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Supervised Machine Learning: Gradient Boosting Machine
In this study, we aimed to predict a binary outcome, i.e. whether or not an EPC occurred after intracranial tumor surgery. In this classification problem, the outcome can thus take the value 0 (no complication) or 1 (complication) and patients are accordingly labeled. This allowed us to train supervised machine learning algorithms as these labels would “guide the learning process”.1 Models were fit using the h2o (H2O.ai) package in R (The R Project for Statistical Computing, R Core Team, 2018, Austria, Vienna).2 We then trained a battery of different algorithms (Random Forest, Neural Network, Support Vector Machine and Gradient Boosting), being unclear beforehand which algorithm would work best for our data. Our objective was to find a model that maximizes the correct prediction of complications with a high overall accuracy score.
Our dataset was then split into three random samples: We constructed a random training sample consisting of 80% of the cohort, which was used to fit the parameters of the model. The remaining sample of 20% was randomly split into a validation set and a test set. The validation set was used to tune the parameters of the fitted model trained on the training sample and to prevent the model from overfitting – as explained below. The test set was used to evaluate the performance of the different candidate models and select the final model. The same training and test samples were used for the conventional statistical method.
A series of supervised machine learning algorithms (see above) were thus trained on the training set. For each algorithm, an extensive grid search was applied to find the parameters that could best predict complications in the training sample. If the training sample is sufficiently rich and the specified model complex enough, the trained model will be able to perfectly predict every case in the training data after a certain amount of training. However, if the training data is not representative of the entire population, the trained model will have poor generalizability and perform poorly on the out-of-sample cases in our test set. To prevent such ‘overfitting’, the validation set was used. For each training iteration, the increase or decrease in a certain performance indicator of the predictions on the training and validation set was evaluated. When additional training increased the performance on the training set, but not on the validation set, training was stopped to prevent overfitting. 
After training several algorithms with different parameter specifications, we evaluated the performance on the training data based on the Area Under the Curve (AUC) metric. The top five models were all Gradient Boosting Machine algorithms. For each of these five models we evaluated their performance on the combined training and validation set using six-fold cross-validation and selected the model with the highest average AUC metric across the six folds. Finally, this model was used to predict the outcome of the cases in our test set. We derived sensitivity, specificity, accuracy, precision, detection rate and mean per class error. Not confidence intervals were provided as machine learning does not have reliable validated methods to calculate the confidence intervals. 
Requests to access the analysis methods and model may be sent to the corresponding author.

Conventional Statistical Analysis 
Continuous data were reported as mean ± standard deviation, and categorical data were reported as numbers (percentages). Conventional statistical analyses were carried out using R (R Core Team, 2018). 
All continuous variables were found to be non-normally distributed. Intergroup differences of continuous data were assessed using Mann-Whitney U tests. Continuous variables were dichotomized using the following normality thresholds: KPS (≥80), Rankin scale (≤2), NIHSS (≤4). Intergroup differences of categorical data were assessed using 2 tests. Nominal variables were dichotomized based on their significance. A two-tailed p ≤ 0.05 was considered as statistically significant. 
After univariate analysis, a multivariate logistic regression model was created to predict the occurrence of an EPC in our cohort. A logistic regression model produces a continuous outcome variable between the value of 0 and 1 and the researchers can determine the cut-off value that optimizes the classification to meet the objective of the study. In this study, we chose a cut-off value maximizing the F1-score on the training data. The F1-score is the harmonic mean of the precision and recall metrics, and indicates the accuracy of the classification.
We first fit this model to the training dataset. For the ROC analysis, the sum of significant predictors was analyzed against the presence of a complication, and the AUC was calculated. We also derived the sensitivity, specificity, accuracy and precision, as well as the detection rate and the mean per class error. Next, the model fit was used to predict whether a patient had a complication on the test set. 

Missing data:
Our aim is to reflect daily clinical routine where often not all data are obtainable. To make our algorithms and study realistic, we decided not to correct for missing data by for instance imputation techniques and perform the analysis using available data only. While using imputation techniques to estimate missing variables has many merits in conventional statistics, it is less preferred in machine learning exercises because it doesn’t reflect the observed reality – at best a close approximation - and adds artificially introduced noise to the data. Moreover, there could be significant reasons why some data is missing and the fact this data is missing could be linked to the outcome variable of interest. In such cases (and in a number of other scenario’s), imputation obscures important relationships in the observed data or introduces artificial relationships altogether, which decreases the value of complex pattern recognition used machine learning. 
In the current study we are not concerned that the exclusion of cases with missing values introduces a bias in our data, especially for conventional statistics. Moreover, we do not believe that it violates the representativity of our sample, because – to the best of our knowledge – the missing values in the data are not the result of systematic features linked to the data generating process or outcome variable.  
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