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Supplemental Digital Content 1. Procedures for normalizing physiological data to body size 1 

To perform unbiased comparisons of size-dependent physiological data in morphologically 2 

diverse populations such as children and adults, it is fundamentally important to normalize these 3 

data to body size. There exists multiple statistical approaches to remove this size bias, with 4 

ratiometric scaling, adjusted-regression analysis, analysis of covariance, and allometric scaling 5 

being among the most common. The most appropriate approach, however, will depend on whether 6 

the variables to be normalized satisfy the statistical assumptions associated with each procedure.  7 

For data satisfying the statistical assumptions of least-squares, linear regression, one can 8 

rely on ratiometric scaling to remove body-size effects. However, the validity of this method is 9 

reliant on the linear regression relationship between the independent and dependent variables 10 

possessing a zero ordinate-intercept. If this is not the case, one can utilize adjusted regression 11 

analysis or analysis of covariance, to normalise physiological data to body size. In many instances, 12 

however, physiological data can display non-constant error variance (heteroscedasticity), and a 13 

non-linear relationship with body size, which violates the statistical assumptions that must be 14 

satisfied to perform ratiometric scaling, as well as adjusted regression analysis and analysis of 15 

covariance. For these scenarios, allometric scaling can be used as an alternative. This selection 16 

process is illustrated in Figure S1, while a brief description of these normalization procedures is 17 

provided below. 18 

--------------------------------------------------- 19 

INSERT FIGURE S1 ABOUT HERE 20 

---------------------------------------------------  21 



2 
 

Ratiometric scaling 22 

 Ratiometric scaling (yꞏx-1) uses least-squares linear regression to normalize physiological 23 

data to body size, and assumes that the linear regression line describing the relationship between 24 

the dependent physiological variable of interest (y) and the independent body-size variable (x) is 25 

linear, and passes through the origin (y-intercept equal to zero). When linear regression is used to 26 

normalise physiological data in this manner, it is also necessary to confirm that these data display 27 

constant error variance throughout the range of observations (homoscedasticity), which is achieved 28 

when all data points are evenly distributed about the regression line. Experimental data must also 29 

display a normal distribution (bell curve). If these assumptions are met, ratiometric scaling 30 

provides a suitable means of normalising physiological data to body size. Size-adjusted 31 

physiological data can be derived using ratiometric scaling by expressing the physiological 32 

variable (y) per unit of the morphological variable (x) using least-squares, linear regression 33 

(Equation 1). 34 

    yi = a + b ⋅ xi + ei  Equation 1 35 

 where: 36 

 yi = physiological variable    [physiological variable units] 37 

 xi = morphological variable    [morphological variable units] 38 

 a = origin intercept (assumed to be zero)  [physiological variable units] 39 

 b = group regression slope    [morphological variable units] 40 

 ei = constant error term    [physiological variable units] 41 

 42 

Adjusted regression analysis 43 

 If the assumptions of ratiometric scaling have not been demonstrably verified, an adjusted 44 

form of linear regression analysis (based on analysis of covariance) for single groups, can be used 45 
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to normalise physiological data to body size. With this approach, the effects of body size are 46 

accounted for by first determining the group regression slope between the physiological outcome 47 

variable and the measure of body size. Normalised physiological data are then derived by 48 

subtracting each individual’s physiological data from the product of this group regression slope 49 

and the difference between each individual’s measure of body size and the group mean of this 50 

body size variable. Like least-squares regression, this method is valid only when a linear 51 

relationship exists between the numerator and denominator (linearity), data display a normal 52 

distribution (normality) and that all data points display similar variations from the regression line 53 

across the range of observations (homoscedasticity). When these assumptions are met, adjusted 54 

regression analysis can be used to normalize the physiological variable of interest within each 55 

subject group using Equation 2: 56 

    yadj = yi - b (xi – x̄) + ei  Equation 2 57 

 where: 58 

 yadj = size-adjusted physiological variable  [physiological variable units] 59 

 yi = physiological variable     [physiological variable units] 60 

 xi = morphological variable     [morphological variable units] 61 

 b = group regression slope    [morphological variable units] 62 

 x̄ = group mean of morphological variable   [morphological variable units] 63 

ei = constant error term    [physiological variable units] 64 

 65 

Analysis of covariance   66 

 To normalize physiological data to body size in two or more groups, analysis of covariance 67 

can be used. This method adjusts for variations in the covariate (body size) by first deriving linear 68 

regression relationships between the physiological and body size variable for each of the groups 69 
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under investigation. Size-adjusted group means are then created by subtracting the average slope 70 

of these group regression lines and the difference between the group mean and grand mean (mean 71 

of all groups) of the body size variable from the group mean of the physiological variable. In 72 

addition to the least-squares linear regression assumptions required for adjusted regression analysis 73 

(linearity, normality and homoscedasticity), it is necessary to verify the assumptions of regression 74 

slope homogeneity and homogeneity of variance for analysis of covariance. The former of these 75 

additional assumptions is satisfied when the slopes of the group regression relationship between 76 

the physiological and body size variable do not differ significantly between each group, while the 77 

latter assumption is confirmed when the variance associated with each variable is equal 78 

(homogeneous) between groups. In instances where these assumptions can be verified, analysis of 79 

covariance is suitable for normalising physiological data to body size among two or more groups. 80 

Analysis of covariance can be used to correct each group mean of the physiological variable 81 

for variations in the covariate (body size), by first deriving linear relationships between the 82 

morphological variable and physiological variable for each subgroup. The average slope from 83 

these regression equations can then be used to adjust the physiological variable to the mean of the 84 

morphological variable across both groups (grand mean) and derive a size-adjusted group mean 85 

using Equation 3. 86 

    y’adj = yi - b (xi - xg) + ei   Equation 3 87 

where: 88 

y’adj = size-adjusted group mean   [physiological variable units] 89 

yi = group mean of the physiological variable [physiological variable units] 90 

b = average between-groups regression slope [morphological variable units] 91 

xi = group mean of the morphological variable  [morphological variable units] 92 

xg = grand mean of the morphological variable [morphological variable units] 93 
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ei = constant error term    [physiological variable units] 94 

 95 

Allometry 96 

 For situations in which neither the assumptions of ratiometric scaling nor those of adjusted 97 

regression or analysis of covariance have been satisfied, allometric scaling can be used to 98 

normalize physiological data to body size. Unlike the methods previously described, which rely 99 

on a linear relationship between the physiological data and body size data, allometric scaling 100 

assumes the relationship between the physiological and body size variable shares a 101 

disproportionate, or non-isometric relationship, with increases in body size corresponding to 102 

disproportionate changes in the physiological variable. Allometry normalises physiological data 103 

(y) by scaling the body size variable (x) to an exponent (b), using a power function model (y.x-b). 104 

This scaling exponent is derived from the slope of the log-linear regression relationship between 105 

the logarithmically transformed physiological and body size variable. When this scaling exponent 106 

is equal to one, these data satisfy the assumption associated with the ratiometric scaling (isometry). 107 

In this instance, ratiometric normalization is valid. A slope between zero and one (negative 108 

allometric relationship) occurs when increases in body size exceed increases in the physiological 109 

variable, while an exponent greater than one represents a positive allometric relationship, where 110 

the physiological variable increases at a greater rate than increases in body size.  111 

 Since log-linear regression is used to derive the scaling exponent required for allometric 112 

scaling, this procedure also assumes these logarithmically transformed data are normally 113 

distributed, and that linearity exists between the log-transformed physiological and morphological 114 

variables. Moreover, the allometric model contains a multiplicative error term, which assumes that 115 

the distance of each data point away from the regression line (residual error) increases in 116 

proportion to the regression relationship between the dependent and independent variables 117 
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(heteroscedasticity). Therefore, under circumstances where physiological data display evidence of 118 

non-linearity or residual errors that are size-dependent, allometric scaling provides a suitable 119 

alternative to ratiometric scaling and adjusted regression for normalising physiological data to 120 

body size in single groups. 121 

  The physiological variable (y) of interest can be allometrically scaled to the morphological 122 

variable (x) using an exponent (b), according to a power function model using Equation 4: 123 

    yi = a ⋅ xi
b + ei   Equation 4 124 

 where: 125 

 yi = physiological variable   [physiological variable units] 126 

 xi = morphological variable   [morphological variable units] 127 

 a = origin intercept    [physiological variable units] 128 

 b = scaling exponent (slope)   [morphological variable units] 129 

 ei = multiplicative error term   [physiological variable units] 130 

 131 

 The origin intercept and the exponent (slope) can then be derived by expressing the power 132 

function model as natural logarithms and fitting a straight line to these data using log-linear 133 

regression (Equation 5), and back-transforming the resulting equation to form the power function 134 

model: 135 

   log(y)= log(a) + b ⋅ log(x) + log(ei)  Equation 5 136 

 where:  137 

 log(y) = log of the physiological variable  [physiological variable units] 138 

 log(a) = log of the origin intercept   [physiological variable units] 139 

 b = slope (exponent) of the regression line  [morphological variable units] 140 

 log (x) = log of the morphological variable   [morphological variable units] 141 
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 log(ei) = log of the multiplicative error term   [physiological variable units] 142 

 143 

It is important to note that while there exists appropriate allometric scaling exponents for 144 

normalizing cardiorespiratory data to body size (e.g., V̇O2peak, cardiac output), there exists a 145 

paucity of similar research on normalizing thermoregulatory processes (e.g., whole-body sweat 146 

rate). To achieve this, it is first necessary to assess the possibility of non-linearity of these 147 

responses within a dataset that is sufficiently large and heterogeneous in body size to make valid 148 

inferences. In addition, since various secondary factors can independently influence such 149 

responses (e.g., sex, chronic disease), it is important to consider these covariates either statistically, 150 

or by examining these relationships in individuals that are homogeneous except for body size. This 151 

represents an important area of future research for improving our ability to perform unbiased child-152 

adult comparisons of thermoregulatory responses.  153 
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FIGURES 154 

Figure S1: Decision tree representing the three steps for selecting the most appropriate scaling 155 

procedure for normalizing physiological data to body size. Step one involves preparing scatter, 156 

residual and quantile comparison plots of the physiological variable of interest (y) and the body 157 

size variable (x) to check the assumptions of linear regression between the physiological and 158 

morphological variable are demonstrably verified. If non-linearity or non-constant error variance 159 

is present, allometric scaling should be used. Step two involves determining whether the linear 160 

regression relationship between the physiological and morphological variable displays a zero 161 

ordinate-intercept. In these instances, ratiometric scaling is appropriate. For Step three, if the 162 

regression exhibits a non-zero ordinate-intercept, use adjusted regression analysis for within-163 

groups comparisons or analysis of covariance for between-groups comparisons.   164 
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