Supplemental Digital Content 2. Derivation of the equation to calculate predicted oxygen uptake.
$\mathrm{EE}(\mathrm{kcal})=\left(0.55 \times \mathrm{VCO}_{2}\right)+\left(4.471 \mathrm{x} \mathrm{VO}_{2}\right)$
Therefore,

1) $\mathrm{EE} / \mathrm{VO}_{2}=\left(\left[0.55 \times \mathrm{VCO}_{2}\right] / \mathrm{VO}_{2}\right)+4.471$

Since $\mathrm{RER}=\mathrm{VCO}_{2} / \mathrm{VO}_{2}$
2) $\mathrm{EE} / \mathrm{VO}_{2}=(0.55 \times \mathrm{RER})+4.471$
3) $\mathrm{EE}=([0.55 \times \mathrm{RER})+4.471] \times \mathrm{VO}_{2}$

Therefore, assuming exercise efficiency is maintained
4) Predicted $\mathrm{VO}_{2}=\mathrm{EE} /([0.55 \times \mathrm{RER}]+4.471)$
5) Predicted $\mathrm{VO}_{2}=\left(\left[0.55 \times\right.\right.$ Pre-KD $\left.\left.\mathrm{VCO}_{2}\right]+\left[4.471 \times \mathrm{VO}_{2}\right]\right) /([0.55 \mathrm{x}$ RER] + 4.471)

Energy conversion: $1 \mathrm{kcal}=4.18 \mathrm{~kJ}$

