiotics).
Type of outcom	ne measures
Outcome(s)	Duration of diarrhea
	• Need for hospitalization for outpatients (or duration of
	hospitalization for inpatients)
	• The percentage of children recovered by 48 h (or diarrhea on day
	2)
Search method	ls of identification of studies
Electronic	For systematic reviews/meta-analyses:
searches	The Cochrane Database of Systematic Reviews
	• The DARE (Database of Abstracts of Reviews of Effects)
	For systematic reviews/meta-analyses and subsequently published
	trials (starting from the date of the most recent search in the included
	reviews).
	• CENTRAL (Cochrane Central Register of Controlled Trials).
	• PubMed (<i>National Library of Medicine, includes MEDLINE®</i>).
	• EMBASE (Biomedical and pharmacological bibliographic database).
	The search strategy included the use of a validated filter for
	identifying controlled trials, which was combined with a topic-specific
	strategy. The search was carried out independently by two reviewers.
	No language restrictions were imposed (provided the language is
	known to a member of the group).

Table S1. Summary of methods

Searching	The reference lists from identified studies and key review articles,
other	including previously published meta-analyses.
resources	
Data collection	and analysis
Selection of	An initial screening of the title, abstract, and keywords of every record
studies	identified was performed. The next step was the retrieval of the full
	text of potentially relevant publications. Two reviewers
	independently assessed the eligibility of each potentially relevant trial
	with the use of inclusion criteria. If they had different opinions, these
	were resolved by discussion with at least one other member of the
	WG.
Data	The data extracted included baseline characteristics (including the
extraction	definition of acute gastroenteritis), inclusion criteria, experimental
	and control treatments, setting, dose, outcomes of interest (with
	definitions), and funding.
Assessment	RCT: The Cochrane Collaboration's tool for assessing risk, which
of risk of bias	includes the following criteria:
in included	adequacy of sequence generation;
trials	allocation concealment;
	 blinding of participants, personnel and outcome assessors;
	incomplete outcome data were addressed.
Measures of	If feasible, for dichotomous outcomes, the results for individual
treatment	studies, and pooled statistics were reported as the risk ratio (RR)
effect	between the experimental and control groups with 95% confidence
	intervals (CI). For continuous outcomes, the results were reported as
	the mean difference (MD) with 95% CI.
Assessment	Heterogeneity using the I^2 statistic was assessed. The values of 25%,
of	50%, and 75% were used as edge limits for low, moderate, and high
heterogeneity	heterogeneity.
Assessment	When at least 10 RCTs were available, publication bias was assessed
of reporting biases	using the funnel plot proposed by Egger et al. (75). A P value less than
Data	0.05 implicates publication bias. The data were analyzed using Review Manager (RevMan [Computer
synthesis	program]. Version 5.3. Copenhagen: The Nordic Cochrane Centre,
synthesis	The Cochrane Collaboration, 2014).
	All pooled analyses were explicitly performed for the current report.
	The pooled dialyses were explicitly performed for the current report.

GRADE certainty of evidence							
Further research is very unlikely to change our confidence in the estimate of effect.							
Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.							
Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.							
Any estimate of effect is very uncertain.							
gth of recommendations							
When the evidence showed that the benefit of the intervention clearly outweighs the undesirable effects.							
When the trade-offs were less certain (either because of the low quality of evidence or because the evidence suggests that desirable and undesirable effects are closely balanced).							

Table S2. The grades of the certainty of evidence and strength of recommendation set by the GRADE Working Group

GRADE: Grading of Recommendations Assessment, Development and Evaluations.

	Strong recommendation	Weak (conditional) recommendation		
For patients:	Most individuals in this situation	The majority of individuals in this		
	would want the recommended	situation would want the suggested		
	course of action, and only a small	course of action, but many would		
	proportion would not.	not.		
For clinicians	Most individuals should receive	Recognize that different choices will		
	the intervention. Adherence to	be appropriate for individual		
	this recommendation according	patients and that you must help		
	to the guideline could be used as	each patient arrive at a management		
	a quality criterion or performance	decision consistent with his or her		
	indicator. Formal decision aids	values and preferences. Decision		
	are not likely to be needed to help	aids may be useful in helping		
	individuals make decisions	individuals to make decisions		
	consistent with their values and			
	preferences			
For policy	The recommendation can be	Policy-making will require		
makers	adopted as policy in most	substantial debate and involvement		
	situations.	of various stakeholders.		

*Interpretation of strong and weak (conditional) recommendations

Table S3. Wording of recommendations

Strength of recommendation	Example recommendation
Strong recommendation for	Healthcare professionals should recommend X to Y.
Weak recommendation for	Healthcare professionals may recommend X to Y.
No recommendation	There is no recommendation for or against X to Y.
Weak recommendation	Healthcare professionals may not recommend X to Y.
against	r i i i i i i i i i i i i i i i i i i i
Strong recommendation	Healthcare professionals should not recommend X to
against	Y.
Where X is the intervention and	Y is the population.

Table S4. Summary of systematic reviews/meta-analyses and network meta-analyses on probiotics for the management of acute gastroenteritis in children

Review ID	Search date/ databases searched	Population & Age	Intervention	Comparison	Outcomes	Included studies	Definition of acute diarrhea	Results	Comments
Szajewska et al. 2020 (1)	Up to December 2019/ Medline, Embase, Cochrane	Children with acute diarrhea Aged 1 month to 15 years (majority aged 60 months or less)	Saccharomyces Boulardii	Placebo/ no treatment	Primary: - Duration of diarrhea - Stool volume Secondary: - Percentages of children with diarrhea at various times intervals - Percentage of children with diarrhea lasting longer than 7 days - Stool frequency - Vomiting - Duration of hospitalizatio n - Adverse effects	29 RCTs	-	Primary: - Reduced duration of diarrhea: MD -1.06 days, 95% CI (-1.32 to -0.79) - Stool volume (no RCTs) Secondary: - Reduced duration of hospitalization: MD -0.85 day, 95% CI (-1.35 to -0.34) - Presence of diarrhea day 2: RR 0.75, 95% CI (0.67 to 0.84)	Additional outcomes reported by the authors: - Presence of diarrhea on days 1,3,4,5, >7 -Vomiting - Adverse events - Stool frequency
Patro et al. 2019 (2)	From January 2016 to	Children under 18	Lactobacillus reuteri DSM 17938	Placebo or no treatment	Primary: - Duration of	4 RCTs on diarrhea	-	- Duration of diarrhea: MD -0.87 days; 95% CI (-1.43 to -0.31) - Stool volume: none of the trials	Additional outcomes
	2016 to August	years	1/930		diarrhea (days)	treatmen		assessed this outcome	reported:
	2019 /Medline, Embase	Aged 3 months to 5 years			Stool volumeSecondary:Percentagesof children	t		- Cure on day 2: RR 4.54, 95% CI (2.02 to 10.18) - Duration of hospitalization: MD - 0.54 days, 95% CI: (-1.09 to 0.0)	- Cure on day 1,3,4,5 - Stool output

	Central, others				with diarrhea at various times intervals - Percentage of children with diarrhea lasting longer than 7 days - Duration of hospitalizatio n (days)			- Adverse events: no adverse effects were observed	
Szajewska et al. 2019 (3)	Up to January 2019/ Medline, Embase, Central, others	Children with acute diarrhea Aged 1 month to 7 years	Lactobacillus rhamnosus GG	Placebo/ no treatment	Primary: - Duration of diarrhea - Stool volume Secondary: - Percentages of children with diarrhea at various times intervals - Percentage of children with diarrhea lasting longer than 7 days - Duration of hospitalizatio n - Adverse effects	18 RCTs		Primary: - Reduced duration of diarrhea: MD -0.85 day, 95% CI (-1.15 to -0.56) - No effect on stool volume: Total stool volume (ml/g): MD 8.97, 95%CI (-86.26 to 104.2) - Stool volume on day 1 (g/kg): MD 13.60, 95%CI (-13.11 to 40.31) - Stool volume on day 2 (g/kg): MD 12.40, 95%CI (-6.39 to 31.19) Secondary: - Presence of diarrhea on day 2: RR 0.37, 95%CI (0.17 to 0.84) - Duration of hospitalization: MD - 1.22 days, 95%CI (-2.33 to -0.10)	Additional outcomes reported by the authors (not presented): - Presence of diarrhea on days 3,4,5, >7,>10 - Dose - Setting - Inpatients/ outpatients - Etiology - Rotavirus vaccination status - Clinical severity score - Adverse effects
Ianiro et al. 2018 (4)	Up to October 2017/ Medline,	Children under 18 years of age with	Bacillus clausii	Placebo and/or standard of	Primary: - Duration of diarrhea	6 RCTs	≤14 days	Primary: - Duration of diarrhea: MD -9.12 hours, 95% CI (-6.49 to - 1.75), p = 0.015	

	Embase, Central, others	acute diarrhea		care/or no treatment	- Stool frequency after intervention - Hospitalizatio n duration Secondary: - Vomiting episodes - Quality of life - Adverse events			 Stool frequency after intervention: MD -0.19 diarrheal motions, 95% CI (-0.43 to -0.06), p= 0.14 Duration of hospitalization MD - 0.85 days, 95% CI (-1.56 to -0.15), p = 0.017 Secondary: Vomiting: No difference No serious adverse events Quality of life not reported 	
Florez et al. 2018 (5) Network meta- analysis	Up to May 2017/ Medline, Embase, Cochrane, others	Children under 18 years with acute diarrhea	Probiotics	Placebo and/or standard treatment	Primary: - Diarrhea duration Secondary: - Stool frequency at day 2 - Diarrhea on day 3 - Vomiting - Adverse events	46 RCTs (probioti cs) among 174 studies included	-	- Diarrhea duration: All Probiotics: MD -19.4 hours, 95% Credible Interval (-23.7 to -15.1) <i>LGG (all):</i> MD -22.7 hours, 95% Credible Interval (-28.8 to -16.7) <i>LGG</i> (high- income countries): MD - 38 hours, 95% Credible Interval (- 45.4; -30.5) <i>LGG</i> (low-middle-income countries): MD -11.7 hours, 95% (-19.7 to -3.8) <i>Saccharomyces boulardii</i> MD -16.5 hours, 95% Credible Interval (-23.3 to -9.7) Secondary outcomes: - Stool frequency at day 2: All probiotics MD -0.96, 95% Credible Interval (-1.76 to -0.15) - Diarrhea at day 3: Standard vs. all probiotics OR 2.87, 95% Credible Interval (1.78 to 4.55) Standard vs. <i>Sacharomyces boulardii</i>	Additionall y assessed for diarrhea duration: <i>S boulardii</i> + Zn LGG+smect ite Zn+Probioti cs LCF+probio tics

								OR 5.55, 95% Credible Interval (3.09 to 10.11) - Vomiting: -Standard vs. all probiotics OR 1.36, 95% Credible Interval (0.56 to 3.60) - Standard vs. LGG OR 1.30, 95% Credible Interval (0.72 to 2.39) - Standard vs. Sacharomyces boulardii OR 1.69, 95% Credible Interval (0.65 to 4.48)
Padayache e et al. 2018 (6)	From April 2014 up to January 2015/ Medline, Embase, Central, others	Hospitalized children with rotavirus acute gastroenterit is <16 years old	Saccharomyces Boulardii	Control	Primary: - Duration of diarrhea (days) - Mean number of stools passed per day - Mean number of episodes of diarrhea at follow up - Frequency of diarrhea at start, mid- point, end of intervention- Stool frequency - Changes in stool consistency post intervention Secondary:	10 RCTs	≥ 3 unformed stools in the last 24 h and of ≤ 48 h duration	- Duration of diarrhea: MD -0.57 days, 95% CI (-0.83 to - 0.30) - Mean number of stools passed per day: MD -0.97, 95% CI (-1.56 to -0.39) - Frequency of diarrhea: RR 0.66, 95% CI (0.35 to 1.23) - Number having <3 stools per day RR 1.13, 95% CI (0.97 to 1.31) - Duration of hospital stay: MD -0.12 days, 95% CI (-1.90 to 1.65)

					- Duration of hospital stay (days				
Sniffen et al. 2018 (7)	Up to June 2018/Pub med, Embase, Cochrane, others	Children aged 1-18 years with acute diarrhea	Probiotics	Control	- Percent cured - Duration of diarrhea (days)	59 RCTs in pediatric acute diarrhea treatmen t among 155 treatmen t RCTs	New onset of acute infectious gastroente ritis symptoms (< 7 days duration) due to viral or bacterial etiologies but may be idiopathic	Seven of the eight probiotic types had strong evidence for this disease indication	
Zorzela et al. 2017 (8)	Up to February 2017/ Medline, Embase, Central, others	Children or adults using modified probiotics for either treatment or prophylaxis	Inactivated form of probiotics	Control group of either the identical living strain or strains of the probiotic or a placebo/sta ndard treatment control, or both types of controls	- Efficacy - Adverse events	6 Pediatric RCTs among 26 treatmen t RCTs	-	- Treatment of acute diarrhea: modified <i>L acidophilus</i> vs. control SMD -0.81, 95% CI (-1.44 to -0.17)	Adverse events described in original publication
Freedman et al. 2015 (9)	Up to April 2012/ Medline, Embase, Central, others	Children under 18 years with acute diarrhea	Probiotics among other interventions	Placebo or alternative	Primary: - Any subsequent healthcare visit (7 days) Secondary: - Administratio	6 RCTs among (5 probiotic s 1 synbiotic)	-	Primary outcome: 1 study reported no difference between groups in terms of return for additional ED care Secondary: -Hospitalization:	RCTs conducted in developed countries only

					n of intravenous rehydration - Hospitalizatio n - Adverse effects	31 RCTs included		No difference for hospitalization within 7 days RR 0.53, 95% CI (0.26 to 1.07) - Need to administer intravenous rehydration within 7 days	When analyzed by individual probiotic product, most comparison s included a single RCT and reported no significant differences between groups
Gutierrez- Castrellon et al. 2015 (10) Network meta- analysis	Up to February 2014/ Medline, Embase, Central, others	Children under 5 years with acute diarrhea	Lactobacillus GG , Saccharomyces Boulardii (among other interventions to reduce diarrhea in children)	Placebo	Primary: - Diarrhea duration (hours) Secondary: - Stool output 48-72 hours - Adverse events	19 RCTs among 51 RCTs included	-	- Diarrhea duration: Lactobacillus GG > 10^{10} CFU vs. placebo: SMD: -0.82 , 95% CI (-1.31 to -0.34) Lactobacillus GG $\leq 10^{10}$ CFU vs. placebo: SMD -0.88 , 95%CI (-1.97 to 0.20) Saccharomyces boulardii vs. placebo: SMD: -0.81 , 95%CI (-1.07 to -0.55) Lactobacillus reuteri vs. placebo: SMD: -1.11 , 95%CI (-1.45 to -0.77) SUCRA analysis showed racecadotril as the first option followed by smectite and Lactobacillus reuteri Secondary outcomes not reported	
Ahmadi et al. 2015 (11)	Up to June 2013/Pub med, Central, Ovid	Infants and children with rotavirus diarrhea Age range 1- 72 months	Probiotic strains	Placebo	Duration of diarrhea	14 RCTs (lactobac illus GG, non- lactobacil lus GG, all)	-	- All probiotics: SMD -0.41, 95% CI (-0.56 to -0.25, p<0.001)	Lactobacillu s GG subgroup and non- LGG: presentatio n of results unclear

Feizizadeh et al. 2014 (12)	Up to September 2013/ Pubmed, Central, Embase, others	Children with acute diarrhea Aged 1 month to 15 years	Saccharomyces Boulardii	Placebo or no control	Primary: - Duration of diarrhea - Diarrhea lasting ≥4 days - Stool frequency on day 2 after intervention Secondary: - Diarrhea lasting ≥3 days - Stool frequency on day 3 after intervention	22 trials	≤14 days	Primary: - Reduction of diarrhea duration: MD -19.7 hours, 95% CI (-26.05 to - 13.34), P <0.001 - Reduction of stool frequency on day 2: MD0.74, 95% CI (-1.38 to -0.10), P = 0.023 - Diarrhea on day 4 after intervention compared with the control: RR 0.38, 95% CI (0.24 to 0.59), P<0.001 - Reduced stool frequency on day 3: MD -1.24, 95% CI (-2.13 to -0.35), P = 0.006 - Diarrhea lasting \geq 3 days: RR 0.41, 95% CI (0.27 to 0.60), P=0.001	Randomize d and non- randomized trials Additional outcomes: - Vomiting duration - Duration of hospitalizat ion - Weight gain
Applegate et al. 2013 (13)	Up to December 2012/ PubMed, Cochrane Library, WHO Regional Databases, Web of Science, Biosis, Popline, Global Health, Scopus, and Embase	Community- acquired acute diarrhea among children < 5 years of age	Probiotics	Suitable control group	 Harms Diarrhea duration Stool frequency on the 2nd day Risk of diarrhea hospitalizatio n Diarrhea mortality 	8 RCTs	3 loose or watery stools per day	 Diarrhea duration reduction: 14.0%, 95% CI (3.8 to 24.2%) Stool frequency reduction on the 2nd day: 13.1%, 95% CI (0.8 to 25.3%) Risk of diarrhea hospitalization: no difference Diarrhea mortality: no studies identified 	
Dinleyici et al. 2012 (14)	Up to October 2011/Pub	Adults and children	Saccharomyces Boulardii	placebo or active	Duration of diarrhea	19 RCTs	-	- Duration of diarrhea: pooled WMD -0.99 day (approximately 24 h, 95% CI (-1.40 to -0.58)	Additional outcomes:

	Med, Embase, Central, others	with acute diarrhea		control or no treatment)	Reducing percentage of children with diarrhea Duration of hospitalizatio n Mean number of stools at	17 RCTs in children		- Diarrhea at day 3: RR 0.52, 95% CI (0.42 - 0.65)	 Duration of hospitalizat ion; Diarrhea on days 2;4;5;6;7; Mean number of stools reported on
Salari et al. 2012 (15)	Search dates not reported/ Pubmed, Scopus, Cochrane, ISI	Children with diarrhea	Probiotics	Placebo	different time intervals Duration of diarrhea (days) - Number of stools per day - Duration of fever - Duration of hospitalizatio n - Duration of vomiting	20 RCTs	-	- Duration of diarrhea: WMD -0.67 day, 95% CI (-0.95 to -0.38), P<0.0001 - Number of stools per day WMD -0.81, 95% CI (-2.05 to 0.44), P= 0.20	days 1;2;3,4;5;6;7
Allen et al. 2010 (16)	Up to July 2010/ PubMed, Embase, Central, others	Adults and children with acute diarrhea	Specific probiotic	Placebo or no probiotic	Primary: - Duration of diarrhea - Diarrhea lasting ≥4 days - Stool frequency on day 2 after intervention Secondary:	57 RCTs in children among 63 RCTs	Duration < 14 days. Was proven or presumed to be caused by an infectious agent	Primary: - Duration of diarrhea: MD -24.76 hours, 95% CI (-15.9 to -33.6) - Diarrhea lasting ≥4 days: RR 0.41, 95% CI (0.32 to 0.53) - Stool frequency on day 2: MD -0.80, 95% CI (-0.45 to -1.14) Secondary: - Diarrhea lasting ≥3 days: RR 0.62, 95% CI (0.56 to 0.70) - Mean stool frequency on day 3: MD -0.63, 95% CI (-1.18 to -0.07)	

	- Diarrhea	
	lasting ≥3	
	days	
	- Stool	
	frequency on	
	day 3 after	
	intervention	

1. Szajewska H, Kołodziej M, Zalewski BM. Systematic review with meta-analysis: Saccharomyces boulardii for treating acute gastroenteritis in childrena 2020 update. Alimentary pharmacology & therapeutics. 2020:10.1111/apt.15659.

2. Patro-Gołąb B, Szajewska H. Systematic Review with Meta-Analysis: Lactobacillus reuteri DSM 17938 for Treating Acute Gastroenteritis in Children. An Update. Nutrients. 2019;11(11):2762.

3. Szajewska H, Kolodziej M, Gieruszczak-Bialek D, Skorka A, Ruszczynski M, Shamir R. Systematic review with meta-analysis: Lactobacillus rhamnosus GG for treating acute gastroenteritis in children - a 2019 update. Alimentary pharmacology & therapeutics. 2019;49(11):1376-84.

4. Ianiro G, Rizzatti G, Plomer M, Lopetuso L, Scaldaferri F, Franceschi F, et al. Bacillus clausii for the Treatment of Acute Diarrhea in Children: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients. 2018;10(8).

5. Florez ID, Veroniki AA, Al Khalifah R, Yepes-Nunez JJ, Sierra JM, Vernooij RWM, et al. Comparative effectiveness and safety of interventions for acute diarrhea and gastroenteritis in children: A systematic review and network meta-analysis. PloS one. 2018;13(12):e0207701.

6. Padayachee M, Visser J, Viljoen E, Musekiwa A, Blaauw R. Efficacy and safety of Saccharomyces boulardii in the treatment of acute gastroenteritis in the paediatric population: a systematic review. South African Journal of Clinical Nutrition. 2019;32(3):58-69.

7. Sniffen JC, McFarland LV, Evans CT, Goldstein EJC. Choosing an appropriate probiotic product for your patient: An evidence-based practical guide. PloS one. 2018;13(12):e0209205.

8. Zorzela L, Ardestani SK, McFarland LV, Vohra S. Is there a role for modified probiotics as beneficial microbes: a systematic review of the literature. Beneficial microbes. 2017;8(5):739-54.

9. Freedman SB, Pasichnyk D, Black KJ, Fitzpatrick E, Gouin S, Milne A, et al. Gastroenteritis Therapies in Developed Countries: Systematic Review and Meta-Analysis. PloS one. 2015;10(6):e0128754.

10. Gutierrez-Castrellon P, Ortiz-Hernandez AA, Llamosas-Gallardo B, Acosta-Bastidas MA, Jimenez-Gutierrez C, Diaz-Garcia L, et al. [Efficacy of racecadotril vs. smectite, probiotics or zinc as an integral part of treatment of acute diarrhea in children under five years: A meta-analysis of multiple treatments]. Gac Med Mex. 2015;151(3):329-37.

11. Ahmadi E, Alizadeh-Navaei R, Rezai MS. Efficacy of probiotic use in acute rotavirus diarrhea in children: A systematic review and meta-analysis. Caspian journal of internal medicine. 2015;6(4):187-95.

12. Feizizadeh S, Salehi-Abargouei A, Akbari V. Efficacy and safety of Saccharomyces boulardii for acute diarrhea. Pediatrics. 2014;134(1):e176-91.

13. Applegate JA, Fischer Walker CL, Ambikapathi R, Black RE. Systematic review of probiotics for the treatment of community-acquired acute diarrhea in children. BMC public health. 2013;13 Suppl 3:S16.

14. Dinleyici EC, Eren M, Ozen M, Yargic ZA, Vandenplas Y. Effectiveness and safety of Saccharomyces boulardii for acute infectious diarrhea. Expert opinion on biological therapy. 2012;12(4):395-410.

15. Salari P, Nikfar S, Abdollahi M. A meta-analysis and systematic review on the effect of probiotics in acute diarrhea. Inflammation & allergy drug targets. 2012;11(1):3-14.

16. Allen SJ, Martinez EG, Gregorio GV, Dans LF. Probiotics for treating acute infectious diarrhoea. The Cochrane database of systematic reviews. 2010(11):Cd003048.

Table S5. Randomized controlled trials (RCTs) in children comparing probiotics with placebo/no intervention included in various systematic reviews/meta-analyses (A) and additionally identified (B).

Study ID	Probiotic strain	Szajewska et al. 2020[S boulardii] (1)	Szajewska et al. 2019 [LGG] (2)	Patro et al. 2019 [L reuteri DSM 17938] (3)	Ianiro et al. 2018 [Bacillus clausii] (4)	Sniffen et al. 2018 (5)	Florez et al. 2018 (6)	Padayachee et al. 2018 [S boulardii] (7)	Zorzela et al. 2017 [inactivated probiotics] (8)	Freedman et al. 2015 (9)	Gutierrez- Castrellon et al. 2015 (10)	Ahmadi et al. 2015 (11)	Feizizadeh et al. 2014 [S boulardii] (12)	Applegate et al. 2013 (13)	Salari et al. 2012 (14)	Dinleyici et al. 2012 [S boulardii] (15)	Allen et al. 2010 (16)
Abbaskhaniyan et al. 2012 (17)	Fermented yoghurt																
Agarwal et al. 2001 (18)	Yoghurt L casei DN 114001																
Agarwal et al. 2002 (19)	Yoghurt L casei DN 114001																
Aggarwal et al. 2014 (20)	LGG																
Agustina et al. 2007 (21)	L rhamnosus LMG P-22799 + inulin, dietary fiber (soy polysaccharides+ zinc+iron)																
Azim et al. 2014 (22)	S boulardii																
Basu et al. 2007 (23)	LGG																
Basu et al. 2009 (24)	LGG																
Bhat et al. 2018 (25)	B clausii S boulardii																
Bhatnagar et al. 1998 (26)	Yoghurt formula																
Billoo et al.2006 (27)	S boulardii																

A. RCTs included in the systematic reviews/meta-analyses

Boudraa et al. 2001 (28)	L bulgaricus and S thermophilus									
Boulloche et al. 1994 (29)	L acidophilus LB strain									
Burande et al. 2013 (30)	S boulardii									
Burki et al. 2017 (31)	S boulardii									
Canani et al.2007 (32)	LGG, S boulardii, L delbrueckii var bulgaricus, L acidophilus, Streptococcus thermophilus, B bifidum; B clausii; Enterococcus faecium SF 68									
Carague- Orendain et al. 1999 (33)	Lactobacillus acidophilus and bifidus									
Castaneda et al. 1995 (34)	<i>S boulardii</i> chronic diarrhea									
Cetina- Sauri et al. 1994 (35)	S boulardii			1989						
Chapoy et al. 1985 (36)	S boulardii									
Chen et al. 2010 (37)	Bacillus mesentericus, Enterococcus faecalis, Clostridium butyricum									
Chouraqui et al. 1995 (38)	S boulardii									
Costa-Ribeiro et al. 2003 (39)	LGG									
Correa et al. 2011 (40)	S boulardii									

Czerwionka- Szaflarska et al. 2009 (41)	LGG								
D'Apuzzo 1982 (42)	Streptococcus faecium								
Dalgic et al. 2011 (43)	S boulardii								
Das et al. 2016 (44)	S boulardii								
Dash et al. 2016 (45)	S boulardii								
Dinleyici et al. 2009 (46)	S boulardii (Entamoeba histolytica)								
Dinleyici et al. 2011 (47)	S boulardii (Blastocystis hominis)								
Dinleyici et al. 2014 (48)	L reuteri DSM 17938								
Dinleyici et al. 2015 (49)	S boulardii								
Dinleyici et al. 2015 (50)	L reuteri DSM 17938								
Dubey et al. 2008 (51)	L acidophilus, L paracasei, L bulgaricus, L plantarum, B breve, B infantis, B longum, S thermophilus (VSL#3)								
Dutta et al. 2011 (52)	L sporogenes (B coagulans)								
El-Soud et al.2015 (53)	Milk formula supplemented with <i>B lactis</i>								
Erdogan et al. 2012 (54)	S boulardii								

Eren et al. 2010 (55)	S boulardii vs L bulgaricus/Str thermophilus (no noprobiotic group)								
Francavilla et al. 2012 (56)	L reuteri DSM 17938								
Freedman et al. 2015 (57)	L helveticus Rosell- 52 + L rhamnosus Rosell 11								
Gaon et al. 2003 (58)	S boulardii (persistent diarrhea)								
Grandy et al. 2010 (59)	S boulardii L acidophilus, L rhamnosus, Bifidobacterium longum and S boulardii								
Guandalini et al. 2000 (60)	LGG								
Guandalini et al. 2010 (61)	VSL#3 (1BS)								
Guarino et al. 1997 (62)	LGG								
Hafeez et al. 2002 (63)	S boulardii								
Hegar et al. 2015 (64)	L rhamnosus R0011 & L. acidophilus R0052								
Henker et al.2007 (65)	E coli Nissle 1917								
Henker et al.2008 (66)	E coli Nissle 1917								

Hernandez et al. 1998 (67)	S boulardii								
Htwe et al. 2008 (68)	S boulardii								
Huang et al. 2012 (conference presentation) (69)	E faecalis, C butyricum and B mesentericus								
Huang et al. 2014 (full paper of Huang et al. 2012) (70)	E faecalis, C butyricum and B mesentericus								
Huseynova et al. 2011 (71)	S boulardii								
Isolauri et al. 1991 (72)	LGG fermented milk LGG								
Isolauri et al. 1994 (73)	LGG								
Javeed et al. 2018 (74)	S boulardii								
Jasinski et al. 2002 (75)	LGG								
Kaila et al. 1992 (76)	LGG								
Kaila et al. 1995 (77)	LGG (viable vs inactivated LGG)								
Khan et al. 2012 (78)	S boulardii								
Khanna et al. 2005 (79)	Tyndalized (heat- killed)								

	Lactobacilus acidophilus								
Kianifar et al. 2009 (80)	L acidophilus & B bifidum								
Kowalska- Duplaga et al. 1999 (81)	Bifidobacterium ruminatum								
Kowalska- Duplaga et al. 2004 (82)	L acidophilus, B bifidum, L bulgaricus								
Kumar et al. 2018 (83)	S boulardii								
Kurugol et al. 2005 (84)	S boulardii								
Lahiri et al. 2008 (clinical study report NCT00457353) (85)	B clausii								
Lahiri et al. 2011 (conference abstract) (86)	B clausii								
Lahiri et al. 2015 (87)	B clausii								
Lahiri et al. 2015 (88)	B clausii O/C, SIN, N/R, T								
Lee et al. 2001 (89)	L. acidophilus & Bifidobacteria infantis								
Lee et al. 2015 (90)	Bifidobacterium longum, Bifidobacterium lactis, Lactobacillus acidophilus, Lactobacillus rhamnosus, Lactobacillus plantarum, Pediococcus pentosaceus								
Le Luyer et al. 2010 (91)	<i>S boulardii</i> (infant formula)								

Lievin-Le Moal et al. 2007 (92)	L acidophilus LB								
Majamaa et al. 1995 (93)	LGG								
Manyal et al. 2015 (94)	Lactobacillus sporogenes + Zinc								
Mao et al. 2008 (95)	Milk formula + Streptococcus thermophilus, Bifidobacterium lactis								
Maugo et al. 2012 (96)	B claussi								
Miele et al. 2009 (97)	VSL#3 (ulcerative colitis)								
Misra et al. 2009 (98)	LGG								
Moal et al. 2007 (99)	L acidophilus LB								
Narayanappa et al. 2008 (100)	<i>Bifilac</i> (no strain specification)								
Nixon et al. 2012 (101)	LGG								
Oandasan et al.1999 (102)	L acidophilius and L bifidus								
Ozkan et al. 2007 (103)	S boulardii								
Pant et al. 1996 (104)	LGG [Data reported only for a subset of recruited subjects with watery diarrhoea (26/40, 65%). No data for children with bloody stools]								
Pashapour et al. 2006 (105)	Pasteurized cow's milk yogurt (L								

	bulgaricus & S thermophilus)			1						
Phavichitr et al. 2013 (106)	Lactobacillus acidophilus + Bifidobacterium bifidum viv. lyophilisat with lactose + magnesium stearate as excipients									
Pedone et al. 1999 (107)	Fermented milk L casei DN 114 001									
Pociecha et al. 1998 (108)	L rhamnosus E/N, Oxy, and Pen + smectite vs L rhamnosus E/N, Oxy, and Pen only									
Raafey et al. 2008 (109)	Lactobacillus acidophilus									
Raza et al. 1995 (110)	LGG									
Rerksuppaphol et al. 2010 (111)	Lactobacillus acidophilus + Bifidobacterium bifidum at 4 Celsius Lactobacillus acidophilus + Bifidobacterium bifidum at room temperature									
Riaz et al. 2012 (112)	S boulardii									
Ritchie et al. 2010 (113)	LGG									
Rosenfeldt et al. 2002 (hospitalized) (114)	L rhamnosus 19070-2 and L reuteri DSM 12246									
Rosenfeldt et al. 2002 (non hospitalized) (115)	L rhamnosus 19070-2 and L reuteri DSM 12246									

Salazar-Lindo et al. 2007 (116)	LGG								
Savas-Erdeve & Gokay 2009 (117)	<i>S boulardii</i> (amebiasis)								
Sarker et al. 2005 (118)	Lactobacillus paracasei <i>ST11</i>								
Schnadower et al. 2018 (119)	LGG								
Sepp et al. 1995 (120)	L casei GG + trimethoprim								
Shan et al. 2013 (121)	<i>S boulardii</i> (part of AAD study)								
Sharif et al. 2016 (122)	S boulardii								
Shornikova et al. 1997 (123)	LGG								
Shornikova et al. 1997 (124)	L reuteri								
Shornikova et al. 1997 (125)	L reuteri								
Simakachorn et al. 2000 (126)	L acidophilus LB								
Sindhu et al. 2014 (127)	LGG								
Sirsat et al. 2017 (128)	S boulardii								

Sugita et al. 1994 (129)	L casei								
Szymański et al. 2006 (130)	L rhamnosus strains (573L/1; 573L/2; 573L/3)								
Szymański et al. 2019 (131)	L reuteri DSM 17938								
Taborska et al. 1997 (132)	L acidophilus ND								
Teran et al. 2009 (133)	L acidophilus, L rhamnosus, B longum, S boulardii								
Thibault et al. 2004 (134)	Infant formula with Bifidobacterium breve c50 & Streptococcus thermophilus 065								
Tlaskal et al. 1995 (135)	L acidophilus (helveticum R52) + L rhamnosus R11								
Tlaskal et al. 2005 (136)	L acidophilus /helveticum R52 + L rhamnosus R11								
Upadhyay et al. 2014 (137)	LGG								
Urganci et al. 2001 (138)	S boulardii								
Urtula and Dacula 2008 (139)	B clausii								
Vandenplas et al. 2007 (140)	S boulardii								
Villarruel et al. 2007 (141)	S boulardii								
Veereman- Wauters et al. 2009 (142)	LGG, L acidophilus, L casei, L plantarum, B infantis								
Vidjadevan et al. 2017/2018 (143) (144)	B clausii S boulardii								

Vivatvakin et al. 2006 (145)	L acidophilus, Bifidobacterium infantis																
---------------------------------	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

Study ID	Probiotic strain
Freedman 2018 (146)	Lactobacillus rhamnosus R0011 and L. helveticus R0052
Hamid et al. 2019 (147)	B clausii
	B clausii

L acidophilus + B lactis

B. RCTs meeting the inclusion criteria but not included in the systematic reviews

Hung-Hsiang Lai et al. 2019 (150)	Lactobacillus casei
Sudha et al. 2019 (151)	B clausii UBBC-07

L acidophilus

REFERENCES

Houeiss et al. 2018 (148)

Hong Chau et al. 2018 (149)

- 1 Szajewska H, Kołodziej M, Zalewski BM Systematic review with meta-analysis: Saccharomyces boulardii for treating acute gastroenteritis in children a 2020 update. 2020.
- 2 Szajewska H, Kolodziej M, Gieruszczak-Bialek D, et al. Systematic review with meta-analysis: Lactobacillus rhamnosus GG for treating acute gastroenteritis in children a 2019 update. Aliment Pharmacol Ther 2019;49(11):1376-84.
- Patro-Gołąb B, Szajewska H Systematic Review with Meta-Analysis: Lactobacillus reuteri DSM 17938 for Treating Acute Gastroenteritis in Children. An Update. Nutrients 2019;11(11):2762.
- 4 Ianiro G, Rizzatti G, Plomer M, et al. Bacillus clausii for the Treatment of Acute Diarrhea in Children: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2018;10(8).
- 5 Sniffen JC, McFarland LV, Evans CT, et al. Choosing an appropriate probiotic product for your patient: An evidence-based practical guide. PLoS One 2018;13(12):e0209205.

- 6 Florez ID, Veroniki AA, Al Khalifah R, et al. Comparative effectiveness and safety of interventions for acute diarrhea and gastroenteritis in children: A systematic review and network meta-analysis. PLoS One 2018;13(12):e0207701.
- 7 Padayachee M, Visser J, Viljoen E, et al. Efficacy and safety of Saccharomyces boulardii in the treatment of acute gastroenteritis in the paediatric population: a systematic review. South African Journal of Clinical Nutrition 2019;32(3):58-69.
- 8 Zorzela L, Ardestani SK, McFarland LV, et al. Is there a role for modified probiotics as beneficial microbes: a systematic review of the literature. Benef Microbes 2017;8(5):739-54.
- 9 Freedman SB, Pasichnyk D, Black KJ, et al. Gastroenteritis Therapies in Developed Countries: Systematic Review and Meta-Analysis. PLoS One 2015;10(6):e0128754.
- 10 Gutierrez-Castrellon P, Ortiz-Hernandez AA, Llamosas-Gallardo B, et al. [Efficacy of racecadotril vs. smectite, probiotics or zinc as an integral part of treatment of acute diarrhea in children under five years: A meta-analysis of multiple treatments]. Gac Med Mex 2015;151(3):329-37.
- 11 Ahmadi E, Alizadeh-Navaei R, Rezai MS Efficacy of probiotic use in acute rotavirus diarrhea in children: A systematic review and metaanalysis. Caspian J Intern Med 2015;6(4):187-95.
- 12 Feizizadeh S, Salehi-Abargouei A, Akbari V Efficacy and safety of Saccharomyces boulardii for acute diarrhea. Pediatrics 2014;134(1):e176-91.
- 13 Applegate JA, Fischer Walker CL, Ambikapathi R, et al. Systematic review of probiotics for the treatment of community-acquired acute diarrhea in children. BMC Public Health 2013;13 Suppl 3(S16.
- 14 Salari P, Nikfar S, Abdollahi M A meta-analysis and systematic review on the effect of probiotics in acute diarrhea. Inflamm Allergy Drug Targets 2012;11(1):3-14.
- 15 Dinleyici EC, Eren M, Ozen M, et al. Effectiveness and safety of Saccharomyces boulardii for acute infectious diarrhea. Expert Opin Biol Ther 2012;12(4):395-410.
- 16 Allen SJ, Martinez EG, Gregorio GV, et al. Probiotics for treating acute infectious diarrhoea. Cochrane Database Syst Rev 201011):Cd003048.
- 17 Abbaskhanian A, Rezai MS, Karami H, et al. The effect of fermented yogurt on rotavirus diarrhea in children. Health Med 2012;6:1600-4.
- 18 Agrawal KN, Bhasin SK, Faridi MA, Mathur M, et al. Lactobacillus casei in the control of acute diarrhea-a pilot study. Indian Pediatrics 2001;38:905-910.
- 19 Agarwal KN, Bhasin SK Feasibility studies to control acute diarrhoea in children by feeding fermented milk preparations Actimel and Indian Dahi. Eur J Clin Nutr 2002;56 Suppl 4(S56-9.
- Aggarwal S, Upadhyay A, Shah D, et al. Lactobacillus GG for treatment of acute childhood diarrhoea: an open labelled, randomized controlled trial. Indian J Med Res 2014;139(3):379-85.

- Agustina R, Lukito W, Firmansyah A, et al. The effect of early nutritional supplementation with a mixture of probiotic, prebiotic, fiber and micronutrients in infants with acute diarrhea in Indonesia. Asia Pac J Clin Nutr 2007;16(3):435-42.
- 22 Kiran Azim TSS, Saba Naim Khan Efficacy of Probiotics (Sacchromyces bulardii) in Acute Watery Diarrhoea in Children. Journal of Rawalpindi Medical College (JRMC); 2014;18(2):213-215 2014;18(:213-15.
- 23 Basu S, Chatterjee M, Ganguly S, et al. Efficacy of Lactobacillus rhamnosus GG in acute watery diarrhoea of Indian children: a randomised controlled trial. J Paediatr Child Health 2007;43(12):837-42.
- 24 Basu S, Paul DK, Ganguly S, et al. Efficacy of high-dose Lactobacillus rhamnosus GG in controlling acute watery diarrhea in Indian children: a randomized controlled trial. J Clin Gastroenterol 2009;43(3):208-13.
- 25 Bhat S, G. N. S, Savio CD Efficacy of probiotics in acute diarrhoea in children. 2018 2018;5(4):5.
- 26 Bhatnagar S, Singh KD, Sazawal S, et al. Efficacy of milk versus yogurt offered as part of a mixed diet in acute noncholera diarrhea among malnourished children. J Pediatr 1998;132(6):999-1003.
- 27 Billoo AG, Memon MA, Khaskheli SA, et al. Role of a probiotic (Saccharomyces boulardii) in management and prevention of diarrhoea. World J Gastroenterol 2006;12(28):4557-60.
- 28 Boudraa G, Benbouabdellah M, Hachelaf W, et al. Effect of feeding yogurt versus milk in children with acute diarrhea and carbohydrate malabsorption. J Pediatr Gastroenterol Nutr 2001;33(3):307-13.
- 29 Boulloche J, Mouterde O, Mallet E. Management of acute diarrhoea in infants and young children. Controlled study of the anti-diarrheal efficacy of killed L. acidophilus (LB strain) versus a placebo and a reference drug (loperamide). Annales de Pediatrie 1994;41(7):457–63.
- 30 Burande MA Comparison of efficacy of Saccharomyces boulardii strain in the treatment of acute diarrhea in children: A prospective, single-blind, randomized controlled clinical trial. J Pharmacol Pharmacother 2013;4(3):205-8.
- 31 Burki MFK, Jabeen F Efficacy of saccharomyces boullardii in children with acute diarrhea. Medical forum monthly 2017;28(2):112-16.
- 32 Canani RB, Cirillo P, Terrin G, et al. Probiotics for treatment of acute diarrhoea in children: randomised clinical trial of five different preparations. BMJ 2007;335(7615):340.
- Carrague-Orendain A Randomized, double blind placebo- controlled trial on the efficacy and safety of lactobacillus (Infloran Berna capsules) in the treatment of acute non-bloody diarrhoea in children two to five years of age. Not published 1999;NR(NR).
- 34 Guillot GC, Garcia BE, Santa Cruz DM, et al. Effects of saccharomyces boulardii in children with chronic diarrhea, especially cases due to Giardiasis. Rev Mex de Puericultura y Pediatria. 1995;2(12):1-11.
- 35 Cetina-Sauri G, Sierra Basto G Evaluation of Saccharomyces boulardii for the treatment of acute diarrhea in pediatric patients. [French]. Annales de Pediatrie 1994;41(6):397-400.
- 36 Chapoy P [Treatment of acute infantile diarrhea: controlled trial of Saccharomyces boulardii]. Ann Pediatr (Paris) 1985;32(6):561-3.

- 37 Chen CC, Kong MS, Lai MW, et al. Probiotics have clinical, microbiologic, and immunologic efficacy in acute infectious diarrhea. Pediatr Infect Dis J 2010;29(2):135-8.
- 38 Chouraqui JP, Dietsch C, Musial H, et al. Saccharomyces boulardii in the management of toddler diarrhea: a double blind-placebo controlled study. J. Pediatr. Gastroenterol. Nutr. 1995;20:463. Meeting Abstract #71.
- 39 Costa-Ribeiro H, Ribeiro TC, Mattos AP, et al. Limitations of probiotic therapy in acute, severe dehydrating diarrhea. J Pediatr Gastroenterol Nutr 2003;36(1):112-5.
- 40 Correa NB, Penna FJ, Lima FM, et al. Treatment of acute diarrhea with Saccharomyces boulardii in infants. J Pediatr Gastroenterol Nutr 2011;53(5):497-501.
- 41 Czerwionka-Szaflarska M, Murawska S, Swincow G Evaluation of influence of oral treatment with probiotic and/or oral rehydration solution on course of acute diarrhoea in children. [Polish]. Przeglad Gastroenterologiczny 2009;4(3):166-72.
- 42 D'Apuzzo V, Salzberg R [Treatment of acute diarrhea in pediatrics with Streptococcus faecium: results of a double blind study]. Ther Umsch 1982;39(12):1033-5.
- 43 Dalgic N, Sancar M, Bayraktar B, et al. Probiotic, zinc and lactose-free formula in children with rotavirus diarrhea: are they effective? Pediatr Int 2011;53(5):677-82.
- 44 Das S, Gupta PK, Das RR Efficacy and Safety of Saccharomyces boulardii in Acute Rotavirus Diarrhea: Double Blind Randomized Controlled Trial from a Developing Country. J Trop Pediatr 2016;62(6):464-70.
- 45 Kumar Dash D, Dash M, Mohanty MD, et al. Efficacy of Probiotic Saccharomyces boulardii as an Adjuvant Therapy in Acute Childhood Diarrhoea. Journal of Nepal Paediatric Society 2017;36(250.
- 46 Dinleyici EC, Eren M, Yargic ZA, et al. Clinical efficacy of Saccharomyces boulardii and metronidazole compared to metronidazole alone in children with acute bloody diarrhea caused by amebiasis: a prospective, randomized, open label study. Am J Trop Med Hyg 2009;80(6):953-5.
- 47 Dinleyici EC, Eren M, Dogan N, et al. Clinical efficacy of Saccharomyces boulardii or metronidazole in symptomatic children with Blastocystis hominis infection. Parasitol Res 2011;108(3):541-5.
- 48 Dinleyici EC, Vandenplas Y Lactobacillus reuteri DSM 17938 effectively reduces the duration of acute diarrhoea in hospitalised children. Acta Paediatr 2014;103(7):e300-5.
- 49 Dinleyici EC, Kara A, Dalgic N, et al. Saccharomyces boulardii CNCM I-745 reduces the duration of diarrhoea, length of emergency care and hospital stay in children with acute diarrhoea. Beneficial Microbes 2015;6(4):415-21.
- 50 Dinleyici EC, Dalgic N, Guven S, et al. Lactobacillus reuteri DSM 17938 shortens acute infectious diarrhea in a pediatric outpatient setting. Jornal de Pediatria 2015;91(4):392-96.

- 51 Dubey AP, Rajeshwari K, Chakravarty A, et al. Use of VSL[sharp]3 in the treatment of rotavirus diarrhea in children: preliminary results. J Clin Gastroenterol 2008;42 Suppl 3 Pt 1(S126-9.
- 52 Dutta P, Mitra U, Dutta S, et al. Randomised controlled clinical trial of Lactobacillus sporogenes (Bacillus coagulans), used as probiotic in clinical practice, on acute watery diarrhoea in children. Trop Med Int Health 2011;16(5):555-61.
- 53 El-Soud NHAS, R. N.; Mosallam, D. S.; Barakat, N. A. M.; Sabry, M. A. Bifidobacterium lactis in treatment of children with acute diarrhea. A randomized double blind controlled trial. Macedonian Journal of Medical Sciences 2015;3(3):403-07.
- 54 Erdogan O, Tanyeri B, Torun E, et al. The Comparition of the Efficacy of Two Different Probiotics in Rotavirus Gastroenteritis in Children. Journal of Tropical Medicine 2012;2012(
- 55 Eren M, Dinleyici EC, Vandenplas Y Clinical efficacy comparison of Saccharomyces boulardii and yogurt fluid in acute non-bloody diarrhea in children: A randomized, controlled, open label study. American Journal of Tropical Medicine and Hygiene 2010;82(3):488-91.
- 56 Francavilla R, Lionetti E, Castellaneta S, et al. Randomised clinical trial: Lactobacillus reuteri DSM 17938 vs. placebo in children with acute diarrhoea--a double-blind study. Aliment Pharmacol Ther 2012;36(4):363-9.
- 57 Freedman SBS, P. M.; Willan, A.; Johnson, D.; Gouin, S.; Schuh, S. Emergency Department Treatment of Children With Diarrhea Who Attend Day Care: A Randomized Multidose Trial of a Lactobacillus helveticus and Lactobacillus rhamnosus Combination Probiotic. Clinical pediatrics 2015;54(12):1158-66.
- 58 Gaon D, Garcia H, Winter L, et al. Effect of Lactobacillus strains and Saccharomyces boulardii on persistent diarrhea in children. Medicina (B Aires) 2003;63(4):293-8.
- 59 Grandy G, Medina M, Soria R, et al. Probiotics in the treatment of acute rotavirus diarrhoea. A randomized, double-blind, controlled trial using two different probiotic preparations in Bolivian children. BMC Infectious Diseases 2010;10(253).
- 60 Guandalini S Probiotics for prevention and treatment of diarrhea. J Clin Gastroenterol 2011;45 Suppl(S149-53.
- 61 Guandalini S, Magazzu G, Chiaro A, et al. VSL#3 improves symptoms in children with irritable bowel syndrome: a multicenter, randomized, placebo-controlled, double-blind, crossover study. J Pediatr Gastroenterol Nutr 2010;51(1):24-30.
- 62 Guarino A, Canani RB, Spagnuolo MI, et al. Oral bacterial therapy reduces the duration of symptoms and of viral excretion in children with mild diarrhea. J Pediatr Gastroenterol Nutr 1997;25(5):516-9.
- 63 Hafeez A, Tariq P, Ali S, et al. The efficacy of Saccharomyces boulardii in the treatment of acute watery diarrhea in children: A multicentre randomized controlled trial. Journal of the College of Physicians and Surgeons Pakistan 2002;12(7):432-34.
- 64 Hegar B, Waspada IM, Gunardi H, et al. A double blind randomized trial showing probiotics to be ineffective in acute diarrhea in Indonesian children. Indian J Pediatr 2015;82(5):410-4.
- 65 Henker J, Laass M, Blokhin BM, et al. The probiotic Escherichia coli strain Nissle 1917 (EcN) stops acute diarrhoea in infants and toddlers. European Journal of Pediatrics 2007;166(4):311-18.

- 66 Henker J, Laass MW, Blokhin BM, et al. Probiotic escherichia coli nissle 1917 versus placebo for treating diarrhea of greater than 4 days duration in infants and toddlers. Pediatric Infectious Disease Journal 2008;27(6):494-99.
- 67 Hernández C, Estrada Pineda E, Rojas Jiménez MI, et al. Ensayo clínico terapéutico sobre Saccharomyces boulardii en niños con diarrea aguda [Saccharomyces boulardii clinical therapeutics trial in children affected by acute diarrhea]. Rev. enfermedades infecc. ped 1998;11(43):87-9.
- 68 Htwe K, Khin SY, Tin M, et al. Effect of Saccharomyces boulardii in the treatment of acute watery diarrhea in Myanmar children: A randomized controlled study. American Journal of Tropical Medicine and Hygiene 2008;78(2):214-16.
- 69 Huang YF, Liu PY, Hsieh KS Clinical effectiveness of three-combination probiotics therapy in pediatric patients with salmonella and rotavirus gastroenteritis: Randomised clinical trial. International Journal of Infectious Diseases 2012;16(e199.
- 70 Huang YF, Liu PY, Chen YY, et al. Three-combination probiotics therapy in children with salmonella and rotavirus gastroenteritis. Journal of Clinical Gastroenterology 2014;48(1):37-42.
- 71 Hüseynova NM, Qurbanov MK, Ezizov NA, et al. The effect of Yomogi preparation in treatment of severe diarrea in children. Azerbaijan Medical Journal 2011:41-43.
- 72 Isolauri E, Juntunen M, Rautanen T, et al. A human Lactobacillus strain (Lactobacillus casei sp strain GG) promotes recovery from acute diarrhea in children. Pediatrics 1991;88(1):90-7.
- 73 Isolauri E, Kaila M, Mykkanen H, et al. Oral bacteriotherapy for viral gastroenteritis. Dig Dis Sci 1994;39(12):2595-600.
- 74 Javeed A, Manzoor S, Wamiq S. Effect of oral saccharomyces boulardii supplementation on the duration of acute watery diarrhea in children. Pakistan Journal of Medical and Health Sciences. 2018;12(1):212-214.
- Jasinski C, Tanzi MN, Schelotto F Efficacy of Lactobacillus GG in oral rehydration solution. Pediatrica 2002;22(231-43.
- 76 Kaila M, Isolauri E, Soppi E, et al. Enhancement of the circulating antibody secreting cell response in human diarrhea by a human Lactobacillus strain. Pediatr Res 1992;32(2):141-4.
- 77 Kaila M, Isolauri E, Saxelin M, et al. Viable versus inactivated lactobacillus strain GG in acute rotavirus diarrhoea. Arch Dis Child 1995;72(1):51-3.
- 78 Khan A, Javed T, Chishti AL Clinical efficacy of use of probiotic "Saccharomyces boulardii" In children with acute watery diarrhea. Pakistan Paediatric Journal 2012;36(3):122-27.
- 79 Khanna V, Alam S, Malik A Efficacy of tyndalized Lactobacillus acidophilus in acute diarrhea. Indian Journal of Pediatrics 2005;72(11):935-38.
- 80 Kianifar HR, Farid R, Ahanchian H, et al. Probiotics in the treatment of acute diarrhea in young children. Iranian Journal of Medical Sciences 2009;34(3):204-07.

- 81 Kowalska-Duplaga K, Strus M, Heczko P, et al. Lactobif, a marketed probiotic product containing Bifidobacterium ruminantium was not effective in the treatment of acute rotavirus diarrhoea in infants. J Pediatr Gastroenterol Nutr 2002;34(4).
- 82 Kowalska-Duplaga K, Fyderek K, Szajewska H, et al. Efficacy of Trilac[®] in the treatment of acute diarrhoea in infants and young children -A multicentre, randomized, double-blind placebo-controlled study. Pediatria Wspolczesna 2004;6(295-99.
- 83 Kumar A, Kumar D, Rajkumar D. To Study The Role Of Saccharomyces Boulardii In Treatment Of Acute Watery Diarrhea In Children Aged 6 Months To Syears: Prospective Randomized Control Study. IOSR-JDMS 2018;17(3):35-40.
- 84 Kurugol Z, Koturoglu G Effects of Saccharomyces boulardii in children with acute diarrhoea. Acta Paediatr 2005;94(1):44-7.
- 85 Clinical study report (accessed Jan 2020) <u>www.sanofi.com/en/science-and-innovation/clinical-trials-and-results/our-disclosure-commitments/pharma/-/media/Project/One-Sanofi-Web/Websites/Global/Sanofi-COM/Home/common/docs/clinical-study-results/ENTER L 01486 summary.pdf</u>
- Lahiri KR, Tullu MS, Raori R, et al. Beneficial role of Bacillus clausii in treatment of acute diarrhea. PEDICON 2011. 48th Annual National Conference of Indian Academy of Pediatrics . Jan 20-23, 2011. Abstract GE/06(0).
- 87 Lahiri K, Jadhav K, Gahlowt P, et al. Bacillus Clausii as an Adjuvant Therapy in Acute Childhood Diarrhoea. IOSR Journal of Dental and Medical Sciences 2015;Vol 14(74-76.
- Lahiri K, Dsouza J, Gahlowt P Beneficial Role of Probiotic in Acute Childhood Diarrhoea. J. Harmony. Res. Med. And Hlth. Sci. 2015:26-30.
- Lee MC, Lin LH, Hung KL, et al. Oral bacterial therapy promotes recovery from acute diarrhea in children. Acta Paediatr Taiwan 2001;42(5):301-5.
- 90 Lee DK, Park JE, Kim MJ, et al. Probiotic bacteria, B. longum and L. acidophilus inhibit infection by rotavirus in vitro and decrease the duration of diarrhea in pediatric patients. Clin Res Hepatol Gastroenterol 2015;39(2):237-44.
- 91 Le Luyer B, Makhoul G, Duhamel JF [A multicentric study of a lactose free formula supplemented with Saccharomyces boulardii in children with acute diarrhea]. Arch Pediatr 2010;17(5):459-65.
- 92 Lievin-Le Moal V, Sarrazin-Davila LE, Servin AL An experimental study and a randomized, double-blind, placebo-controlled clinical trial to evaluate the antisecretory activity of Lactobacillus acidophilus strain LB against nonrotavirus diarrhea. Pediatrics 2007;120(4):e795-803.
- 93 Majamaa H, Isolauri E, Saxelin M, et al. Lactic acid bacteria in the treatment of acute rotavirus gastroenteritis. J Pediatr Gastroenterol Nutr 1995;20(3):333-8.
- 94 Manyal AK, Phadke VD Role of probiotic Lactobacillus sporogenes in the treatment of acute diarrhoea in children. International Journal of Pharmaceutical Sciences and Research 2015;6(2):767-71.
- 95 Mao M, Yu T, Xiong Y, et al. Effect of a lactose-free milk formula supplemented with bifidobacteria and streptococci on the recovery from acute diarrhoea. Asia Pac J Clin Nutr 2008;17(1):30-4.

96 Maugo, B.M. Effectiveness of Bacillus clausii in Reducing Duration of Illness in Acute Diarrhoea in Children 6–59 Months of Age Admitted With Severe Dehydration. Available online:

http://erepository.uonbi.ac.ke/bitstream/handle/11295/8325/DR. MAUGO BRIAN MAUGO M.MED PAEDS 2012.pdf?sequence=1 (accessed on 30 July 2019).

- 97 Miele E, Pascarella F, Giannetti E, et al. Effect of a probiotic preparation (VSL#3) on induction and maintenance of remission in children with ulcerative colitis. Am J Gastroenterol 2009;104(2):437-43.
- 98 Misra S, Sabui TK, Pal NK A randomized controlled trial to evaluate the efficacy of lactobacillus GG in infantile diarrhea. J Pediatr 2009;155(1):129-32.
- 99 Moal VLL, Sarrazin-Davila LE, Servin AL An experimental study and a randomized, double-blind, placebo-controlled clinical trial to evaluate the antisecretory activity of Lactobacillus acidophilus strain LB against nonrotavirus diarrhea. Pediatrics 2007;120(4):e795e803.
- 100 Narayanappa D Randomized double blinded controlled trial to evaluate the efficacy and safety of Bifilac in patients with acute viral diarrhea. Indian Journal of Pediatrics 2008;75(7):709-13.
- 101 Nixon AF, Cunningham SJ, Cohen HW, et al. The effect of Lactobacillus GG on acute diarrheal illness in the pediatric emergency department. Pediatr Emerg Care 2012;28(10):1048-51.
- 102 Oandasan M, Gatcheco F, Kapahmgan S Randomized, double blind placebo-controlled clinical trial on the effi-cacy and safety of Infloran berna capsules in the treatment of acute non-bloody diarrhea in infants. Niepublikowane (Cytowane za 4) 1999.
- 103 Ozkan TB, Sahin E, Erdemir G, et al. Effect of Saccharomyces boulardii in children with acute gastroenteritis and its relationship to the immune response. J Int Med Res 2007;35(2):201-12.
- 104 Pant AR, Graham SM, Allen SJ, et al. Lactobacillus GG and acute diarrhoea in young children in the tropics. J Trop Pediatr 1996;42(3):162-5.
- 105 Pashapour N, Iou SG Evaluation of yogurt effect on acute diarrhea in 6-24-month-old hospitalized infants. Turkish Journal of Pediatrics 2006;48(2):115-18.
- 106 Phavichitr N, Puwdee P, Tantibhaedhyangkul R Cost-benefit analysis of the probiotic treatment of children hospitalized for acute diarrhea in Bangkok, Thailand. Southeast Asian J Trop Med Public Health 2013;44(6):1065-71.
- 107 Pedone CA, Bernabeu AO, Postaire ER, et al. The effect of supplementation with milk fermented by Lactobacillus casei (strain DN-114 001) on acute diarrhoea in children attending day care centres. Int J Clin Pract 1999;53(3):179-84.
- 108 Pociecha W, Balcerska A Influence of the mucoprotective drugs on the clinical course of children's rotaviral gastroenteritis. [Polish]. Gastroenterologia Polska 1998;5(6):533-42.

- 109 M. Rafeey, A. Ostadrahimi, M. Boniadi, et al. Lactobacillus acidophilus Yogurt and Supplement in Children with Acute Diarrhea: A Clinical Trial. Research Journal of Medical Sciences 2008;2:13-18.
- 110 Raza S, Graham SM, Allen SJ, et al. Lactobacillus GG in acute diarrhea. Indian Pediatr 1995;32(10):1140-2.
- 111 Rerksuppaphol S, Rerksuppaphol L Lactobacillus acidophilus and Bifidobacterium bifidum stored at ambient temperature are effective in the treatment of acute diarrhoea. Ann Trop Paediatr 2010;30(4):299-304.
- 112 Riaz M, Alam S, Malik A, et al. Efficacy and safety of Saccharomyces boulardii in acute childhood diarrhea: a double blind randomised controlled trial. Indian J Pediatr 2012;79(4):478-82.
- 113 Ritchie BK, Brewster DR, Tran CD, et al. Efficacy of Lactobacillus GG in aboriginal children with acute diarrhoeal disease: a randomised clinical trial. J Pediatr Gastroenterol Nutr 2010;50(6):619-24.
- 114 Rosenfeldt V, Michaelsen KF, Jakobsen M, et al. Effect of probiotic Lactobacillus strains in young children hospitalized with acute diarrhea. Pediatr Infect Dis J 2002;21(5):411-6.
- 115 Rosenfeldt V, Michaelsen KF, Jakobsen M, et al. Effect of probiotic Lactobacillus strains on acute diarrhea in a cohort of nonhospitalized children attending day-care centers. Pediatric Infectious Disease Journal 2002;21(5):417-19.
- 116 Salazar-Lindo E, Figueroa-Quintanilla D, Caciano MI, et al. Effectiveness and safety of Lactobacillus LB in the treatment of mild acute diarrhea in children. J Pediatr Gastroenterol Nutr 2007;44(5):571-6.
- 117 Savas-Erdeve S, Gokay S, Dallar Y Efficacy and safety of Saccharomyces boulardii in amebiasis-associated diarrhea in children. Turk J Pediatr 2009;51(3):220-4.
- 118 Sarker SA, Sultana S, Fuchs GJ, et al. Lactobacillus paracasei strain ST11 has no effect on rotavirus but ameliorates the outcome of nonrotavirus diarrhea in children from Bangladesh. Pediatrics 2005;116(2):e221-8.
- 119 Schnadower D, Tarr PI, Casper TC, et al. Lactobacillus rhamnosus GG versus Placebo for Acute Gastroenteritis in Children. N Engl J Med 2018;379(21):2002-14.
- 120 Sepp E, Tamm E, Torm S, et al. Impact of a lactobacillus probiotic on the faecal microflora in children with Shigellosis. Mikroökologie und Therapie. Microecology and therapy. 199523):74.
- 121 Shan LS, Hou P, Wang ZJ, et al. Prevention and treatment of diarrhoea with Saccharomyces boulardii in children with acute lower respiratory tract infections. Benef Microbes 2013;4(4):329-34.
- 122 Sharif MR, Kashani HH, Ardakani AT, et al. The Effect of a Yeast Probiotic on Acute Diarrhea in Children. Probiotics Antimicrob Proteins 2016;8(4):211-14.
- 123 Shornikova AV, Isolauri E, Burkanova L, et al. A trial in the Karelian Republic of oral rehydration and Lactobacillus GG for treatment of acute diarrhoea. Acta Paediatrica, International Journal of Paediatrics 1997;86(5):460-65.

- 124 Shornikova AV, Casas IA, Isolauri E, et al. Lactobacillus reuteri as a therapeutic agent in acute diarrhea in young children. Journal of Pediatric Gastroenterology and Nutrition 1997;24(4):399-404.
- 125 Shornikova AV, Casas IA, Mykkanen H, et al. Bacteriotherapy with Lactobacillus reuteri in rotavirus gastroenteritis. Pediatric Infectious Disease Journal 1997;16(12):1103-07.
- 126 Simakachorn N, Pichaipat V, Rithipornpaisarn P, et al. Clinical evaluation of the addition of lyophilized, heat-killed Lactobacillus acidophilus LB to oral rehydration therapy in the treatment of acute diarrhea in children. J Pediatr Gastroenterol Nutr 2000;30(1):68-72.
- 127 Sindhu KN, Sowmyanarayanan TV, Paul A, et al. Immune response and intestinal permeability in children with acute gastroenteritis treated with Lactobacillus rhamnosus GG: a randomized, double-blind, placebo-controlled trial. Clin Infect Dis 2014;58(8):1107-15.
- 128 Sirsat GM, Sankpal DM. Role of Saccharomyces boulardii in management of acute diarrhoea of children A randomized controlled trial. MedPulse International Journal of Pediatrics. December 2017;4(3):68-72.
- 129 Sugita T, Togawa M. Efficacy of Lactobacillus preparation bioloactis powder in children with rotavirus enteritis. Japan Journal of Pediatrics 1994;47:2755–62.
- 130 Szymanski H, Pejcz J, Jawien M, et al. Treatment of acute infectious diarrhoea in infants and children with a mixture of three Lactobacillus rhamnosus strains--a randomized, double-blind, placebo-controlled trial. Aliment Pharmacol Ther 2006;23(2):247-53.
- 131 Szymanski H, Szajewska H Lack of Efficacy of Lactobacillus reuteri DSM 17938 for the Treatment of Acute Gastroenteritis: A Randomized Controlled Trial. Pediatr Infect Dis J 2019.
- 132 Táborská J, Pazdiora P. Smecta and Lactobacillus acidophilus ND in the treatment of acute diarrhoea in children [Smecta a Lactobacillus acidophilus ND v lécbe akutních detských prujmu]. Ceskoslovenská pediatrie 1997;52(1):29–33.
- 133 Teran CG, Teran-Escalera CN, Villarroel P Nitazoxanide vs. probiotics for the treatment of acute rotavirus diarrhea in children: a randomized, single-blind, controlled trial in Bolivian children. International Journal of Infectious Diseases 2009;13(4):518-23.
- 134 Thibault H, Aubert-Jacquin C, Goulet O Effects of long-term consumption of a fermented infant formula (with Bifidobacterium breve c50 and Streptococcus thermophilus 065) on acute diarrhea in healthy infants. J Pediatr Gastroenterol Nutr 2004;39(2):147-52.
- 135 Tlaskal P, Michkova E, Klayarova H, et al. Lactobacillus acidophilus in the treatment of children with gastrointestinal illnesses. Česko-Slovenská Pediatrie. 1995;51: 615-619.
- 136 Tlaskal P, Schramlova J, Kokesova A, et al. Probiotics in the treatment of diarrhoeal disease of children. Nutrition Aliments Fonctionnels Aliments Santé 2005;3:25-28.
- 137 Upadhyay A, Shah D, Teotia N, et al. Lactobacillus GG for treatment of acute childhood diarrhoea: an open labelled, randomized controlled trial. The Indian journal of medical research 2014;139(3):379-85.
- 138 Urganci N, Polat T, Uysalol M, et al. Evaluation of the efficacy of Saccharomyces boulardii in children with acute diarrhoea. Archives of Gastroenterohepatology 2001;20(3-4):81-83.

- 139 Urtula, R.P.; Dacula, C.E. Bacillus clausii an Adjunct Treatment for Pediatric Patients with Acute Non-Bloody Diarrhea: A Randomized, Controlled Clinical Trial [Abstract]. Available online: <u>http://arl4.library.sk/arl-sllk/en/detail-sllk_un_cat-0013574-Bacillus-clausii-an-adjunct-treatmentfor-pediatric-patients-with-acute-nonbloody-diarrhea-a-rando/</u>
- 140 Vandenplas Y, Badriul H, Thapa B, Elizabeth K, Bhave S. A multicenter DBRC-trial in developing countries with Saccharomcytes boulardii (S. boulardii) in acute gastroenteritis. Abstract #PG2-21. Presented at the European Society for Paediatric Gastoenterology, Hepatology and Nutrition Meeting. May 9-12, 2007, Barcelona, Spain. J Pediatr Gastoenterol Nutri. 2007;44(6):e86.
- 141 Villarruel G, Rubio DM, Lopez F, et al. Saccharomyces boulardii in acute childhood diarrhoea: a randomized, placebo-controlled study. Acta Paediatr 2007;96(4):538-41.
- 142 Veereman-Wauters G, Staelens S, Wijffels J Pediatric Intervention Study With a Probiotic Mixture (Bacilac Forte) in Acute Gastroenteritis. Journal of Pediatric Gastroenterology and Nutrition 2009;48(S114.
- 143 Vidjeadevan D, Ramesh S, Vinoth S Role of Saccharomyces Boulardii and Bacillus Clausii in Children with Acute Diarrhea A Randomized Control Trial. Journal of Medical Science and Clinical Research; 2017;5(11):30910-30914.
- 144 Vidjeadevan D, Vinoth S, Ramesh S Role of Saccharomyces boulardii and Bacillus clausii in reducing the duration of diarrhea: a threearmed randomised controlled trial. 2018 2018;5(5):4.
- 145 Vivatvakin B, Kowitdamrong E Randomized control trial of live Lactobacillus acidophilus plus Bifidobacterium infantis in treatment of infantile acute watery diarrhea. J Med Assoc Thai 2006;89 Suppl 3(S126-33.
- 146 Freedman SB, Williamson-Urquhart S, Farion KJ, et al. Multicenter Trial of a Combination Probiotic for Children with Gastroenteritis. N Engl J Med 2018;379(21):2015-26.
- 147 Hamid F, Moosa Ma Quaium S, Rahman A, et al. Clinical Efficacy of Bacillus Clausii Probiotic in the Management of Acute Diarrhoea in Children. Chattagram Maa-O-Shishu Hospital Medical College Journal 2019;18(14-17.
- 148 Houeiss P, Farah A, Noun P, et al. Comparative Study for Probiotics and Symbiotics Versus Placebo in Pediatrics Acute Diarrhea: Randomized Controlled Trial. 2018.
- 149 Hong Chau TT, Minh Chau NN, Hoang Le NT, et al. A Double-blind, Randomized, Placebo-controlled Trial of Lactobacillus acidophilus for the Treatment of Acute Watery Diarrhea in Vietnamese Children. Pediatr Infect Dis J 2018;37(1):35-42.
- Lai H-H, Chiu C-H, Kong M-S, et al. Probiotic Lactobacillus casei: Effective for Managing Childhood Diarrhea by Altering Gut Microbiota and Attenuating Fecal Inflammatory Markers. Nutrients 2019;11(5):1150.
- 151 Sudha MR, Jayanthi N, Pandey DC, et al. Bacillus clausii UBBC-07 reduces severity of diarrhoea in children under 5 years of age: a double blind placebo controlled study. Benef Microbes 2019;10(2):149-54.

Figure S1. *Saccharomyces boulardii* vs. control. Duration of diarrhea & Duration of hospitalization.

Figure S2. *Saccharomyces boulardii* vs. control. Need for hospitalization in out-patients. Figure S3. *Saccharomyces boulardii* vs. control. Diarrhea on day 2.

Figure S4. Lactobacillus rhamnosus GG vs. control. Duration of diarrhea.

Figure S5. Lactobacillus rhamnosus GG vs. control. Duration of hospitalization.

Figure S6. *Lactobacillus reuteri* DSM 17938 vs. control. Duration of diarrhea & Duration of hospitalization

Figure S7. Lactobacillus reuteri DSM 17938 vs. control. Cure on day 2.

Figure S8. *L. rhamnosus* 19070-2 & *L. reuteri* DSM 12246 vs. control. Duration of diarrhea & Duration of hospitalization.

Figure S9. *L helveticus* R0052 & *L rhamnosus* R0011 vs. control. Duration of diarrhea Figure S10. *L helveticus* R0052 & *L rhamnosus* R0011 vs. placebo. Need for hospitalization in out-patients.

Figure S11. Bacillus clausii O/C, SIN, N/R, and T. Duration of diarrhea

Figure S12. *Bacillus clausii* O/C, SIN, N/R, and T. Duration of hospitalization.

Figure S1. Saccharomyces boulardii vs. control. Duration of diarrhea & Duration of hospitalization

	Experin				ntrol			Mean Difference	Mean Difference	Risk of Bias
Study or Subgroup	Mean [Days] S	SD [Days]	Total	Mean [Days]	SD [Days]	Total	Weight	IV, Random, 95% CI [Days]	IV, Random, 95% CI [Days]	ABCDEFG
2.19.1 Duration of diarrhea										
3hat 2018 (500mg/6d) (H)	1.74	0.45	40	2.4	1.1	40	3.7%	-0.66 [-1.03, -0.29]		? • • ? • ? •
Billoo 2006 (500 mg/5 d)(H)	3.6	1.77	50	4.8	1.77	50	3.0%	-1.20 [-1.89, -0.51]	<u> </u>	?? 🛑 ? 🗣 ? ?
Burande 2013 (500 mg/5 d)(H)	3.4	1.4	35	5.5	2.1	35	2.6%	-2.10 [-2.94, -1.26]		929292
Burki 2017 (?) (H)	3.23	1.31	100	5.84	1.81	100	3.6%	-2.61 [-3.05, -2.17]		2002220
Canani 2007 (250 mg/5 d)(0)	4.38	0.1	91	4.81	0.22	92	4.1%	-0.43 [-0.48, -0.38]		
Dalgic 2011 (250 mg/5 d)(H)	3.95	1.84	120	4.38	1.87	120	3.5%	-0.43 [-0.90, 0.04]		
Das 2016 (500 mg/5d)(H)	2.45	0.37	30	3.4	0.62	28	3.9%	-0.95 [-1.22, -0.68]	+	2442424
Dash 2016 (500 mg/5d)(H)	1.1	2	64	2.03	2	62	3.0%	-0.93 [-1.63, -0.23]		
Dinlevici 2009 (500ma/7d)(H)	1.92	0.76	25	3.08	1.35	25	3.2%	-1.16 [-1.77, -0.55]	_ —	200200
Dinleyici 2015 (500 mg/5d) (H+0)	3.14	1.39	220	4.15	1.36	143	3.9%	-1.01 [-1.30, -0.72]	-	626267
Erdogan 2012 (282.5 mg/?d(0)	6.6	1.7	25	7	1.6	25	2.5%	-0.40 [-1.32, 0.52]		2202020
Grandy 2010 (4000 mg/5 d)(H)	2.92	1.21	21	5.68	1.76	20	2.4%	-2.76 [-3.69, -1.83]		2242422
Hafeez 2002 (500 mg/6 d)(0)	3.6	1.49	51	4.5	1.49	50	3.3%	-0.90 [-1.48, -0.32]		
Htwe 2008 (500 mg/5 d)(H)	3.08	4.03	50	4.68	4.03	50	1.4%	-1.60 [-3.18, -0.02]		
aveed 2018 (500mg/5d) (H)	4.37	1.38	157	4.59	1.5	157	3.8%	-0.22 [-0.54, 0.10]	_	
(han 2012 (500mg/5d) (H)	3.43	5.58		4.5	5.58	210	2.2%	-1.07 [-2.14, -0.00]		
(mar 2012 (300mg/30) (H) (umar 2018 (500 mg/3 d)(H)	3.18	1.01	50	3.98	1.05	50	3.7%	-0.80 [-1.20, -0.40]		
	4.7	2.5	100	5.5	3.2	100	2.7%			2242424
Kurugol 2005 (250 mg/5 d)(H)		1.02	54	2.67		54	2.7%	-0.80 [-1.60, -0.00]		
Riaz 2012 (500 mg/5 d)(H)	2.17		100		1.27			-0.50 [-0.93, -0.07]		?..?????????????
5harif 2016 (250 mg/5 d)(H)	3.4	1.3		5.5	2.1	100	3.5%	-2.10 [-2.58, -1.62]		
/andenplas 2007 (500 mg/5 d)(0)	2.24	1.61	93	2.77	2.19	95	3.3%	-0.53 [-1.08, 0.02]		2292902
/idjeadevan 2017/2018 (500mg/5d) (H)	3.53	0.9	35	4.47	1.02	35	3.6%	-0.94 [-1.39, -0.49]		• ? • ? • ? •
/illarruel 2007 (250-500 mg/6 d)(0) Subtotal (95% CI)	4.7	1.94	44 1765	6.16	3.2	44 1685	2.1% 72.5%	-1.46 [-2.57, -0.35] -1.06 [-1.32, -0.79]	•	••••
Fest for overall effect: Z = 7.91 (P < 0.000 2.19.2 Duration of hospitization	001)									
	2.00	0.40	45	E 07	0.07	45	2.00/	1 00 (3 30 1 00)		
Azim 2014 (500 mg/5 d)(H)	3.09	0.46	45	5.07	0.93	45	3.8%	-1.98 [-2.28, -1.68]		2202020
3hat 2018 (500mg/6d) (H)	2.72	0.42	40	3.37	1.1	40	3.7%	-0.65 [-1.01, -0.29]	-	?00?0?0
Dalgic 2011 (250 mg/5 d)(H)	4.71	1.78	120	5.07	1.91	120	3.5%	-0.36 [-0.83, 0.11]		• ? • ? • ? •
Das 2016 (500 mg/5d)(H)	3.18	0.58	30	3.8	0.71	28	3.8%	-0.62 [-0.96, -0.28]		? • • ? • ? •
Dinleyici 2015 (500 mg/5d)(H)	4.6	1.72		6.12	1.71	72	3.5%	-1.52 [-2.00, -1.04]		• • • • • • • • • • • • • • • • • • • •
Grandy 2010 (4000 mg/5 d)(H)	3.16	1	21	3.72	2.43	20	2.0%	-0.56 [-1.71, 0.59]		22020202
(urugol 2005 (250 mg/5 d)(H)	2.9	1.2	100	3.9	1.5	100	3.7%	-1.00 [-1.38, -0.62]		???????
/idjeadevan 2017/2018 (500mg/5d) (H)	3.41	1.04	35	3.34	1.06	35	3.5%	0.07 [-0.42, 0.56]		9 ? \varTheta ? 🔂 ? 🔵
Subtotal (95% CI)			539			460	27.5%	-0.85 [-1.35, -0.34]	◆	
Heterogeneity: Tau ² = 0.46; Chi ² = 78.98, Fest for overall effect: Z = 3.30 (P = 0.00)		001); l² =	91%							
Fotal (95% CI)			2304			2145	100.0%	-1.00 [-1.23, -0.78]	•	
Heterogeneity: Tau ² = 0.33; Chi ² = 337.76	б, df = 30 (P < 0.	00001); I ²	= 91%						-4 -2 0 2 4	_
Test for overall effect: Z = 8.65 (P < 0.000	001)								-4 -2 U 2 4 Favours S boulardii Favours control	
Test for subgroup differences: $Chi^2 = 0.52$	df = 1 (P = 0.47)	7), $ ^2 = 0\%$							avours 5 boularuli Favours control	
Risk of bias legend	, , ,	.,								
(A) Random sequence generation (selection	hias)									
B) Allocation concealment (selection bias)										
C) Blinding of participants and personnel (nerformance bias)									
(D) Blinding of outcome assessment (detect										
E) Incomplete outcome data (attrition bias)										
E incomplete outcome uata tattrition blas										
F) Selective reporting (reporting bias) G) Other bias										

Figure S2. Saccharomyces boulardii vs. control. Need for hospitalization in outpatients.

	Experim	ental	Cont	rol		Risk Ratio	Risk Ratio	Risk of Bias
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI	ABCDEFG
Canani 2007 (250 mg/5 d)(0)	4	91	4	92	16.5%	1.01 [0.26, 3.92]	· · · · · · · · · · · · · · · · · · ·	
Erdogan 2012 (282.5 mg/?d(0)	12	25	11	25	83.5%	1.09 [0.60, 1.99]	·	? ? 🖶 ? 🖶 ?
Total (95% CI)		116		117	100.0%	1.08 [0.62, 1.87]	• •	
Total events	16		15					
Heterogeneity: Tau ² = 0.00; Chi ²	= 0.01, d	f = 1 (P	= 0.92);	$1^2 = 0.0$	%			,
Test for overall effect: $Z = 0.27$ (P = 0.79)						Favours S boulardii Favours control	U
Risk of bias legend								
(A) Random sequence generation	(selection	bias)						
(m) all (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)								

(B) Allocation concealment (selection bias)

(C) Blinding of participants and personnel (performance bias)
(D) Blinding of outcome assessment (detection bias)
(E) Incomplete outcome data (attrition bias)
(F) Selective reporting (reporting bias)
(G) Other bias

Use of Probiotics for the Management of Acute Gastroenteritis

Figure S3. Saccharomyces boulardii vs. control. Diarrhea on day 2.

	Experimental Control					Risk Ratio	Risk Ratio	Risk of Bias
Study or Subgroup	Events Total		Events Tota		Weight	M-H, Random, 95% Cl	M-H, Random, 95% CI	ABCDEFG
2.20.2 Day 2								
Dinleyici 2015 (500 mg/5d) (H+0)	141	220	120	143	89.2%	0.76 [0.68, 0.86]	·	• ? • ? • ? •
Htwe 2008 (500 mg/5 d)(H) Subtotal (95% CI)	23	50 270		50 193	10.8% 100.0%	0.66 [0.46, 0.93] 0.75 [0.67, 0.84]		•••?•?
Total events	164		155					
Heterogeneity: Tau ² = 0.00; Chi ² =	0.67. df =	1 (P =	0.41); l ²	= 0%				
Test for overall effect: Z = 4.85 (P <								
								_
							0.5 0.7 1 1.5 2	
							Favours S boulardii Favours control	
Risk of bias legend								
(A) Random sequence generation (se	election bia	(S)						
(B) Allocation concealment (selection								

(B) Allocation concealment (selection blas)
(C) Blinding of participants and personnel (performance blas)
(D) Blinding of outcome assessment (detection blas)
(E) Incomplete outcome data (attrition blas)
(F) Selective reporting (reporting blas)
(G) Other blas

Figure S4. Lactobacillus rhamnosus GG vs. control. Duration of diarrhea

		mnosus			Control			Mean Difference	Mean Difference	Risk of Bias
tudy or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI	ABCDEFGH
.21.1 Low risk of bias										
asu 2009 2x10^10/2x10^12	5.069	1.24	374	7.23	1.27	185		-2.16 [-2.38, -1.94]	-	~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
hornikova 1 x 10^10	2.7	2.2	59	3.8	2.8	64	4.4%	-1.10 [-1.99, -0.21]		~~~~
ixon 2x10^10	2.82	1.5	63	3.08	1.64	66	5.8%		-+-	~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
chnadower 2 x 10^10	2.53	2.45	472	2.64	2.3	480	6.7%	-0.11 [-0.41, 0.19]	-+	~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
asu 2007 1.2 x 10^8	6.8	2.1	323	6.6	2.3	323	6.6%	0.20 [-0.14, 0.54]	+	~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ubtotal (95% CI)			1291			1118	30.6%	-0.68 [-1.82, 0.45]		
eterogeneity: Tau ² = 1.61; Chi ² =		., df = 4	(P < 0	00001); I ² = 9	8%				
est for overall effect: Z = 1.18 (P	= 0.24)									
.21.2 High or unclear risk of bia	as									
asinski 1 x 10^10	4	1.9	45	7	2.3	52	4.6%	-3.00 [-3.84, -2.16]	← →──	•••???
uarino 6 x 1^09	3.2	1	52	5.8	1	48		-2.60 [-2.99, -2.21]	—	.
erni Canani 1.2 x 10^10	3.46	1.48	100	4.7	0.98	92	6.6%	-1.24 [-1.59, -0.89]		66 77 6 77
zerwionka-Szaflarska 5 x 10^9	4	0.33	50	5	0.33	50	7.1%	-1.00 [-1.13, -0.87]	+	22222422
olauri & Kaila 2 × 10^10	1.5	0.7	21	2.3	0.8	21	6.2%	-0.80 [-1.25, -0.35]		?? • • • • ??
ggarwal 1 x 10^10	2.5	0.125	100	3.25	0.125	100	7.2%	-0.75 [-0.78, -0.72]	•	9977797
uandalini 1 x 10^10	2.43	1.15	147	3	1.49	140	6.7%	-0.57 [-0.88, -0.26]		???
isra 1×10^{9}	2.94	0.98	105	3.25	1.43	105	6.6%	-0.31 [-0.64, 0.02]		• ? • • • • ? ?
osta-Ribeiro 1 x 10^10	1.59	0.16	61	1.63	0.19	63	7.2%	-0.04 [-0.10, 0.02]	+	••••••
ndhu 1 x 10^10	4	0.5	65	4	0.5	59	7.1%	0.00 [-0.18, 0.18]	+	•••???
itchie 1.5 $ imes$ 10^10	2.18	2.44	33	2.13	2.11	31	3.6%	0.05 [-1.07, 1.17]		•••••
ubtotal (95% CI)			779			761	69.4%	-0.89 [-1.22, -0.56]	◆	
eterogeneity: Tau ² = 0.26; Chi ² : est for overall effect: Z = 5.32 (P			0 (P <	0.0000	1); 2 =	98%				
est for overall effect. Z = 5.32 (P	< 0.000	01)								
otal (95% CI)			2070			1879	100.0%	-0.83 [-1.13, -0.53]	◆	
eterogeneity: Tau ² = 0.32; Chi ² =	= 841.17	, df = 1	5 (P <	0.0000	$1); ^2 =$	98%				
est for overall effect: Z = 5.45 (P	< 0.000	01)						Env	ours L rhamnosus GG Favours control	
est for subgroup differences: Chi	$^{2} = 0.12,$	df = 1	(P = 0.7)	73), I ² =	= 0%			1 dv	ours E mannosus da Tavours control	
isk of bias legend										
) Random sequence generation (selection	bias)								
Allocation concealment (selection	on bias)									
C) Blinding (performance bias and	detectio	n bias)								
D) Blinding of participants and pe	rsonnel (p	performa	ince bia	is)						
E) Blinding of outcome assessment	t (detecti	on bias)								
) Incomplete outcome data (attrit	ion bias)									
3) Selective reporting (reporting b	ias)									
a) selective reporting (reporting b										

Figure S5. Lactobacillus rhamnosus GG vs. control. Duration of hospitalization.

	L rham			-	ontrol			Mean Difference		ifference	Risk of Bias
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Rando	om, 95% CI	ABCDEFGH
2.2.1 Low risk of bias											
3asu 2007 1.2 x 10^8	9.3	1.3	323	9.2	1.2	323	22.0%	0.10 [-0.09, 0.29]		+	~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3asu 2009 2x10^10/2x10^12	6.22	1.16	374	9.75	2.06	185	21.7%	-3.53 [-3.85, -3.21]			$\bullet \bullet \bullet \bullet \bullet \bullet \bullet ? ?$
Shornikova 1 x 10^10	7.6	5.6	59	9.2	6.3	64		-1.60 [-3.70, 0.50]		+	~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Subtotal (95% CI)			756			572	56.1%	-1.68 [-4.62, 1.26]			
Heterogeneity: Tau ² = 6.40; Chi ²			2 (P <	0.000	01); ²	= 99%					
Fest for overall effect: $Z = 1.12$ (I	P = 0.26)										
2.2.2 Unclear risk of bias											
Aggarwal 1 x 10^10	3.33	0.56	87	3.84	0.65	88	22.0%	-0.51 [-0.69, -0.33]	•		•••???
Suandalini 1 x 10^10	3.28	0.93	147	4.01	0.89	140		-0.73 [-0.94, -0.52]	+		???++?????
Subtotal (95% CI)			234			228	43.9%	-0.61 [-0.83, -0.40]	◆		
Heterogeneity: Tau ² = 0.01; Chi ²	= 2.43, d	if = 1	(P = 0.	12); I ²	= 59%						
Fest for overall effect: Z = 5.58 (I	P < 0.000	01)									
Fotal (95% CI)			990			800	100.0%	-1.22 [-2.33, -0.10]	-		
Heterogeneity: Tau ² = 1.47; Chi ²	= 372.86	5, df =	4 (P <	0.000	01); I ²	= 99%			- L	<u>k t</u>	+
Fest for overall effect: Z = 2.13 (I	P = 0.03)							Fay	vours L rhamnosus GG	Eavours control	4
Fest for subgroup differences: Ch	$ni^2 = 0.50,$	df =	1 (P =	0.48), I	$^{2} = 0\%$			14			
Risk of bias legend											
A) Random sequence generation	(selection	bias)									
B) Allocation concealment (selection	ion bias)										
C) Blinding (performance bias an	d detectio	n bias)								
D) Blinding of participants and po	ersonnel (p	perform	mance	bias)							
E) Blinding of outcome assessment			s)								
F) Incomplete outcome data (attr	ition bias)										
G) Selective reporting (reporting	bias)										
H) Other bias											

Figure S6. Lactobacillus reuteri DSM 17938 vs. control. Duration of diarrhea & Duration of hospitalization

	Exp	erimen			Contro			Mean Difference	Mean Difference	Risk of Bias
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI	ABCDEFO
1.1.1 Duration of diarrhea										
Dinleyici 2014 (1x10^8 CFU/d, 5 d)(H)	2.95	1.09	64	4.33	1.18	63	31.6%	-1.38 [-1.78, -0.98]		••••???
Dinleyici 2015 (1x10^8 CFU/d, 5 d)(0)	2.52	1.02	29	3.1	0.64	31	30.6%	-0.58 [-1.01, -0.15]		• ? • ? • •
Francavilla 2012 (4x10^8 CFU/d, ? d)(H)	2.1	1.7	35	3.3	2.1	34	19.0%	-1.20 [-2.10, -0.30]	(••••
Szymański 2019 (2x10^8 CFU/d, 5 d)(H) Subtotal (95% CI)	2.62	2.07	44 172	2.78	2.34			-0.16 [-1.07, 0.75] -0.87 [-1.43, -0.31]		
Heterogeneity. Tau ² = 0.22; Chi ² = 10.54 Test for overall effect: Z = 3.05 (P = 0.00		(P = 0	.01); ²	= 72%						
1.1.2 Duration of hospitalization										
Dinleyici 2014 (1x10^8 CFU/d, 5 d)(H)	4.31	1.3	64	5.46	1.77	63	29.2%	-1.15 [-1.69, -0.61]	_ 	•••???
Francavilla 2012 (4x10^8 CFU/d, ? d)(H)	2.38	0.37	35	2.55	0.4	34	39.2%	-0.17 [-0.35, 0.01]		
Szymański 2019 (2x10^8 CFU/d, 5 d)(H) Subtotal (95% CI)	2.61	1.01	44 143	3.05	1.21		31.6% 100.0%	-0.44 [-0.91, 0.03] -0.54 [-1.09, 0.00]		000000
Heterogeneity, $Tau^2 = 0.19$; $Chi^2 = 11.78$ Test for overall effect: Z = 1.95 (P = 0.05		(P = 0	.003); I	² = 833	%					
									-5 -1 1 + 5	-
Test for subgroup differences: $Chi^2 = 0.68$	3. df = 1	(P = 0).41). I ²	= 0%					Favours probiotic Favours control	
Risk of bias legend	·		.,							
(A) Random sequence generation (selection	n bias)									
(B) Allocation concealment (selection bias)										
(C) Blinding of participants and personnel	(perform	ance b	ias)							
(D) Blinding of outcome assessment (detection)										
(E) Incomplete outcome data (attrition bias		-								
and a second										

(F) Selective reporting (reporting bias) (G) Other bias

Figure S7. Lactobacillus reuteri DSM 17938 vs. control. Cure on day 2.

	L. reuteri DSN	17938	Cont	rol		Risk Ratio	Risk Ratio	Risk of Bias
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI	ABCDEFG
2.5.2 Cure on day 2								
Dinleyici 2014 (1x10^8 CFU/d, 5 d)(H)	32	64	3	63	28.3%	10.50 [3.39, 32.54]		99997779
Dinleyici 2015 (1x10^8 CFU/d, 5 d)(O)	16	29	4	31	33.1%	4.28 [1.62, 11.30]		• ? • ? • • •
Francavilla 2012 (4x10^8 CFU/d, ? d)(H) Subtotal (95% CI)	16	35 128	б	34 128	38.7% 100.0%		•	•••••
Total events	64		13					
Heterogeneity: Tau ² = 0.27; Chi ² = 4.22,	df = 2 (P = 0.12)	2); $I^2 = 53$	%					
Test for overall effect: Z = 3.67 (P = 0.00	02)							
							0.005 0.1 1 10	200
Test for subgroup differences: Not applica	ble						Favours control Favours L re	uteri
Risk of bias legend								
(A) Random sequence generation (selection	n bias)							
(B) Allocation concealment (selection bias)								

(B) Allocation concealment (selection bias)
 (C) Blinding of participants and personnel (performance bias)
 (D) Blinding of outcome assessment (detection bias)
 (E) Incomplete outcome data (attrition bias)
 (F) Selective reporting (reporting bias)
 (G) Other bias

Figure S8. L. *rhamnosus* 19070-2 & L. *reuteri* DSM 12246 vs control. Duration of diarrhea & Duration of hospitalization

	Expe	erimer	tal	C	ontrol			Mean Difference	Mean Difference	Risk of Bias
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI	ABCDEFG
1.1.1 Duration of diarrhea										
Rosenfeldt 2002 (10^10 + 10^10 CFU/5d) (H)	3.4	1.55	30	4.21	1.98	39	81.1%	-0.81 [-1.64, 0.02]		97977
Rosenfeldt 2002 (10^10 + 10^10 CFU/5d) (0)	3.16	1.65	24	4.82	3.54	19	18.9%	-1.66 [-3.38, 0.06]	← - −	• ? • ? ? ?
Subtotal (95% CI)			54			58	100.0%	-0.97 [-1.72, -0.22]	-	
Heterogeneity: $Tau^2 = 0.00$; $Chi^2 = 0.76$, $df = 3$	L(P = 0)	38); I ²	= 0%						-	
Test for overall effect: Z = 2.54 (P = 0.01)		.,								
1.1.2 Duration of hospitalization										
Rosenfeldt 2002 (10^10 +10^10 CFU/5d) (H)	1.6	1	30	2.7	2	39	100.0%	-1.10 [-1.82, -0.38]		9999797
Subtotal (95% CI)			30			39	100.0%	-1.10 [-1.82, -0.38]	•	
Heterogeneity: Not applicable										
Test for overall effect: Z = 2.98 (P = 0.003)										
									<u> </u>	-
									Favors probiotics Favors control	
Test for subgroup differences: Chi ² = 0.06, df =	1 (P =	0.81),	$ ^2 = 0.9$	6					ravors probiotics ravors control	
Risk of bias legend										
(A) Random sequence generation (selection bias)									
(B) Allocation concealment (selection bias)										
(C) Blinding of participants and personnel (perfo	rmance b	oias)								

(C) Blinding of participants and personnel (performal (D) Blinding of outcome assessment (detection bias)
 (E) Incomplete outcome data (attrition bias)
 (F) Selective reporting (reporting bias)
 (G) Other bias

Figure S9. L helveticus R0052 & L rhamnosus R0011 vs control. Duration of diarrhea

	Expe	erimen	tal	С	ontrol			Mean Difference	Mean Difference	Risk of Bias
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI	ABCDEFG
1.1.1 Duration of diarrhea										
Freedman 2015 (4×10^9 & (8×10^9/5d) (0)	2.96	3.28	61	2.65	2.68	62	15.1%	0.31 [-0.75, 1.37]		
Freedman 2018 (8*10^9CFU/5d) (0)	2.19	0.54	414	2.31	0.57	413	41.5%	-0.12 [-0.20, -0.04]		
Hegar 2015 (LR 1.9x10^9 + LA 0.1x10^9 CFU)/7d)(H)	2.85	1.58	56	2.56	1.51	56	27.6%	0.29 [-0.28, 0.86]		~~~
Tlaskal 2005 (2x10^9 CFU/10d) (0) Subtotal (95% CI)	4	2.02	38 569	5.45	2.33	33 564		-1.45 [-2.47, -0.43] -0.15 [-0.67, 0.36]		2242422
Heterogeneity: Tau ² = 0.17; Chi ² = 9.11, df = 3 (P = 0.03) Test for overall effect: Z = 0.58 (P = 0.56)	3); ² =	67%							_	
Test for subgroup differences: Not applicable <u>Risk of bias legend</u> (A) Random sequence generation (selection bias) (B) Allocation concealment (selection bias) (C) Blinding of participants and personnel (performance bia (D) Blinding of outcome assessment (detection bias) (E) Incomplete outcome data (attrition bias) (F) Selective reporting (reporting bias) (G) Other bias	as)								Favors probiotics Favors control	_

Figure S10. L helveticus R0052 & L rhamnosus R0011 vs placebo. Need for hospitalization in out-patients.

	Experim	ental	Cont	rol		Risk Ratio	Risk Ratio	Risk of Bias
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI	ABCDEFG
1.5.1 Need for hospitalization in out-patients	s							
Freedman 2015 (4×10^9 & (8×10^9/5d) (0)	1	61	0	62	2.6%	3.05 [0.13, 73.40]	•	→ 66666? 6
Freedman 2018 (8*10^9CFU/5d) (0) Subtotal (95% Cl)	33	414 475		413 475	97.4% 100.0%			
Total events	34		22					
							0.2 0.5 1 2 5 avors probiotics Favors control	_
Test for subgroup differences: Not applicable								
Risk of bias legend								
(A) Random sequence generation (selection bias)							
(B) Allocation concealment (selection bias)								
(C) Blinding of participants and personnel (perfo	rmance bi	as)						
(D) Blinding of outcome assessment (detection b	ias)							
(F) Incomplete outcome data (attrition bias)								

(E) Incomplete outcome data (attrition bias)
 (F) Selective reporting (reporting bias)
 (G) Other bias

Figure S11. Bacillus clausii O/C, SIN, N/R, and T vs control. Duration of diarrhea

	В	clausii		c	ontrol			Mean Difference	Mean Difference	Risk of Bias
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI	ABCDEFG
1.6.1 All studies B clausii O/C, SIN, N/R, and T										
Berni Canani 2007 (2x10^9 CFU/5d) (0)	4.75	1.05	100	4.69	0.99	92	15.2%	0.06 [-0.23, 0.35]		
Hamid 2019 (4x10^9 CFU/5d) (H)	3.22	1.3	100	3.26	1.1	100	14.8%	-0.04 [-0.37, 0.29]		? • • ? • ? ?
Lahiri 2008 (4x10^9 CFU/5d) (H)	2.03	1.59	132	2.34	1.67	132	14.3%	-0.31 [-0.70, 0.08]		? 🔴 🤁 ? ? 🖶 ?
Lahiri 2015 (4x10^9 CFU/5d) (H)	0.94	0.36	69	1.96	0.36	62	16.1%	-1.02 [-1.14, -0.90]	+	? • • ? ? ? ? ?
Lahiri 2015A (4x10^9 CFU/5d) (H)	0.93	1.59	80	1.42	1.59	80	13.3%	-0.49 [-0.98, 0.00]		? • • ? ? ? ? ?
Maugo 2012 (4x10^9 CFU/5d) (H)	3.23	1.42	44	3.61	1.67	46	11.8%	-0.38 [-1.02, 0.26]		
Urtula and Dacula ABSTR 2008 (2-4x10^9 CFU/3d) (H)	2.91	0.7	35	3.49	0.92	35		-0.58 [-0.96, -0.20]		
Subtotal (95% CI)			560			547	100.0%	-0.40 [-0.82, 0.02]		
Heterogeneity: $Tau^2 = 0.28$; $Chi^2 = 73.25$, $df = 6$ (P < 0.0	00001)	; ² = ≦	92%							
Test for overall effect: $Z = 1.87$ (P = 0.06)										
1.6.2 Lower risk of bias										
Berni Canani 2007 (2x10^9 CFU/5d) (0)	4.75	1.05	100	4.69	0.99	92	71.9%	0.06 [-0.23, 0.35]		••••
Maugo 2012 (4x10^9 CFU/5d) (H)	3.23	1.42	44	3.61	1.67	46	28.1%	-0.38 [-1.02, 0.26]		~~~
Subtotal (95% CI)			144			138	100.0%	-0.06 [-0.45, 0.32]	-	
Heterogeneity: Tau ² = 0.03; Chi ² = 1.51, df = 1 (P = 0.2) Test for overall effect: Z = 0.32 (P = 0.75)	2); I ² =	34%								
									-'1 -0'.5 0 0'.5 1	
Test for subgroup differences: Chi ² = 1.33, df = 1 (P = 0. <u>Risk of bias legend</u> (A) Random sequence generation (selection bias) (B) Allocation concealment (selection bias) (C) Bilnding of participants and personnel (performance bia (D) Bilnding of outcome assessment (detection bias) (E) Incomplete outcome data (attrition bias) (F) Selective reporting (reporting bias) (G) Other bias	.,	= 24.9	9%						Favours B clausii Favours control	

Figure S12. *Bacillus clausii* O/C, SIN, N/R, and T. Duration of hospitalization.

	В	clausi	i	c	ontrol			Mean Difference	Mean Difference	Risk of Bias
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI	ABCDEFO
1.7.1 B clausii O/C, SIN, N/R, and T										
Lahiri 2015 (4x10^9 CFU/5d) (H)	2.78	2.58	69	4.3	2.58	62	27.2%	-1.52 [-2.40, -0.64]	▲■────	? • • ? ? ? ? ?
Maugo 2012 (4x10^9 CFU/5d) (H)	4.14	0.93	44	4.5	1.43	46	41.7%	-0.36 [-0.86, 0.14]		
Urtula and Dacula ABSTR 2008 (2-4x10^9 CFU/3d) (H) Subtotal (95% CI)	2.45	1.64	35 148	3.2	1.64	35 143	31.1% 100.0%	-0.75 [-1.52, 0.02] -0.80 [-1.45, -0.15]		
Heterogeneity: Tau ² = 0.20; Chi ² = 5.08, df = 2 (P = 0.0 Test for overall effect: Z = 2.41 (P = 0.02)	08); I ² =	61%								
										_
									-1 -0.5 0 0.5 1	
Test for subgroup differences: Not applicable									Favours B clausii Favours control	
Risk of bias legend										
(A) Random sequence generation (selection bias)										
(B) Allocation concealment (selection bias)										
(C) Blinding of participants and personnel (performance b	vias)									
(D) Blinding of outcome assessment (detection bias)										
(E) Incomplete outcome data (attrition bias)										
(F) Selective reporting (reporting bias)										
(G) Other bias										

(G) Other bias

Comment: Urtula & Dacula 2008. Published as an abstract only.

			Certainty ass	sessment			Nº of p	atients	Effec	:t		
№ of tudies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Lactobacillus GG	controls	Relative (95% CI)	Absolute (95% Cl)		Importance
actoba	cillus GG vs. co	ontrol. Duratio	n of diarrhea.									
16	randomized trials	serious a	serious ^b	serious c	serious ^d	none	2070	1879	-	MD 0.83 days lower (1.13 lower to 0.53 lower)		
actoba	cillus GG vs. co	ontrol. Hospita	lization.									
5	randomized trials	serious a	serious ^b	not serious	serious ^d	none	990	800	-	MD 1.22 days lower (2.33 lower to 0.1 lower)		

Lactobacillus GG vs. control. Duration of diarrhea. Low risk of bias studies only

Lactobacillus GG vs. control. Presence of diarrhea. Diarrhea on day 2

CI: Confidence interval; MD: Mean difference; RR: Risk ratio

Explanations

a. Unclear risk of bias in some studies

b. Large heterogeneity I²=98% (p<0.05)

c. Different definitions of diarrhea

d. The recommendation would be altered if the lower versus the upper boundary of the CI represented the true underlying effect (based on the assumption that 1-day reduction is clinically important)

e. Unclear: random sequence generation and allocation concealment

f. Non-European population

g. Small sample size

			Certainty ass	sessment			Nº of p	atients	Effec	st		
№ of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Lactobacillus reuteri DSM 17938	placebo/ no treatment	Relative (95% Cl)	Absolute (95% CI)	Certainty	Importance
Lactoba	cillus reuteri DS	SM 17938 vs. o	control. Duration	of diarrhea (day	s)							
4	randomized trials	serious a	serious ^b	serious °	serious ^d	none	172	175	-	MD 0.87 days lower (1.43 lower to 0.31 lower)		
Lactoba	cillus reuteri DS	SM 17938 vs. o	control. Cure on d	lay 2								
3	randomized trials	serious a	not serious	serious °	not serious	none	64/128 (50.0%)	13/128 (10.2%)	RR 4.54 (2.02 to 10.18)	360 more per 1 000 (from 104 more to 932 more)		

Lactobacillus reuteri DSM 17938 vs. control. Duration of hospitalization

3	randomized trials	serious ^f	serious ^g	serious ^e	serious ^d	none	143	141	-	MD 0.54 days lower (1.09 lower to 0)		
---	----------------------	----------------------	----------------------	----------------------	----------------------	------	-----	-----	---	---	--	--

CI: Confidence interval; MD: Mean difference; RR: Risk ratio

Explanations

a. 2 out of 4 studies open label

b. Large heterogeneity $I^2=74\%$ (p<0.05)

c. Differences in dosage across studies; 2 out of 4 included studies in non-European population

d. The recommendation would be altered if the lower versus the upper boundary of the CI represented the true underlying effect (based on the assumption that 1-day reduction is clinically important)

e. Population differences (European and non-European).

f. No blinding in 1 out of 3 studies

g. Test for heterogeneity p<0.05; l² =83%

Question: Saccharomyces boulardii compared to placebo/ no treatment for acute gastroenteritis in children

Setting: Bibliograp	ohy:											
			Certainty as	sessment			Nº of pat	tients	Effec	:t		
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Saccharomyces boulardii	placebo/no treatment	Relative (95% CI)	Absolute (95% CI)	Certainty	Importance
Sacchar	Saccharomyces boulardii vs. control. Duration of diarrhea											
23	randomized trials	serious ^a	serious ^b	serious °	serious ^d	none	1765	1685	-	MD 1.06 days lower (1.32 lower to 0.79 lower)		
Sacchar	Saccharomyces boulardii vs. control. Duration of hospitalization											
8	randomized trials	serious ^a	serious ^e	serious ^r	serious ^d	none	539	460	-	MD 0.85 days lower (1.35 lower to 0.34 lower)		
Sacchar	omyces boular	dii vs. control	. Need for hospit	alization						•		
2	randomized trials	serious 9	not serious	not serious	very serious h	none	16/116 (13.8%)	15/117 (12.8%)	RR 1.08 (0.62 to 1.87)	10 more per 1000 (from 49 fewer to 112 more)		
Sacchar	omyces boular	dii vs. control	. Diarrhea on day	2								
2	randomized	serious ^g	not serious	serious	not serious	none	164/270 (60.7%)	155/193	RR 0.75	201	$\Phi \Phi \bigcirc \bigcirc$	

2	randomized ser trials	erious ^g no	not serious	serious ⁱ	not serious	none	164/270 (60.7%)	155/193 (80.3%)	RR 0.75 (0.67 to 0.84)	201 fewer per 1000 (from 265 fewer to 128 fewer)			
---	--------------------------	------------------------	-------------	----------------------	-------------	------	-----------------	--------------------	----------------------------------	--	--	--	--

CI: Confidence interval; MD: Mean difference; RR: Risk ratio

Explanations

a. In most studies, no blinding ensured

a. In This is studies, no unrang ensured b. Substantial heterogeneity I²=90% (p-0.05), not explained by the subgroup analyses c. A different definition of diarrhoea across the studies; only one study from the European population d. The recommendation would be altered if the lower versus the upper boundary of the CI represented the true underlying effect (based on the assumption that 1-day reduction is clinically important)

e. Large heterogeneity (>=90%; p<0.05)
 f. Origin of most of the trials outside from Europe

g. No blinding ensured h. As there are few events and the CI includes appreciable benefit and harm - rated down the quality of evidence by two levels for imprecision. i. Non-European population

$\label{eq:output} \textit{Ouestion:} Bacillus clausii O/C, SIN, N/R, and T_{\textit{compared to placebo/no treatment for acute gastroenteritis in children}$

Author(s):

Question: Bacillus clausii compared to placebo for acute gastroenteritis in children

Setting:

Bibliography: . [Intervention] for [health problem]. Cochrane Database of Systematic Reviews [Year], Issue [Issue].

Certainty assessment							№ of patients		Effect			
№ of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Bacillus clausii	placebo	Relative (95% CI)	Absolute (95% Cl)	Certainty	Importance

Duration of diarrhoea (strain specifications) - B clausii O/C, SIN, N/R, and T

Duration of hospitalization (strain specification - B clausii O/C, SIN, N/R, and T

3	randomised trials	very serious ^e	not serious	serious ^r	serious ^d	none	148	143	-	MD 0.8 lower (1.45 lower to 0.15 lower)		
---	----------------------	------------------------------	-------------	----------------------	----------------------	------	-----	-----	---	--	--	--

Duration of diarrhea (B clausii O/C, SIN, N/R, and T)) - Lower risk of bias

2	randomised trials	serious g	not serious	serious °	serious ^d	none	144	138	-	MD 0.06 lower (0.45 lower to 0.32 higher)		
---	----------------------	-----------	-------------	-----------	----------------------	------	-----	-----	---	--	--	--

CI: Confidence interval; MD: Mean difference

Explanations

a. Only one study with blinding ensured; one study - data based on the published systematic review (no access to abstract) - not possible to assess the risk of bias); Unclear randomization in most included trials.

b. Large, unexplained heterogeneity I2=92%; p<0.05

c. Only one RCT from the European setting

d. The recommendation would be altered if the lower versus the upper boundary of the CI represented the true underlying effect.

e. Only one study with blinding ensured; one study - data based on the published systematic review (no access to abstract) - not possible to assess the risk of bias)

f. All included trials from non-European populations

g. One RCT- two domains with high risk of bias

Use of Probiotics for the Management of Acute Gastroenteritis

Bibliography: . [Intervention] for	r [health problem]. Cochrane	e Database of Systematic	Reviews [Year], Issue [Issue].
------------------------------------	------------------------------	--------------------------	--------------------------------

	Certainty assessment							№ of patients		Effect		
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	L helveticus R0052 & L rhamnosus R0011	placebo / no treatment	Relative (95% Cl)	Absolute (95% CI)	Certainty	Importance

Should L helveticus R0052 & L rhamnosus R0011 vs. control. Duration of diarrhea (follow up: range 5 days to 10 days)

4	randomized trials	not serious	serious ^a	not serious	not serious	none	569	564	-	MD 0.15 days lower (0.67 lower to 0.36 higher)		CRITICAL
---	----------------------	----------------	----------------------	-------------	-------------	------	-----	-----	---	--	--	----------

Should L helveticus R0052 & L rhamnosus R0011 vs. control. Need for hospitalization in out-patients

2	randomized not trials serious	not serious not ser	ous serious ^b	none	34/475 (7.2%)	22/475 (4.6%)	RR 1.52 (0.91 to 2.55)	24 more per 1 000 (from 4 fewer to 72 more)			
---	----------------------------------	---------------------	--------------------------	------	------------------	------------------	-------------------------------	---	--	--	--

CI: Confidence interval; MD: Mean difference; RR: Risk ratio

Explanations

a. Minimal or no overlap of confidence intervals, which suggests variation is more than what one would expect by chance alone (1 RCT); heterogeneity 67%; heterogeneity p<0.05; some variation in effect.

b. The recommendation would be altered if the lower versus the upper boundary of the CI represented the true underlying effect

Cuestion: L rhamnosus 19070-2 & L reuteri DSM 12246 compared to placebo/no treatment for acute gastroenteritis in children

Setting:

Bibliography: . [Intervention] for [health problem]. Cochrane Database of Systematic Reviews [Year], Issue [Issue].

Certainty assessment								№ of patients		Effect		
№ of tudies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	L. rhamnosus 19070-2 & L. reuteri DSM 12246	placebo/no treatment	Relative (95% Cl)	Absolute (95% Cl)	Certainty	Importance
L. rhamno	osus 19070-2 8	& L. reuteri DS	M 12246 vs. contr	rol. Duration of	diarrhea							
2	randomized trials	serious ^a	not serious	not serious	very serious ^b	none	54	58	-	MD 0.97 days lower (1.72 lower to 0.22 lower)		

1	randomized trials	serious °	not serious	not serious	very serious ^b	none	30	39	-	MD 1.1 days lower (1.82 lower to 0.38 lower)			
---	----------------------	-----------	-------------	-------------	------------------------------	------	----	----	---	--	--	--	--

CI: Confidence interval; MD: Mean difference

Explanations

a. Unclear information about allocation concealment in included trials - can potentially lower confidence in the estimate of effect

b. Downgraded due to small sample size. The recommendation would be altered if the lower versus the upper boundary of the CI represented the true underlying effect (based on the assumption that 1-day reduction is clinically important)

c. Unclear information on allocation concealment; high risk of attrition bias