Study (first author, publication year)	Control group? (Y/N)	Model: (mammal, age/life stage, health status, sample size)	Primary study aim	Intervention and group design	Dietary controls	Methods	Gut microbiome composition measures	Significant taxonomy findings	Declared Funding Sources §
Murine (Mo Evans,	use) Y	Adult male	То	1. Control	Yes, LFD	Terminal	β -diversity, abundance,	1. Control + HFD:	G,O
2014 2014	Ι	Adult male C57BL/6 mice, healthy, n=48	determine effect of voluntary exercise vs. no access to exercise on the intestinal microbiome.	 Control + HFD Wheel access (WA) + HFD Control + Low-fat diet (LFD) WA + LFD 	and HFD groups. LFD: 10% fat HFD: 60% fat (62% saturated; 35.9% mono-; 32% poly- unsat- urated).	restriction fragment length polymorphi sm (TRFLP), PCR assay, 16S rRNA sequencing of fecal contents.	bacterial family and phyla, bacteroidetes:firmicutes	Bacteroidetes ↓ S24-7 (f)	0,0

								 ↓ Erysipelotrichaceae (f) <u>Actinobacteria</u> ↓ Bifidobacteriaceae (f) 	
Kang, 2014	Y	Adult male C57BL/6 J mice, healthy, n=40	To determine interaction between habitual dietary conditions and exercise level on intestinal microbiome and behavior	1. Control + High-fat diet (HFD) 2. F. Ex + HFD 3. Control + normal diet (ND) 4. Forced exercise (F.Ex.) + ND	Yes, HFD and ND groups. ND: 10% fat HFD: 60% fat	PCR, 16S rRNA sequencing of fecal contents.	bacteroidetes:firmicutes and bacterial phyla, genus, and family	1. Control + HFD: <u>Firmicutes</u> 1 Streptococcus (g) <u>Tenericutes</u> 2. F.Ex + HFD: <u>Bacteroidetes</u> 1 <u>Firmicutes</u> 2 Streptococcus (g) <u>Tenericutes</u> 4. F.Ex + ND: <u>Bacteroidetes</u> 1 <u>Firmicutes</u> <u>Firmicutes</u> <u>Tenericutes</u>	G,O
Allen, 2015†	Y	Adult male C57BL/6J, healthy, n=29	To compare effects of voluntary exercise via wheel access (WA.) vs. F.Ex. on the intestinal microbiome.	1. F.Ex. 2. WA 3. Control	No, all were fed a standard chow diet.	PCR, 16S rRNA gene sequencing of fecal and cecal contents.	bacteroidetes:firmicutes bacterial genera and phyla	 1. F.Ex: <u>Firmicutes</u> † Dorea (g) † Coprococcus (g) † Oscillospira (g) † Ruminococcus (g) † Ruminococcus (g) † Butyrivibrio (g) † Tenericutes <u>Proteobacteria</u> † Nautilia (g) 2. WA <u>Bacteroidetes</u> ↓ Prevotella (g) <u>Firmicutes</u> ↓ Turicibacter (g) † Anaerotruncus (g) 	0
Lambert, 2015 ‡	Y	Adult male C57BL mice, healthy (db/+), and Type 2	To compare the effect of F.Ex. on the intestinal	1. Control + Db/db	No, all were fed a standard chow diet.	PCR, 16S rRNA gene sequencing		1. Control + Db/db: <u>Firmicutes</u> ↓ Clostridium cluster I (g) ↑ Clostridium cluster XI (g)	G,0

	Diabetic [T2D (<i>db/db</i>)], n= ~36	microbiome in T2D mice when compared to their healthy and sedentary counterparts.	2. F.Ex + <i>db/db</i> 3.Control+ <i>db/</i> + 4. F.Ex + <i>db/</i> +		of cecal contents.		2. F.Ex + Db/db: <u>Bacteroidetes</u> ↓ Bacteroides (g) ↓ Prevotella (g) <u>Actinobacteria</u> ↓ Bifidobacterium (s) <u>Proteobacteria</u> ↓ Enterobacteriaceae (f) <u>Euryarchaeota</u> ↓ Methanobrevibacter (g)	
							 4. F.Ex + Db/+: <u>Bacteroidetes</u> ↓ Bacteroides (g) ↓ Prevotella (g) <u>Firmicutes</u> ↑ Clostridium cluster I (g) <u>Actinobacteria</u> ↑ Bifidobacterium (s) <u>Euryarchaeota</u> ↓ Methanobrevibacter (g) 	
Campbell, Y 2016	Adult male C57BL/ 6NTac, healthy, n=36	To compare the effects of voluntary exercise vs. sedentary time on intestinal integrity and intestinal microbiome in lean and obese mice.	 Control + HFD- induced obesity WA + HFD- induced obesity Control + lean WA + lean 	Yes, HFD: 45% fat, and ND: 10%	Terminal restriction fragment length poly- morphism (TRFLP) and pyro- sequencing of 16S rRNA fecal contents.	OTUs, bacterial genus, phyla, family, species	 Control + HFD- induced obesity: Firmicutes Clostridiales (o) WA + HFD-induced obesity: Firmicutes Clostridales (o) Faecalibacterium prausnitzii (s) Peptococcus (s) Allobaculum (s) WA + lean: Firmicutes Clostridales (o) Faecalibacterium (s) 	G

								 ▲ Lachnospiraceae (f) ▲ Allobaculum (s) ▲ Clostridium (g) 	
Denou, 2016	Υ	Adult male C57BL/6 mice, healthy, n=32	To determine the effect of high- intensity interval training (HIIT) on the intestinal microbiome after HFD- induced obesity.	 Control + ND Control + HFD HIIT + HFD- induced obesity Control + HFD- induced obesity 	Yes, HFD: 45% fat and standard chow diet.	PCR, 16S rRNA sequencing of fecal contents.	OTUs, α-diversity, bacterial genus, phyla, relative abundance, bacteroidetes:firmicutes	 2. Control + HFD: Bacteroidetes Firmicutes 3. HIIT HFD-induced obesity: Bacteroidetes Bacteroidales (o) Firmicutes 	G,O
Houghton, 2017	Υ	PolgA ^{mut/mut} and wild-type PolgA ^{+/+} , mitochondrial dysfunction, n=19	To determine how changes in mitochon- drial function of aging colonic epithelium influences gut microbiome composition, and whether or not exercise can modulate observed changes in composition in an	 Control Age + F.Ex. Control + age 	No, all were fed a standard chow diet.	PCR, 16S rRNA of fecal contents.	OTUs, α-diversity, bacterial genus, relative abundance, bacteroidetes:firmicutes	Proteobacteria	G, O

Murine (Rat Matsumoto, 2008 ‡) Y	Adult male Wistar rats,	To determine	1.Control	Yes, all were fed a	PCR, 16S rRNA	Bacterial species, and n-butyrate producing	2. WA: <u>Firmicutes</u>	Not declared
2017		C57BL/6 mice, healthy n=* *Sample size per group not reported.	investigate effects of exercise on intestinal microbiome after myocardial infarction (MI).	2. Sed. + Sham surgery (S.sx) 3. Sed. + MI 4. F.Ex, 5. F.Ex + S.sx 6. F.Ex + MI	were fed a standard chow diet.	sequencing of fecal samples.	β-diversity, bacterial phyla.	Bacteroidetes Butyricimonas (g) Prevotella (g) Verrucomicrobia Akkermansia (g) 5. F.Ex + S.Sx Bacteroidetes Sphingobacteriales (o) <u>Firmicutes</u> Erysipelotrichaceae (f) <u>Verrucomicrobia</u> Akkermansia (g) 6. F.Ex + MI <u>Proteobacteria</u> Phenylobacterium (g) Roseateles (g)	
Lamoureux, 2017 Liu,	Y	Adult C57BL/6 mice, healthy, n=42 Adult	aging model. To measure effect of exercise on intestinal microbiome in voluntary and forced moderate intensity exercise. To	1. Control 2. WA 3. F.Ex. 1. Sed.	No, all were fed a standard chow diet. No, all	PCR, 16S rRNA sequencing of fecal samples.	OTUs, α-diversity, β-diversity, species richness, relative abundance, bacterial phyla. OTUs, α-diversity,	No significant taxonomy findings between any groups. 4. F.Ex.	G

Matsumoto,	Y	Adult male	То	1.Control	Yes, all	PCR, 16S	Bacterial species, and	2. WA:	Not
2008 ‡		Wistar rats,	determine		were fed a	rRNA	n-butyrate producing	Firmicutes	declared
-		healthy, n=14	the effect of	2.WA	25%	sequencing	bacteria.	Ruminococcus	
			WA on the		casein-	of cecal		hydrogenotroplicus (s)	
			intestinal		sucrose	contents.		Clostridium (g)	
			microbiome.		diet.			1 SM7/11 (s)	
								Lactobacillus gasseri (s)	
								1 T2-87 (f)	

							<u>Proteobacteria</u> ↑ Escherichia coli (s)	
Queipo-Y Drtuño, 2013	Adult male Dawley rats, healthy, n=40	To determine the effects of physical activity and nutrition status on the intestinal microbiome.	 Activity- based anorexia (ABA) Control + ABA WA + ad libitum (ad lib) feeding Control + ad lib feeding. 	Yes, ABA groups had food access restricted to 1 hour/day.	PCR, 16S sequencing of fecal contents.	Diversity, abundance, phyla and genera-level bacteria, bacteroidetes:firmicutes	Bacteroides (g)	G,O

								 4. Control + ad lib: <u>Bacteroidetes</u> ↑ Bacteroides (g) ↑ Prevotella (g) <u>Firmicutes</u> ↑ Clostridium (g) <u>Actinobacteria</u> ↓ Bifidobacteria (g) <u>Proteobacteria</u> ↑ Heliobacter (g) 	
Petriz, 2014	Y	Zucker and Wistar Rats, obese, non- obese, or hyper-tensive, n=9, sex not specified.	To determine the effect of F. Ex. on the intestinal microbiome in the presence of known disease genotypes.	1. F.Ex + Non-obese 2. F.Ex + Obese 3. F. Ex + Hyper- tensive	None, and diet compo- sition not reported.	Pyro- sequencing, PCR, 16S rRNA of fecal contents.	OTUs, α-diversity, bacterial species richness, bacterial phyla, relative abundance	 F.Ex + Non-obese: Firmicutes Streptococcus (g) 2. F.Ex + Obese: Firmicutes Streptococcus alactolyticus (s) Lactobacillus (g) Ruminococcus gnavus (s) Ruminococcus flavefaciens (s) Actinobacteria Bifidobacterium animalis (s) Bifidobacterium pseudolongum (s) <u>Proteobacteria</u> Pseudomonas (g) Aggregatibacter pnemotropica (s) 3. F. Ex + Hypertensive: <u>Firmicutes</u> Allobaculum (g) <u>Proteobacteria</u> Aggregatibacter (g) J.Sutturella (g) 	G,0

Liu, 2015 ‡	Y	Female high cardio- respiratory capcity (HCR) and low cardio- respiratory (LCR) rats, healthy, n=30	To determine how voluntary exercise alters the intestinal microbiome in ovari- ectomized rats with intrinsically HCR and LCR fed a HFD.	1. + WA LCR 2. Control + LCR 3.WA + HCR 4. Control + HCR	Yes, 45% HFD after OVX.	PCR, 16S rRNA of cecal contents.	OTUs, α-diversity, β-diversity, bacterial phyla, species richness, bacteroidetes:firmicutes	 I. WA + LCR: Firmicutes Ruminococcus (f) Christensenellaceae (f) Proteobacteria Heliobacteraceae (f) Desulfovibrionaceae (f) Cyanobacteria WA + HCR: Firmicutes Ruminococcus (f) Christensenellaceae (f) Clostridium (g) Proteobacteria Heliobacteraceae (f) Desulfovibrionaceae (f) Clostridium (g) Proteobacteria Heliobacteraceae (f) Desulfovibrionaceae (f) Cyanobacteria Heliobacteraceae (f) Exteroidetes Porphyromonadaceae (f) Firmicutes Lachnospiraceae (f) Peptococcaceae (f) Proteobacteria Heliobacter (g) 	G
Mika, 2015	Y	Male juvenile and adult F344 rats, healthy, n=40	To determine whether juvenile rats would promote a leaner intestinal microbiome phenotype with from 6- weeks of	 WA + Juvenile Control + Juvenile WA + Adult Control + Adult 	No, standard chow diet. Full compo- sition not provided.	PCR, 16S rRNA of fecal samples.	OTUs, α-diversity, β-diversity, evenness, richness, relative abundance, bacterial phyla and genus, bacteroidetes:firmicutes	 1. WA + Juvenile: <u>Bacteroidetes</u> Rikenellaceae g_AF12 (g) Rikenellaceae g_ (g) Firmicutes Blautia (s) Anaerostipes (s) Proteobacteria Desulfovibrio (s) 	G

			voluntary wheel running compared to adult counterparts.					 Euryarchaeota Methanosphaera (s) WA + Adult: <u>Bacteroidetes</u> Rikenellaceae g_AF12 (g) Rikenellaceae g_ (g) Firmicutes Turicibacter (s) 	
Welly, 2016 ‡	Y	Juvenile male obesity-prone CD rats (OP- CD), healthy, n=30	To determine how the intestinal microbiome is altered in the presence of energy deficits created from exercise versus diet in an obesity- prone phenotype.	1. WA + HFD 2. Control + HFD 3. Control + HFD weight matched (WM)	Yes, 45% HFD for all groups.	PCR, 16S rRNA of cecal contents	OTUs, bacterial phyla, family, genera, and relative abundance, bacteroidetes:firmicutes	 WA + HFD: <u>Bacteroidetes</u> Rikenellaceae (f) S24-7 (f) <u>Firmicutes</u> Streptooccaceae (f) Control + HFD WM: <u>Firmicutes</u> Streptoccccus (g) 	G,O
Batacan, 2017	Y	Adult male Wistar Rats, healthy, n=57	To compare the effects of diet (HFD vs ND) and two exercise intensities on the intestinal microbiome over a 12- week period.	1. Control + ND 2. Control + HFD 3. Control + ND 4. Control + HFD 5. Light- intensity	Yes, ND and 25% HFD were used in all activity groups.	PCR, 16S rRNA of fecal contents	OTUs, α -diversity, β -diversity, richness, evenness, bacterial species, family, and class.	 5. LIT + ND: <u>Firmicutes</u> Lactobacillus johnsonii (s) Clostridium geopufricans (s) <u>Actinobacteria</u> Bifidobacteriaceae (f) Coriobacteriaceae (f) Proteobacteria Parasutterella excrementihominis (s) <u>Tenericutes</u> Erysipelotrichaceae (f) 	0

				training (LIT) + ND 6. LIT + HFD 7. HIIT + ND 8. HIIT + HFD				 6. LIT + HFD: <u>Firmicutes</u> ↑ Clostridium (c) 7. HIIT + ND: <u>Firmicutes</u> ↑ Clostridium saccharolyticum (s) ↑ Clostridium geopufricans (s) <u>Proteobacteria</u> ↑ Parasutterella exrementihominis (s) 8. HIIT + HFD: <u>Firmicutes</u> ↑ Clostridium (c)
Feng, 2017	Y	Adult male HCR and LCR rats. Exact sample size not specified.	To determine whether exercise can prevent post- operative cognitive decline, neuroinfla- mmation and associated shifts in intestinal microbiome.	 LCR Control + S.sx HCR Control + S.sx LCR Control + Sx HCR Control + Sx S. LCR + F.Ex + S.sx HCR + F.Ex + S.sx HCR + F.Ex + S.sx 	No, standard chow diet. Full compo- sition not provided.	PCR, 16SRNA gene and DNA sequencing of fecal contents.	OTUs, α-diversity, β-diversity, bacteroidetes:firmicutes	HCR + Ex:* Bacteroidetes firmicutes *Surgical condition not specified

	F.Ex + Sx	
	8. HCR + F.Ex + Sx	
	F.Ex + Sx	
Canine		

Canine									
Kieler, 2017	N	Adult large- and medium- breed dogs who were sedentary and overweight, healthy, n=18	To determine if exercise influences shifts on intestinal microbiome during weight loss protocol.	1. F.Ex + Diet 2. Control + Diet	Yes, all animals were fed same dry diet food.	PCR, 16S rRNA sequencing of fecal samples.	OTUs, α-diversity, bacterial phyla and genus.	No significant changes to intestinal microbiome as a result of exercise.	0
Equine									
Janabi, 2016	Y	Adult male and female horses (mares and geldings [n=8]), healthy, and older seasonal controls (n=4), healthy	To determine the effects of exercise on the equine intestinal microbiome over 12- weeks.	 Seasonal control (SC) F.Ex. 	No. All animals were fed standard rations of grian and alfalfa, and grass ad- libitum.	PCR, 16S rRNA sequencing of fecal contents.	OTUs, α-diversity, β- diversity, relative abundance of bacterial phyla, genera, and species	 2. F. Ex. * 1 Bacteroidetes 1 Dysgonomonas (g) 1 Firmicutes 1 Clostridium (g) 1 Proteobacteria 1 Spirochaetes 1 Treponema (g) * Direction of change varied based on bi-weekly timepoint over 12-week intervention 	0
Janabi, 2017	Y	Adult male and female horses (mares and geldings), healthy, n=8.	To determine the acute effect of exercise on	1. SC 1 2. SC 2 3. F. Ex 1	No-all animals were fed standard ration of	PCR, 16S rRNA sequencing of fecal contents.	OTUs, α-diversity, β- diversity, αrelative abundance of bacterial phyla, genera, and species	1. SC 1 * <u>Firmicutes</u> ↓ Clostridium (g) ↓ Fusicatenibacter saccharivorans (s)	0

			the intestinal microbiome before and after a 12- week exercise training protocol.	4. F.Ex 2	grain and alfalfa/ grass hay ad lib.			Spirochaetes ↓ Treponema zioleckii (s) * Direction of change varied based on bi-weekly timepoint over 12-week intervention	
Human Clarke,	Y	Adult male	То	1. Rugby	No-diets	PCR, 16S	OTUs, α-diversity,	Rugby vs. High BMI	G,O
2014 2014	I	rugby players, and weight matched high and low BMI controls, healthy, n=83	determine the relationship between exercise or sedentary time and the intestinal microbiota.	 Rugby Low BMI High BMI 	were assessed via food frequen- cy question- naires (FFQ)	rRNA sequencing of fecal contents.	bacterial phyla, family, and genera.		u,U
								Rugby vs. Low BMI: Bacteroidetes Prevotellaceae (f) Prevotella (g) Bacteroides (g) S24-7 (f) <u>Firmicutes</u> Lactobacillaceae (f) Lactobacillus (g) Erysipelotrichaceae (c) Succinivibrionaceae (f) Succinivibrionaceae (f)	
Stewart, 2016	Y	Adults with Type 1 Diabetes (T1D), and Adult non- diabetic controls,	To determine if the intestinal microbiome of physically fit adults with managed	1. T1D 2. Non-T1D	No, diets were assessed with 24- hour dietary recalls.	PCR, 16S rRNA sequencing of fecal samples.	OTUs, α-diversity, abundance, bacterial phyla and species	1. T1D* <u>Firmicutes</u> Lachno-spiraceae (f) Dialister (g) <u>Actinobacteria</u> Actinomyces (g) Collinsella (g)	0

		otherwise healthy, n=20	T1D resembles the intestinal microbiome of physically fit adults without T1D.					2. Non-T1D* <u>Firmicutes</u> Lachno-spiraceae (f) Anoxybacillus (g) Clostridium sensu_stricto (g) Coprococcus (g) <u>Actinobacteria</u> Coriobacteriaceae (f) <u>Proteobacteria</u> Aurantimonas (g) Burkholderales (o) Zoogloea (g) Schlegelella (g) Comamonadaceae (f) *Direction of results not reported.	
Allen, 2017	Y	Normal weight and obese sedentary (sed.) adults, otherwise healthy, n=32.	To determine influence of longitudinal exercise intervention on the intestinal microbiome where subjects served as their own controls.	1. Sed. + lean 2. Sed. + obese 3. Ex. + lean 4. Ex + obese	Yes, 3- day control diet prior to fecal samples.	PCR, 16S rRNA sequencing	OTUs, α-diversity , β-diversity, bacterial genera, species	No significant findings between groups after 6 weeks of exercise or 6 weeks of washout.	0
Bressa, 2017	N	Females, premeno- pausal, healthy, n=40	To obser- vationally compare the intestinal microbiome differences between sedentary	1. Sed 2. Active	No, diets were charac- terized using FFQs.	PCR, 16S rRNA sequencing	OTUs, α -diversity, β -diversity, bacterial phyla, family, genus, and species, bacteroidetes:firmicutes	 Sed. <u>Bacteroidetes</u> Barnesiellaceae (f) Barnesiellaceae unclassified (g) Odoribacteraceae (f) Odoribacter (g) <u>Firmicutes</u> 	G, O

			and physically active females.					 ↑ Turicibacter (g) ↑ Ruminococcaceae unclassified (g) ↑ Ruminococcus (g) <u>Proteobacteria</u> ↑ Desulfovibrionaceae (g) 	
								 2. Active <u>Bacteroidetes</u> Paraprevotella (g) <u>Firmicutes</u> Faecalibacterium prautznnii (s) Roseburia hominis (s) Coprococcus (g) <u>Actinobacteria</u> Bifidobacterium (g) <u>Proteobacteria</u> Haemophilus (g) <u>Verrucomicrobia</u> Akkermansia muciniphila (s) 	
Paulsen, 2017	N	Female breast cancer survivors (BCS), otherwise healthy, n=12	To evaluate the influence of CRF and psychosocial factors on the intestinal microbiome in BCS.	1. BCS	No, diets were assessed with 3- day food intake records.	PCR, 16S rRNA sequencing	OTUs, α -diversity, β -diversity, bacterial phyla, family, order, and genus	BCS: No quantitatively significant differences.	G, O

Significant results are presented by study within the "Significant bacterial taxonomy findings" column. All significant findings are denoted with an arrow indicating the direction of change, and are categorized within their respective phyla, and further characterized where: (c)=Class; (o)= Order; (f)= Family; (g)=Genus; and (s)=Species. Represents results with cecal contents only. Represents results with fecal and cecal contents. *Denotes a study-specific note within the column.