Multi-layer Perceptron, Gaussian Mixture Models, and Generative Adversarial Networks

Multi-layer Perceptron (MLP)
	Multi-layer perceptron (MLP) is a feed-forward neural network that consists of an input layer, several hidden layers, and an output layer. With interconnected nodes (neurons) and nonlinear activation functions, it can effectively learn a nonlinear mapping function  between the  input features and the   output targets, requiring no prior assumptions about the data distribution. Theoretically, an MLP with carefully tuned weights and suitable activation functions can approximate any smooth, measurable functions between input features and output targets1. These features of MLP make it an attractive approach for learning tasks such as classification and regression. 
	In this paper, we exploit MLP as one of our classification learning models to differentiate wild-type and mutated grade IV gliomas. Instead of using a fixed neural network architecture, we try one hidden layer MLP models with varying neurons {5, 10, 15} and two hidden layers MLP models with the neurons chosen from the set {(5, 5), (10, 5), (15, 5), (15, 10)} (the first and the second number in the tuple indicate the number of neurons in the first and second hidden layers, respectively). For all MLP models, we employ the sigmoid   as our nonlinear activation function.

Gaussian Mixture Models
	A Gaussian Mixture Model (GMM) is a parametric probability density function which is consist of  different Gaussian distributions with a mixture density weight of  respectively where . The GMM can be mathematically formulated as Equation 1:
                                                     (1)
where  is a continuous-valued data vector with  features; ,  is the  component Gaussian distribution with mean vector  and covariance matrix , as shown in Equation 2:
                           (2)
The notation  (Equation 3) represents the parameter set of GMM which is comprised of mean vectors, covariance matrices, and mixture density weights.
                                                       (3)
	Zong et al.2 integrated deep autoencoder with Gaussian Mixture Model to conduct unsupervised anomaly detection. Carlotto3 proposed cluster-based anomaly detection method which is based on Gaussian mixture model. Chaddad4 leveraged Gaussian mixture model to extract Glioblastoma (GBM) features to discriminate GBM and normal tissue. Ramasamy et al.5 introduced fast fourier transform based expectation-maximization Gaussian mixture model to improve the accuracy of brain tissue classification of MR images.

Generative Adversarial Networks
	Generative Adversarial Networks (GANs)6 is a generative model. It involves a generator G and a discriminator D where G learns to generate samples that are similar to training samples while D, on the other hand, determines whether it is a real training sample or a fake one. It has gained great attention in the field of deep learning that a variety of its variants such as DCGAN7, WGAN8, CycleGAN9, Progressive Growing GAN10, BigGANs11, and etc, have emerged in recent years. Besides its successful in image synthesis, GAN has been increasingly used in the domain of anomaly detection. Schlegl et al.12 proposed f-AnoGAN to identify anomalous images and image segments. Alex et al.13 used GAN for brain lesion detection. Li et al.14 introduced MAD-GAN to conduct anomaly detection in time series data.
	Leveraging the capability of distribution estimation of GAN, we, in this paper, train GANs to learn the underlying distribution of wild-type grade IV gliomas, as so to distinguish mutant grade IV gliomas from wild-type grade IV gliomas. The GANs adopt cross-entropy as its loss function, Adam with learning rate  as its optimizer. To reduce the model complexity, convolution neural networks instead of multilayer perceptron are used. The discriminator consists of 1D convolution layers, non-linearity activation functions (LeakyReLU) with , Dropouts with a dropout rate being , and a single sigmoidal neuron in its rearmost layer. It is fed with wild-type grade IV gliomas with 107 (and 108 when age information is considered) selected features. The generator is composed of 1D transposed convolution layers, batch normalization layers, and non-linearity activation functions (LeakyReLU) with . It is fed with random noise samples drawn from a standard normal distribution. Architectures of the generator and discriminator are presented in Table 1 (or Table 3 when age information is considered) and Table 2 (or Table 4 when age information is considered), respectively.


















Table 1: Architecture for Generator (107 Radiomic Features)
	Input: Random Noise 

	Neural Network Layers
	Hyper-Parameters
(kernel, stride, padding)
	Output Size
(batch size, channel, length)

	Project & Reshape
	N/A
	32, 17, 1

	ConvTranspose1d
	7, 1, 0
	32, 128, 7

	BatchNormalization, LeakyReLU
	N/A
	32, 128, 7

	ConvTranspose1d
	5, 4, 1
	32, 64, 27

	BatchNormalization, LeakyReLU
	N/A
	32, 64, 27

	ConvTranspose1d
	5, 4, 1
	32, 1, 107

	Sigmoid
	N/A
	32, 1, 107

	Output: Generated Samples





Table 2: Architecture for Discriminator (107 Radiomic Features)
	Input: Wild-type grade IV gliomas 

	Neural Network Layers
	Hyper-Parameters
(kernel, stride, padding)
	Output Size
(batch size, channel, length)

	Conv1D
	5, 4, 1
	32, 64, 27

	LeakyReLU, Dropout
	N/A
	32, 64, 27

	Conv1D
	5, 4, 1
	32, 128, 7

	LeakyReLU, Dropout
	N/A
	32, 128, 7

	Conv1D
	7, 1, 0
	32, 1, 1

	Sigmoid
	N/A
	32, 1

	Output: Estimated Probability




Table 3: Architecture for Generator (107 Radiomic Features + Age Information)
	Input: Random Noise 

	Neural Network Layers
	Hyper-Parameters
(kernel, stride, padding)
	Output Size
(batch size, channel, length)

	Project & Reshape
	N/A
	32, 17, 1

	ConvTranspose1d
	7, 1, 0
	32, 128, 7

	BatchNormalization, LeakyReLU
	N/A
	32, 128, 7

	ConvTranspose1d
	5, 4, 1
	32, 64, 27

	BatchNormalization, LeakyReLU
	N/A
	32, 64, 27

	ConvTranspose1d
	6, 4, 1
	32, 1, 108

	Sigmoid
	N/A
	32, 1, 108

	Output: Generated Samples





Table 4: Architecture for Discriminator (107 Radiomic Features + Age Information)
	Input: Wild-type grade IV gliomas 

	Neural Network Layers
	Hyper-Parameters
(kernel, stride, padding)
	Output Size
(batch size, channel, length)

	Conv1D
	5, 4, 1
	32, 64, 27

	LeakyReLU, Dropout
	N/A
	32, 64, 27

	Conv1D
	5, 4, 1
	32, 128, 7

	LeakyReLU, Dropout
	N/A
	32, 128, 7

	Conv1D
	7, 1, 0
	32, 1, 1

	Sigmoid
	N/A
	32, 1

	Output: Estimated Probability
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